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Summary 
A method for a compact lens-less image encoding system using 
diffraction grating and random phase masks is presented. Lens-
less double phase encoding is implemented using diffraction 
grating. The Beam Propagation Method (BPM) is used to analyze 
optical waveguide grating. The phase keys functions and grating 
parameters are the encryption keys. Simulation results are 
presented in support of the proposed idea. Results are compared 
to the conventional Double random phase encoding (DRPE) 
method. The robustness and performance of the proposed 
technique is analyzed using the mean-square-error (MSE) 
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1.  Introduction 
 
Optical image encryption is gaining interest due to its distinct 
advantages such as parallel processing ability, and providing 
many degrees of freedom for coding information. 
Several techniques and applications are proposed for optical 
image encryption [1-7]. Double random phase encoding (DRPE), 
proposed by Refregier and Javidi [1], is considered among the 
widely used optical encryption techniques. Fractional Fourier 
transform (FRFT) [2,8] is proposed as a generalization of the 
conventional plane encodings. Optical Fourier Transform (OFT) 
plays an important role in optical image processing and double 
phase encoding systems. For the Fraunhofer integral to be valid, 
the observation distance should be very large compared to the 
aperture dimensions. So, lenses are used to perform optical 
Fourier transform (OFT) of an object in the double random 
phase encoding technique. But lenses suffer from aberration 
which produces errors in the calculated Fourier transform. 
Recently other  optical encryption techniques using diffraction 
gratings are proposed [9],[10]. 
In this work, a compact lens-less method for images encryption 
and decryption is proposed. This method relies on the use of 
diffraction grating instead of the optical lens. So, the encryption 
process is performed by using two random phase masks and a 2-
D phase transmission grating of certain periodicity. The use of 
the phase grating enhances the security of the encoding system 
as the grating parameters must be correct to successfully retrieve 
the original image, so  the system become more secure.  Also, 
the system is compact due to removal of the lenses and the need 
of a propagation distance that equals the lens focal length. 
Simulation results of encryption and decryption of 2-D images 
by the conventional DRPE method and by using the diffraction 
grating waveguide are presented to evaluate the reliability of the 
technique, MSE between the decrypted and original image has 

been calculated. The paper is organized as follows. Section 2 is 
a theoretical analysis, Simulations and discussions are presented 
in section 3. Finally section 4 is a conclusion. 

 
2.  Theoretical analysis 
 
2.1. Double random phase encoding (DRPE) 
 
DRPE uses two statistically independent random phase masks in 
the input and the Fourier planes to encrypt the input image into a 
stationary white like noise. During the encryption process, the 
image to be encrypted, I(x,y), where x, y are the spatial 
coordinates, is immediately followed by a first random phase 
mask R1(x,y). Both the image and the mask are located in the 
object focal plane of a first lens (L1). FT of the product 
R1(x,y)I(x,y) is obtained at the image focal plane of this lens. 
The second random key R2(u,v) is multiplied by the calculated 
FT, where u,v are the Fourier plane coordinates. Lastly, another 
FT is performed by a second lens (L2) to transform back to the 
spatial domain. Fig. 1 shows an optical implementation of the 
DRPE. The encoded image Ψ(x,y) is given by: 
 

( ) ( ) ( ) ( )[ ][ ]yxRyxIFTvuRIFTyx ,,,, 12=Ψ  (1) 
 
For decryption, the encrypted image is Fourier transformed and 
multiplied with the complex conjugate of R2(u, v). Then, 
inverse Fourier transformed to get the decrypted image. The 
conjugate of the used two random phase masks used during the 
process of encryption act as the keys for data security during 
decryption [1]. 

 
Fig.1 Optical implementation of DRPE 

 
2.2. Diffraction Grating 
 
Diffraction gratings are optical elements that are superimposed 
with a precise pattern of microscopic periodic structures, 
producing periodic alternations in the phase and/or amplitude of 
an emergent wave [11]. Gratings are used in several applications 
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include, multiplexing, demultiplexing, holographic optical 
elements, interferometry, lenses, etc. [12]. Gratings can be 
classified as either amplitude gratings or phase gratings. Another 
classification is as reflection gratings or transmission gratings.  
In this work, a two-dimensional phase transmission grating and 
double-random phase masks are used to perform image 
encryption. That is to say that the lenses are replaced by the 
phase grating. During encryption, the original image is multiplied 
by the first phase mask, then propagates along a diffraction 
grating of interaction length d and periodicity Λ. then the output 
is multiplied by the second phase mask. Figure 2(a) shows the 
equivalent of what is called a ruled grating in conventional three 
dimensional optics. Figure2(b) shows a phase grating : two 
planar optical waveguides are separated by a zone where the 
effective index of the guide is periodically modulated. Here we 
will be concerned with integrated Bragg phase transmission 
grating. Several methods have already been used for inducing the 
refractive index modulation[13],[14]. 

 
Fig.2 Integrated optical gratings(a)Equivalent of ruled grating (b) Phase 

diffraction grating 
 
Figure3 is the top view of a transmission phase grating, where 
the spatial periodicity is Λ , the interaction length of the grating 
is d, n1 and nh are the refractive indices in the slots and in the 
interslots areas respectively. When guided light beam of 
wavelength λ is incident with angle θi on the grating,the periodic 
change in the refractive index produces a phase transmission-
type grating with square profile. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Top view of a phase diffraction grating illuminated by beam with 
wavelength λ 

 
The diffraction efficiency “η”  of the first  diffracted order is 
given by [ 15],[16]];  
       

  ,                                    (2) 

where        
ν=Kcd,          ζ=Ed/2cosθi 

  
E is a dephasing factor that is introduced if the angle of incident 
θi is not equal to the Bragg angle θB: 
   

                         E= 2  (sin θi – sin θB)  /  .                (3) 
 

Finally the parameter Kc is called the coupling coefficient and is 
given as:   
 

                          Kc= 2 ∆n / λ cos θi  .                           (4) 
 

where ∆n is the amplitude of the refractive index modulation 
which is assumed to be sinusoidal. In our case the modulation is 
nearer to a rectangular one, varying from nh to n1 over a period 
Λ; so, for a given wavelength  λ, ∆n will be approximated by the 
fundamental sinusoidal component of a rectangular refractive 
index modulation: 
 
                         ∆n =2[ nh(λ) – nl(λ) ] / π .                    (5) 
 

It is clear that when θi = θB = , the phase 

mismatch equals zero, and hence the efficiency for the first 
order of diffraction at wavelength  λ is  

                         η (λ)  = .                 (6) 

From the previous grating equations, we note that a random 
phase and amplitude errors in transmission interaction length (d), 
and index modulation (∆n), will degrade the grating 
performance. They reduce the strength of the peak transmission, 
broaden the spectrum, and produce fluctuations in the phase 
response as shown in figure 4. 

 
Fig.4 Illustration of a grating subjected to phase error, (A) correct grating 

(Δn =1.01e-03) and (B) grating with phase error (Δn=0.55e-03). 
 

However, for image encryption purposes, these disadvantagees 
can be turned into desired characteristics.In this paper we will 
study the deviation effects for the grating parameters on the 
image encryption and measure its MSE. 
The fields inside the grating could be obtained by applying the 
beam propagation method (BPM) [17]. The beam propagation 
method is used to simulate the propagation of an optical beam 
excitation along a waveguide structure. The BPM method 
decomposes a mode into a superposition of plane waves traveling 
in different directions. These individual plane waves are 
propagated through a finite predetermined distance through the 
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waveguide until the end is arrived. At this point, all the 
individual plane waves are added to get the spatial mode back. 
There are various kinds of BPMs [9], in this work fast 
Fourier transformation (FFT-BPM) is adapted. In this 
method one propagates an input field u(x,y;z) over a small 
distance Δz to obtain the field at z+Δz in the grating. The 
FFT-BPM calculation procedure for a distance Δz can be 
summarized as follows [17], where step i-v corresponds to 
the labels shown in Fig.5:                                                                                                                                                       

i. At propagation position z, the spectral domain wave 
function Umn(z) is calculated by taking the Fourier 
transform of the space-domain wave function  U(x,y,z). 

ii. To get the spectral domain wave function Umn(z + Δz/2), 
the spectral domain wave function Umn(z) is multiplied by 

)]2)(2)[(
4

2)2(exp( z
Y
n

X
mj Δ+

β
π .This  multiplication 

corresponds to the propagation over the distance Δz/2 in 
free space, where β = k0.no, no is the  refractive index, k0= 
2π/λ, λ is the wavelength of the used beam. X and Y are 
the widths in the x and y directions. 

iii. Taking the inverse Fourier transform of the spectral 
domain wave function Umn(z+Δz/2) obtained in step ii, one 
obtains the space-domain wave function  u(x,y;z+Δz/2) just 
in front of the phase-shift lens. Then, multiplying the 
phase-shift term exp[-χ] due to the phase-shift lens by the 
space-domain wave function u(x,y;z+Δz/2),one obtains the 
space-domain wave function just after the phase-shift lens 
given by exp[-jχ]u(x,y;z+Δz/2), where:  

zeffnneffn
effnk

k
Δ−Δ+= }22){(

02

2
0χ . 

iv. Taking the Fourier transform of the space-domain 
wave function just after the phase-shift lens and 
multiplying it by 
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corresponding to the propagation over Δz/2 in free space to 
obtain the spectral domain wave function Umn(z + Δz) at z 
+ Δz. 

v. To get the wave function u(x, y; z + Δz), the inverse 
Fourier transform of the spectral domain wave function 
Umn(z + Δz) obtained in step iv is calculated.  

The space-domain wave function at the target propagation 
position is calculated by repeating steps i-v. The accuracy of the 
method depends on the smallness of the step size Δz and the grid 
size Δx, Δy.  

 
 
 
 
 

Fig.5 Calculation of one period in the FFT-BPM  
 
3. Numerical Simulation Results & Discussion 
 
A set of numerical experiments are performed to test the 
proposed method performance. A grayscale and binary text 
images, shown in Figures 6.a and 7.a are used in the experiments 
as input images. Numerical simulations are applied to compare 
the performance of the proposed method using planar diffraction 
grating waveguide and the conventional DRPE system. The 
quality of the decoding image is measured using the Mean 
Square Error (MSE) between the original (input) image and the 
decrypted image. Mathematically [5], 
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where (N×M) is the size of the image in pixels. fd(x,y) and f(x,y) 
are respectively the decrypted image and the primary image. 
The first experiment shows the results of using lens based 
conventional to encrypt and decrypt a grayscale and binary text 
images using ideal lenses as shown in figures 6,7. The MSE 
between the input image and the corresponding decrypted image 
with correct RPM2 for grayscale and binary text images is 
negligible ( 1.7828e-31 and 5.0528 e-32  respectively ), and with 
wrong RPM2 the MSE is 0.1234 and 0.0814. 

 
  
 
 
 
 
 
 

(a)                                             (b) 
 
 
 
 
 
 
 
    
                   (c)                                     (d)     
Fig. 6. Simulation results of amplitude based grayscale image using lens 
based DRPE (a) Input image  (b) Encrypted image (c) Decrypted image 

with wrong key (RPM2) (d) Decrypted image with correct key. 
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In the second experiment planar diffraction grating waveguide 
are used to perform the DRPE. A diffraction gratings illuminated 
with plane wave monochromatic light with normal incidence and 
wavelength λ are used to replace the lenses. The effective 
refractive index of the guided wave mode (ne1 and neh) have been 
done with a He-Ne laser (λ=0.6328µm) through prism couplers 
equal to ne1= 1.512689, neh = 1.513739. The periodicity of the 
grating is Λ=10µm.  
The computational window used for the simulation is 50 µm. The 
accuracy of the results depends on the number of grid points N in 
the transverse x and y directions, and the size of the propagation 
steps, Δz, in the direction of propagation. During encryption, 
first, the input image I(x,y) is multiplied by the first random 
phase mask R1(x,y) at the input plane, then the FFT-BPM is 
applied to simulate the propagation in the grating waveguide 
until the point where the field needs to be determined, then 
multiplied by the second random phase maskR2(u,v)as shown in 
figure 8. A value of  N=128, and Δz=2 µm are used. 

 
 

    
 
 
 
      
 
 

(a)                               (b) 
                
 
 
 
 
 
 
 
 

(c)                                      (d) 
Fig.7 Simulation results of amplitude based binary text image using lens 
based DRPE (a) Input image (b) Encrypted image (c) Decrypted image 

with wrong key (RPM2) (d) Decrypted image with correct key. 
 
 
 
  
 
 
 
 
 
 
 
 

Fig.8 Proposed compact  image encoding system  using double phase 
masks and diffraction grating. 

 
Figures 9 and 10 show the decoded image using the proposed 
system with the correct and wrong key (RPM2) at interaction 

length d=474µm (where maximum efficiency) and index 
modulation Δn = 1.05e-03 for grayscale and binary text images 
respectively.  
The MSE between the original image and the corresponding 
decrypted image is calculated with correct RPM2 for grayscale 
and binary text images and its value is also negligible (2.3688e-
028 and 7.8219e-029 respectively), and with wrong RPM2 the 
MSE is 0.1226 and 0.0809. These results are very near to those 
of conventional DRPE, which clear that the proposed system 
using diffraction grating is very suitable for image encryption 
and decryption. 
Simulation has also been performed to test the system robustness 
against the error in the grating interaction length (d) and the 
index modulation (Δn) for grayscale and binary text images as 
shown in figures 11,12 respectively. It is noted that small 
deviation from the correct interaction length d (Fig.11) and also 
very small deviation from the correct index modulation Δn 
(Fig.12) produces sufficiently high MSE, so the distance d and 
the index modulation Δn can be used as a good keys to protect 
the image due to sensitivity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Conclusion 
 
In this paper, we have presented the simulation results of 
encryption and decryption of 2-D images by using two-
dimensional phase transmission grating. The FFT-BPM used to 
simulate the propagation of an optical beam along  the grating. 
The successful retrieval of the correct image is possible only if 
both the RPM2 and grating parameters occupied be them during 
the encryption. When using grating the system become more 
secure as compared to use a simple RPM at the Fourier transform 
plane due to larger key size. To evaluate the reliability of the 
technique, MSE between the decrypted and original  images has 
been calculated, it is found that small deviation from the correct 
grating interaction length d and index modulation Δn  produces 
sufficiently high MSE. 

grating
R2

R1
I

Fig.9 Simulation results of amplitude based grayscale image using 
grating: (a) Input image  (b) Encrypted image (c) Decrypted image 

with wrong key (RPM2) (d) Decrypted image with correct key. 

(a) (b) 

(c) (d) 
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Deviation from correct interaction length d in µm 
 

Fig.11 MSE between the decrypted and  the  input images with error in 
interaction  length  d for grayscale and binary text images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
Deviation from correct index modulation ∆n 
 

Fig.12 MSE between the decrypted and the input images with error in 
index modulation Δn for grayscale and binary text images. 
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Fig.10 Simulation results of amplitude based binary text image using 
grating: (a) Input image  (b) Encrypted image, (c) Decrypted image 
with wrong key(RPM2) and (d) Decrypted image with correct key.

(a) (b) 

(c) (d) 


