
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

153

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

A Guide to Dynamic Load Balancing in Distributed Computer
Systems

Ali M. Alakeel

College of Computing and Information Technology
University of Tabuk, Tabuk, Saudi Arabia

Summary
Load balancing is the process of redistributing the work load
among nodes of the distributed system to improve both resource
utilization and job response time while also avoiding a situation
where some nodes are heavily loaded while others are idle or
doing little work. A dynamic load balancing algorithm assumes
no a priori knowledge about job behavior or the global state of
the system, i.e., load balancing decisions are solely based on the
current status of the system. The development of an effective
dynamic load balancing algorithm involves many important
issues: load estimation, load levels comparison, performance
indices, system stability, amount of information exchanged
among nodes, job resource requirements estimation, job’s
selection for transfer, remote nodes selection, and more. This
paper presents and analyses the aforementioned issues that need
to be considered in the development or study of a dynamic load
balancing algorithm.
Keywords:
Distributed computer systems; communication networks; load
balancing; load sharing; performance evaluation; stability.

1. Introduction

In a distributed computer system environment, as
described in [1], where two or more autonomous
computers are connected via a communication network,
resource sharing is a most desirable feature. Apart from
sharing data and I/O devices, nodes of a distributed system
could further improve system performance by sharing
their computational power. Load balancing is a
mechanism that enables jobs to move from one computer
to another within the distributed system. This creates
faster job service e.g., minimize job response time1 and
enhances resource utilization. Various studies, e.g., [2]-
[18], have shown that load balancing among nodes of a
distributed system highly improves system performance
and increases resource utilization.
Load balancing is the process of roughly equalizing the
work load among all nodes of the distributed system. It
strives to produce a global improvement in system

1 The time a job spends waiting for service plus service
time.

performance. In this manner, load balancing goes one step
further than load sharing, e.g., [6], [19], [20], which only
avoids having some nodes idle in the distributed system
when other nodes have too much work [13]. Load
balancing has been found by [21] to further reduce the
mean and standard deviation of task response times more
than load sharing would.
Some of the main goals of a load balancing algorithm, as
pointed out by [8] are: (1) to achieve a greater overall
improvement in system performance at a reasonable cost,
e.g., reduce task response time while keeping acceptable
delays; (2) to treat all jobs in the system equally regardless
of their origin; (3) to have a fault tolerance: performance
endurance under partial failure in the system; (4) to have
the ability to modify itself in accordance with any changes
or expand in the distributed system configuration; and (5)
maintain system stability: the ability to account for
emergency situations such as sudden surge of arrivals so
that system performance does not deteriorate beyond a
certain threshold while preventing nodes of the distributed
system from spending too much time passing up jobs
among themselves instead of executing these jobs.
The development of an effective dynamic load balancing
algorithm involves the consideration of many important
issues. This paper presents and analyses the most
important issues which need to be considered in the
development of an effective load balancing algorithm:
load estimation, load levels comparison, performance
indices, stability, amount of information exchanged among
nodes, job resource requirements estimation, jobs selection
for transfer, remote nodes selection, and more. Our
objective is to provide a guide of the critical issues that
need to be addressed in the development or study of a
dynamic load balancing algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

154

Fig. 1 Important issues of dynamic load balancing algorithms.

2. Load Balancing

With the great advancements in computer technology and
the availability of many distributed systems, the problem
of load balancing in distributed systems has gained a
higher attention and importance. Consequently, a vast
amount and variety of research has been conducted in an
attempt to solve this problem. This section presents some
of the most important techniques and approaches
previously employed to achieve load balancing in a
distributed system. We will only refer to a specific
algorithm when necessary to further clarify our
explanation. Taxonomies of load balancing algorithms in
distributed systems are reported in [8], [20], and [22].
Solutions to the load balancing problem are divided into
two main approaches depending on whether a load
balancing algorithm bases its decisions on the current state
of the system or not: static and dynamic.
In the static approach, e.g., [3], [12], [24], [25], [27], priori
knowledge about the global status of the distributed
system, job resource requirement, and communication
time are assumed. In this approach, load balancing is
achieved by providing a mapping or assignment from a set
of tasks to a set of processors such that a performance’s
function is minimized. Although this assignment can take
either a deterministic or a probabilistic form, the current
state of the system is not considered in either of them [6].
In a deterministic assignment, for instance, node i ships
extra tasks to node j all of the time. In a probabilistic
assignment, however, node i sends extra tasks to node l
with probability p and to node m with probability q. The
major drawback of the static approach is that it does not
take the current state of the system into account when
making these decisions. This has a major impact on the

overall system performance due to the unpredictability of
load fluctuation of the distributed system. Some
techniques employed in static load balancing are: solution
space enumeration and search, graph theoretic,
mathematical programming, and queuing theoretic [22].

In the dynamic approach, e.g., [4], [6], [10], [14], [15],
[18], [26], [28]-[38], load balancing decisions are based on
the current state of the system; tasks are allowed to move
dynamically from an overloaded node to an under-loaded
node to receive faster service. This ability to react to
changes in the system is the main advantage of the
dynamic approach to load balancing.
Although finding a dynamic solution is much more
complicated than finding a static one, dynamic load
balancing can produce a better performance because it
makes load balancing decisions based on the current load
of the system [6], [8]. For this reason, we will focus our
attention on dynamic load balancing algorithms in this
research. Hence, static load balancing will not be
discussed any further.

2.1 Dynamic Load Balancing

This section presents some of the important issues related
to dynamic load balancing in distributed systems. We also
discuss some of the different approaches previously used
to handle each of these issues as reported in the literature.
Fig. 1 portrays the structure we follow in our discussion of
important issues concerning a dynamic load balancing
algorithm.

2.1.1 The Responsibility of Control
The control mechanism used to derive a dynamic load
balancing algorithm affects system performance in two

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

155

main areas: (1) overhead introduced by the algorithm and
(2) system fault tolerance. Obviously, a load balancing
algorithm that requires too many messages in order to
reach its decisions is not desirable. Similarly, a dynamic
load balancing algorithm which does not have precautions
for the halt of one or more of its components is not
desirable.
In a distributed system, dynamic load balancing can be
carried out in two different schemes: distributed and non-
distributed. In a distributed scheme, e.g., [4], [14], [18],
[28], [29], [31, [37], the dynamic load balancing algorithm
is executed by all nodes in the system and the
responsibility of load balancing is shared among them.
The interaction among nodes to achieve load balancing
can take two forms: cooperative and non-cooperative. In a
cooperative form, nodes work together to achieve a global
objective, e.g., to improve the system’s overall response
time. In a non-cooperative form, each node works
independently toward a local goal, e.g., to improve a local
task’s response time.
Distributed dynamic load balancing algorithms tend to
generate more messages than non-distributed algorithms.
This is due to the fact that each node might need to
interact with all other nodes in the system in order to make
its load balancing decisions. An advantage, however, is
that the failure of one or more nodes in the system will not
cause the whole operation of load balancing to halt; it only
partially degrades system performance.
Although the majority of dynamic load balancing
algorithms proposed in the literature are distributed, it
does not mean that the distributed control is effective in all
of them. For those algorithms that require each node to
exchange status information with every other node in the
network, distributed control could be a great burden on the
communication system which affects the overall system
performance negatively. Distributed control is of the
greatest advantage when each node is given the maximum
chance to act alone or to interact with as few nodes as
possible. Needless to say, most proposed dynamic load
balancing algorithms require full interaction among nodes
of the distributed system. Hence, there is a great need for
distributed dynamic load balancing algorithms that call for
minimum interaction among nodes.
In a non-distributed scheme, the responsibility of load
balancing is either taken on by a single or some nodes but
never with all nodes. Non-distributed based dynamic load
balancing can take two forms: centralized and semi-
distributed. In a centralized form, e.g., [12], [40], the load
balancing algorithm is only executed by one node of the
distributed system: the central node. The central node is
solely responsible for load balancing of the whole
distributed system. Other nodes in the distributed system
react with the central node but not with each other. In a
semi-distributed form, e.g., [39], nodes of the distributed

system are segmented into clusters. Load balancing within
each cluster is centralized; a central node is nominated to
take charge of load balancing within this cluster. Load
balancing of the whole distributed system is achieved
through the cooperation of the central nodes of each
cluster, i.e. the responsibility is distributed among the
central nodes of each cluster. This approach was suggested
in [39] to fit distributed systems with a large number of
nodes.
Centralized dynamic load balancing requires fewer
messages to reach a load balancing decision. This is
because other nodes in the system do not interact with
each other; they only interact with the central node. On
the other hand, centralized algorithms jeopardize system
performance in the event that the central node crashes.
Also, there is a possibility that this node could cause a
bottleneck if it became swamped with messages from all
the other nodes in the system. A study by [17] has shown
that centralized load balancing suits small sized networks
(less than 100 nodes) more than any other control method.

2.1.2 Components of a Dynamic Load Balancing
Algorithm
A dynamic load balancing algorithm is required to make
load distribution decisions based on the current work load
at each node of the distributed system. Consequently, this
algorithm must provide a mechanism for collecting and
managing system status information. The part of a
dynamic load balancing responsible for collecting
information about nodes in the system is referred to as
information strategy in the literature. Also, a dynamic
load balancing algorithm must include a mechanism to
assist each node in deciding which job is eligible for load
balancing. The part of a dynamic load balancing
algorithm which selects a job for transfer from a local
node to a remote node is referred to as transfer strategy.
Furthermore, a dynamic load balancing algorithm must
provide a mechanism on which a destination node for a
transferred job is determined. The part of a dynamic load
balancing algorithm which selects a destination node for a
transferred task is referred to as location strategy.
Therefore, a dynamic load balancing algorithm has three
main components: the information, transfer, and location
strategies. Each of these strategies will be discussed in
more detail later. As shown in Fig. 2, incoming jobs are
intercepted by the transfer strategy which decides whether
or not it should be transferred to a remote node for the
purpose of load balancing. If the transfer strategy decides
that a job should be transferred, the location strategy is
triggered in order to find a remote node for the job.
Information strategy provides both transfer and location
strategies with the necessary information to build their
decisions.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

156

Fig. 2 Interaction among components of a dynamic load balancing algorithm.

2.1.2.1 Information Strategy:
Information strategy is the information center of a
dynamic load balancing algorithm. It is responsible for
providing location and transfer strategies at each node
with the necessary information needed to make their load
balancing decisions. A sophisticated information strategy
keeps all nodes of the distributed system updated on the
global system state but generates extra traffic and hence
increases the overhead generated by the algorithm.
Therefore, there is a trade-off between the amount of
information exchanged and the frequency of the exchange
of this information.
Some studies of dynamic load balancing algorithms based
on the amount of information they use in order to make a
load balancing decision are reported in [6] and [20]. It
was concluded by [6] that algorithms which attempt to
collect detailed information about system state in order to
make the best decisions do not produce a significant
performance gain over that produced by an algorithm
which uses very little or no information at all. For
example, the performance of a random algorithm which
only used local information was close in performance to
another algorithm which tried to utilize some global
information.

2.1.2.2 Transfer Strategy:
Considering that important parameters such as job
execution time, size, I/O, and memory requirements are
not known until the job is executed, selecting a job for
load balancing is not an easy task. More than one

approach has been tried in order to deal with this missing
information.
One approach to load balancing makes job transfer
decisions independently of a job’s characteristics. In this
scheme, a job is transferred if the queue length at the local
node exceeds a certain threshold. Otherwise, the job is
executed locally. The main advantage of this approach is
its generality, i.e. it is not directed toward a certain system.
However, the inflexibility to discriminate among different
sized jobs is a drawback. Examples of load balancing
algorithms based on this approach may be found in [5], [6],
and [43]. Different approach, e.g., [17], [19], [41], uses
trace information about a job’s behavior which is collected
from a real system under study and employs this
information to estimate job behavior in the future.
Although this approach enhances the selections of an
appropriate job for load balancing, the outcome result is
only valid for the system under study and under a
comparable load conditions. For instance, [19], selects
jobs for load balancing based on their future resource
requirements which is estimated using a statistical system
developed in [42]. Also, the approach reported in [41]
utilizes a history of job’s execution times to differentiate
between big and small sized jobs. The objective of this
filtering mechanism is to enforce small sized jobs to be
executed locally.
A third approach to load balancing, as described in [10],
employs an automated tool to estimate future job’s
execution times. This is achieved through an on-line trace
of each job’s behavior under different load conditions.
This information is then utilized to estimate a job’s

Incoming job

Transfer Strategy

 Yes

 No

Is job eligible
for transfer?

Location Strategy

 Yes

 No

Is remote
node found?

Communication

Network

Execute Locally

Information Strategy

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

157

execution time in the near future. The main advantage of
this approach is its independence of the system under
study, but the extra overhead associated with this approach
is a problem.
Two main issues concerning load balancing activity that
depend on the transfer strategy employed are: (1) when is
the right time to start it and (2) what jobs are subjected to
it. Two approaches are commonly used to start the load
balancing activity: the time a new job arrives or is created
at a node and the time a finished job departs from a node.
Algorithms which make load balancing decisions at the
arrival or creation of a new job are referred to as sender-
initiated, while algorithms which make load balancing
decisions at the departure of a finished job are referred to
as receiver-initiated. It has been conceived that under
sender-initiated strategy an overloaded node launches the
load balancing activity in an attempt to get some other
node in the network to accept some of its load. While
under a receiver-initiated strategy an under-loaded node
offers its willingness to accept more load. It has been
shown in [43] that sender-initiated algorithms are suitable
when the system is light to moderately loaded while
receiver-initiated algorithms are suitable when the system
is heavily loaded. This is assuming that job transfer cost
under both strategies is comparable.
Two approaches that determine which jobs are eligible for
transfer are: consider-new-only and consider-all. The
consider-new-only approach, only considers newly arrived
or created jobs for load balancing. This approach is
commonly used, e.g., [5], [6], [28], [40], because of its
simplicity. The consider-all approach, e.g., [19], considers
all jobs eligible for load balancing. This approach is more
complex than the previous one because it employs an extra
mechanism for the selection of the appropriate job out of a
set of active jobs. According to [19], consider-all
approach performs better than consider-new-only when
the size of jobs and resource requirements differ greatly.

2.1.2.3 Location Strategy:
One of the main decisions performed by a load balancing
algorithm is the selection of a destination node for a job
transferred for load balancing. This decision represents
the sole purpose for load balancing: a heavily loaded node
tries to find a lightly loaded node to help in executing
some of its jobs. This decision is performed by the
location strategy. The selection of a remote node is based
on the current work load present at that node. Until we
discuss different load measurements later, the load of a
node is expressed as the CPU queue length (the number of
jobs waiting for service plus the one in service). The
amount of information used by the location strategy to
select a destination node is a very important issue as we
will see in the next paragraphs when we discuss some
location strategies. Some of the approaches used to select

a destination node for a transferred job are: random,
probing and negotiation.
Random. Under a random location strategy, a local node
selects a remote node randomly and transfers the job there
for execution [6], [43]. Upon receiving this job, the
remote node executes it if its load, i.e., queue length, is
below a predefined threshold. Otherwise, this remote node
will select a new destination node for this job. To avoid
having this job ping ponged among nodes without getting
serviced, a limit on the number of hops it could take is
imposed which enforces the last node to receive that job to
execute the job when this limit is reached regardless of its
current load.
As shown in [6], the performance of this simple location
strategy, which does not employ any information in its
selection, was significant as compared to a system with no
load balancing at all. The performance of this strategy is
usually used as a reference point to compare other load
balancing algorithms that collect global information.
Probing. Location strategies which employ probing work
as follows: a local node selects a random subset of nodes
and polls them to find a suitable destination node for a
transferred job. A suitable node is the one which will
provide the transferred task with a better service, i.e.,
better response time, than the local load from where it
originated. To further clarify this concept, we present
three location strategies: threshold [6], greedy [5], and
shortest [6].
Under the threshold strategy, a local node selects a remote
node at random and probes it to see if transferring a job to
that node will cause its load to go above a threshold. If
not, the job is transferred to this remote node; otherwise
another remote node is selected at random and probed as
before. The algorithm imposes a limit on the number of
times a local node is allowed to do the probing. After that
limit, the job is executed locally. As pointed out by [6],
although the threshold strategy uses a small amount of
information, it provides a substantial performance
improvement as compared to the random location strategy.
A variation of the threshold strategy, the greedy strategy,
was reported in [5]. The greedy strategy uses a cyclic
probing of nodes instead of random probing used by the
threshold. According to [CHOW90], the greedy strategy
outperforms the threshold strategy. The good performance
of the greedy strategy was not attributed to the probing
mechanism alone, but also to the transfer strategy used.
The shortest location strategy selects a subset of remote
nodes randomly and probes them to find out their current
load, i.e. queue length. The remote node with the smallest
queue length is then selected. If this selected node’s
queue length is smaller than a certain threshold, then the
job is transferred there, otherwise the job is executed
locally. Although the shortest strategy attempts to make a
wiser selection than the threshold does, it is shown in [6]

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

158

that there was not a significant gain in performance over
what has been achieved by the threshold strategy.
Negotiation. Under this location strategy, which is usually
applied in distributed dynamic algorithms, nodes negotiate
with each other for load balancing purposes in order to
select a suitable destination node for transferred jobs. To
further clarify how negotiations work, we present two
location strategies: bidding, e.g., [14] and drafting, e.g.,
[30], which are based on this concept.
In a bidding location strategy, a heavily loaded node is the
one who initiates load balancing. Hence, this implies that
this strategy is coupled with a sender-initiated transfer
strategy. Depending on the load estimation mechanism
used, when a node gets overloaded it broadcasts a request-
for-bid message to all other nodes in the network. A
request-for-bid message includes information about the
current load of the original node and information about the
jobs this node is willing to ship abroad. Upon receiving a
request-for-bid message, a remote node inspects the
content of the message and compares its content with its
own current status. If this remote node’s work load is
lighter than the load of the one who originated the request-
for-bid message, this remote node will reply with a bid-
message. Otherwise, the remote node just ignores the
request-for-bid message (in some variation algorithms, the
remote node returns its current load information without
submitting a bid). A bid message includes the remote
node’s current load and other information specifying the
amount of extra load this node could accommodate. After
receiving all bid messages, if it is still overloaded, the
original node selects the remote node with the best bid, i.e.,
the one having the lowest load, and transfers some of its
load there. The major problem with the bidding strategy is
that a lightly loaded node might get overwhelmed with
work as a result of it winning many bids. Imposing a limit
in the number of bids accepted could take care of this
problem.
In a drafting location strategy, a lightly loaded node is the
one who initiates load balancing. Hence, this implies that
this strategy is coupled with a receiver-initiated transfer
strategy. Under the drafting location strategy, nodes of the
distributed system are grouped dynamically into three
different groups according to their current load. A node
could be in one of three states: lightly loaded (L-load),
neutrally loaded (N-load), or heavily loaded (H-load).
Each node monitors its own load and periodically changes
its state accordingly. After each change, each node
broadcasts its state to all other nodes in the network. Each
node keeps a table of all nodes status.
Under the drafting strategy when a node finds itself in L-
load state it identifies all nodes in the H-state and sends a
draft-request message to each of them in which the L-load
node indicates its eagerness to accept more work load.
Upon receiving the draft-request, a remote (drafted) node

replies by sending a draft-response message only if it still
in the H-load state. A draft-response message contains
information about jobs eligible for transfer at the drafted
node. When the original node receives all draft-response
messages or after a time-out is reached, it selects a remote
node based on a certain criterion and informs the selected
(drafted) remote node of this decision by sending it a
draft-select message. If still in H-state by the time it
receives a draft-select message, the drafted node transfers
some of its work to the original node. According to [30],
the drafting strategy outperforms the bidding strategy
when compared in the same environment.

2.1.3 Other Issues
Dynamic load balancing development involves many
parameters and concerns. Load measurement and system
performance evaluation are some of used by a dynamic
load balancing algorithm. An important outcome of a
dynamic load balancing algorithm that is of a great
concern to the developer is whether the algorithm is stable
or not. This section highlights some important issues
related to parameters and stability measures in dynamic
load balancing.
Load Measurement. As discussed in previous sections,
most decisions made by a dynamic load balancing
algorithm depend on the current work load in the system.
For this reason, one of the most important parameters used
by a dynamic load balancing algorithm is the load
descriptor it employs to define the work load present at
each node of the system. Some load descriptors are: CPU
queue length, CPU utilization, job resource requirements,
context switch rate, percentage of idle CPU time, and the
amount of unfinished work at a node.
CPU queue length is believed to be a good load descriptor
because it gives a good estimate of job response time. It
has been the most commonly used load descriptor
employed by dynamic load balancing algorithms. The
advantage of queue length as a load descriptor is the
simplicity to obtain its value. Despite that, [19] showed
that job resource requirement is a better load descriptor
when there is a mechanism to predict this value in advance
and jobs are then served in round-robin fashion. Round-
robin scheduling treats the CPU queue as a circular queue.
The CPU scheduler goes around the ready queue
allocating the CPU to each job for a time interval (time
quantum).
Performance’s Measurements. The ultimate objective
of a dynamic load balancing algorithm is to improve
system performance. Therefore, a load balancing
algorithm should adopt a performance index by which this
performance improvement is measured. Since there is
more than one index that can be utilized, the selection
usually differs from one algorithm to another.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

159

A performance index could be system performance-
oriented, user-oriented, or both [8]. System throughput
and resource utilization are examples of system-oriented
performance indices. Mean response time of the
distributed system and job mean execution time are user-
oriented performance indices. Other performance indices
such as job mean wait time, mean and standard deviation
of a job wait time, and a job wait ratio (the wait time per
unit of service) could be used to reflect system’s
performance user expectation. System mean response
time is the performance index that is commonly used by
the majority of load balancing algorithms.
System’s Stability. Like any dynamic system, system
stability is of a major concern in dynamic load balancing
algorithms. It is very important that a dynamic load
balancing algorithm maintain stability in the distributed
system.
A load balancing algorithm is stable if it: (1) does not
cause nodes of the system to enter a state of processor
thrashing (the state where nodes spend all their time in
passing jobs among themselves without getting these jobs
executed) [4], [6]; (2) if the load on any two nodes of the
distributed system does not differ by more than a certain
percentage x; and (3) if the response time to any sudden
arrival burst does not exceed a certain limit [8], [22].

3. Conclusion

In this paper an extensive review of the most important
issues related to the development of dynamic load
balancing algorithms for multicomputer distributed
systems was presented. Load estimation, load levels
comparison, performance indices, stability, amount of
information exchanged among nodes, job resource
requirements estimation, job selection for transfer, remote
nodes selection, are some of the issues that have been
discussed. Our objective is to provide a guide to the
critical issues that need to be addressed while the
development or study of a dynamic load balancing
algorithm.

References
[1] P. Enslow Jr., “What is a "Distributed" Data Processing System?”

Computer, Vol. 11, No. 1, pp. 13-21, January 1978.
[2] Z. Khan, R. Singh, J. Alam, and R. Kumar, "Performance Analysis

of Dynamic Load Balancing Techniques for Parallel and Distributed
Systems," International Journal of Computer and Network Security,
vol. 2, no. 2, February 2010.

[3] X. Tang and S.T. Chanson, "Optimizing Static Job Scheduling in a
Network of Heterogeneous Computers," Proc. of the Intl. Conf. on
Parallel Processing, pp. 373-382, August 2000.

[4] R. M. Bryant and R. A. Finkel, "A Stable Distributed Scheduling
Algorithm," in Proc. 2nd Int. Conf. Dist. Comp., pp. 341-323, April
1981.

[5] S. Chowdhury, "The Greedy Load Sharing Algorithms," J. Parallel
and Distributed Comput., vol. 9, pp. 93-99, May 1990.

[6] D.L. Eager, E.D. Lazowski, and J. Zahorjan, "Adaptive Load
Sharing in Homogeneous Distributed Systems," IEEE Trans.
Software Eng., vol. SE-12, no. 5, pp. 662-675, May 1986.

[7] K. Efe, "Heuristic Models of Task Assignment Scheduling in
Distributed Systems," Computer, vol. 15, no. 6, pp. 50-56, June
1982.

[8] A. Goscinski, “Distributed Operating Systems,” Addison-Wesley,
Sydney, 1991.

[9] M. Livny and M. Melman, “ Load Balancing in Homogeneous
Broadcast Distributed Systems. In Proc. ACM Comput. Network
Performance Symp., pp. 47-55, 1982.

[10] A. Karimi, F. Zarafshan, A. b. Jantan, A. R. Ramli and M. I. Saripan,
"A New Fuzzy Approach for Dynamic Load Balancing Algorithm,"
International Journal of Computer Science and Information
Security," vol. 6 no. 1, pp. 001-005 , October 2009.

[11] R. Mirchandaney, D. Towsley, and J. Stankovic, “Adaptive Load
Sharing in Heterogeneous Distributed Systems,” Journal of Parallel
and Distributed Computing, No. 9, pp. 331-346, 1990.

[12] L. Ni, and K. Hwang, K., “Optimal Load Balancing in a Multiple
Processor System with Many Job Classes,” IEEE Transactions on
Software Engineering, Vol. SE-11, pp. 491-496, May 1985.

[13] N. Shivaratri, P. Krueger, and M. Singhal, “Load Distributing for
Locally Distributed Systems. Computer, Vol. 25, No. 12, p.33-44,
December 1992.

[14] J. A. Stankovic and I. S. Sidhu, "An Adaptive Bidding Algorithm
for Processes, Cluster and Distributed Groups," in Proc. 4th Int.
Conf. Distributed Compu. Sys., pp. 49-59, 1984.

[15] J. Stankovic, “Simulations of Three Adaptive, Decentralized
Controlled, Task Scheduling Algorithms,” Computer Networks, Vol.
8, No. 3, pp. 199-217, June 1984.

[16] H. S. Stone, “High-Performance Computer Architecture,” 2nd ed.,
Addison Wesley, Reading, MA, 1990.

[17] S. Zhou, “A Trace-Driven Simulation Study of Dynamic Load
Balancing. IEEE Transactions on Software Engineering, Vol. SE-
14, No. 9, pp. 1327-1341, September 1988.

[18] A. Barak and A. Shiloh, “A Distributed Load-balancing Policy for
a Multicomputer,” Software-Practice and Experience, Vol. 15, No.
9, pp. 901-913, September 1985.

[19] K. Goswami, M. Devarakonda, and R. Iyer, “Prediction-Based
Dynamic Load-Sharing Heuristics,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 4, No. 6, pp. 638-648, June 1993.

[20] Y. Wang and R. Morris, "Load Sharing in Distributed Systems,"
IEEE Trans. Comput., vol. C-34, no. 3, pp. 204-217, Mar. 1985.

[21] P. Kruger, P. and M. Livny, “The Diverse Objectives of Distributed
Scheduling Policies,” Proceedings of the Seventh International
Conference in Distributed Computing Systems, pp. 242-249, 1987.

[22] T. L. Casavant, "A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems," IEEE Trans. Software Eng., vol
14, no. 2, pp 141-154, February 1988.

[23] C. Kim and H. Kameda, "An Algorithm for Optimal Static Load
Balancing in Distributed Computer Systems," IEEE Trans. Comput.,
vol. 41, no. 3, pp. 381-384, March 1992.

[24] H. Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithms,” IEEE Transactions on Software Engineering,
Vol. SE-3, No. 1, pp. 85-93, January 1977.

[25] A. N. Tantawi and D. Tawsley, "Optimal Static Load Balancing in
Distributed Computer Systems," J. of Assoc. Comput., vol. 32, no. 2,
pp. 445-465, April 1985.

[26] B. Blake, “Assignment of Independent Tasks to Minimize
Completion Time,” Software-Practice and Experience, Vol. 22, No.
9, pp. 723-734, September 1992.

[27] S. H. Bokhari, "Dual Processor Scheduling with Dynamic
Reassignment," IEEE Trans. Software Eng., vol. SE-5, no. 4, pp.
341-439, July 1979.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

160

[28] D. Evans, D. and W. Butt, “Dynamic Load Balancing Using Task-
Transfer Probabilities,” Parallel Computing, Vol. 19, pp 897-916,
1993.

[29] R. Mirchandaney and J. Stankovic, “Using Stochastic Learning
Automata for Job Scheduling in Distributed Processing Systems,”
Journal of Parallel and Distributed Computing, Vol. 3, pp. 527-552,
1986.

[30] L. Ni, C. Xu, and T. Gendreau, “A Distributed Drafting Algorithm
for Load Balancing,” IEEE Transactions on Software Engineering,
Vol. SE-11, No. 10, pp. 1153-1161, October 1985.

[31] J. Stankovic, “Bayesian Decision Theory and Its Application to
Decentralized Control of Task Scheduling,” IEEE Transactions on
Computers, Vol. C-34, No. 2, pp. 117-130, ,February 1985.

[32] S. Penmasta and A. T. Chronopoulos, "Dynamic Multi-User Load
Balancing in Distributed Systems", 2007 IEEE International Parallel
and Distributed Processing Symposium, pp. 1-10, Long Beach, CA,
USA, March 2007.

[33] L. M. Campos and I. Scherson, "Rate of Change Load Balancing in
Distributed and Parallel Systems," Parallel Computing, vol. 26 no. 9,
pp. 1213-1230, July 2000.

[34] C.C. Hui and S. T. Chanson, "Improved Strategies for Dynamic
Load Balancing," IEEE Concurrency, vol. 7, no. 3, pp. 58-67, July-
Sept., 1999.

[35] A. Corradi, L. Lenoardi, and F. Zamboelli, "Diffusive Load
Balancing Policies for Dynamic Applications," IEEE Concurrency,
vol. 7, no. 1, pp. 22-31, Jan-March, 1999.

[36] S. Dhakal, M. M. Hayat, J.E.Pezoa, C. Yang, and D. Bader,
"Dynamic Load Balancing in Distributed System in the Presence of
Delays: A Regeneration-Theory Approach,", IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 4, April 2007.

[37] D. Grosu and A. T. Chronopoulos," Noncooperative Load
Balancing in Distributed Systems," Journal of Parallel and
Distributed Computing, vol. 65, no. 9, pp. 1022-1034, Sept. 2005.

[38] Z. Zeng and B. Veeravalli, "Rate-based and Queue-based Dynamic
Load Balancing Algorithms in Distributed Systems," Proc. of 10th
Int. Conf on Parallel and Distributed Systems, pp. 349-356, July
2004.

[39] I. Ahmed and A. Ghafoor, "Semi-Distributed Load Balancing for
Massively Parallel Multicomputers," IEEE Trans. Software Eng.,
vol. 17, no. 10, pp 987-1004, October 1991.

[40] Y. Chow and W. Kohler, “Models for Dynamic Load Balancing in
Heterogeneous Multiple Processor System,” IEEE Transactions on
Computers, Vol. C-28, pp. 354-361, , May 1979.

[41] A. Svensson, History, “An Intelligent Load Sharing Filter,”
Proceedings of the 10th International Conference in Distributed
Computing Systems, pp. 546-553, May 1990.

[42] M. Devarakonda and R. Iyer, “Predictability of Process Resource
Usage: A measurement-Based Study on Unix,” IEEE Transactions
on Software Engineering, Vol. 15, No. 12, pp. 1579-1586,
December 1989.

[43] D. Eager, E. Lazowski, and J. Zahorjan, “A Comparison of
Receiver-Initiated and Sender Initiated Adaptive Load Sharing,”
Performance Evaluation, Vol. 6, pp. 53-68, March 1986.

Ali M. Alakeel (also known as Ali M. Al-Yami) obtained his PhD degree
in computer science from Illinois Institute of Technology, Chicago, USA
in Dec. 1996, his M.S. degree in computer science from University of
Western Michigan, Kalamazoo, USA in Dec. 1992 and his B.Sc. degree
in computer science from King Saud University, Riyadh, Saudi Arabia in
Dec. 1987. He is now with the College of Computing and Information
Technology, University of Tabuk, Saudi Arabia. His current research
interests include automated software testing, distributed computing,
cellular networks, and fuzzy logic.

