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Summary 
This paper presents an approach to mount secretly embedded 
trapdoor with universal protection (SETUP) attacks on the 
elliptic curve discrete logarithm problem. The new approach 
allows the attacker to obtain the secret key of a cryptographic 
device covertly. The attack demonstrates the manufacturer’s 
ability to embed a hidden trapdoor in cryptographic black-box 
devices used for key exchange. A contaminated device behaves 
exactly like an honest one while actually leaking the user’s secret 
key only to the attacker. The attacker can then use that secret key 
to decrypt all the subsequent communications. 
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1. Introduction 

• Elliptic Curves 

Elliptic curves are known for their security. The common 
fields used for encryption are prime fields and 
characteristic 2 fields. Elliptic curves over prime fields are 
on the form: 
E: y2 = x3 + ax + b mod p 
where a, b ∈ Fp and 4a3 + 27b2 ≠ 0 mod p 

The addition of two points P(x1, y1) and Q(x2, y2) is 
calculated by: 
R(x3, y3) = P + Q where: 
x3 = λ2 – x1 – x2,  
y3 = λ(x1 – x3) – y1, 
λ = (y2 – y1)/(x2 – x1) if P ≠ Q 
λ = (3x1

2 + a)/2y1 if P = Q 
 

The multiplication of points by a scalar is a series of 
doublings and additions of points. The multiplication by -1 
converts P to –P by negating the y coordinate of P, i.e., the 
negative of P = (x, y) gives –P = (x, –y). Similar formulas 
exist for elliptic curves over characteristic 2 fields. 

• Elliptic Curve Discrete Logarithm Problem 
(ECDLP) 

Given a point P of order n in an elliptic curve E over a 
finite field Fp and a point Q in E , the ECDLP is to find an 
integer m , where 0 ≤ m ≤ n −1, and Q = m× P if such a 
number exists. 

• Elliptic Curve Diffie-Hellman Problem (ECDHP) 

Given a point P of order n in an elliptic curve E over a 
finite field Fp and two points kP and lP where 0 ≤ k, l ≤ n 
−1, the ECDHP is to find the point ( k × l × P ). This 
problem is used in the elliptic curve Diffie-Hellman key 
exchange algorithm. 

• Elliptic Curve Key Exchange 

Suppose that users A and B want to agree upon a key that 
they will use with a symmetric-key cryptosystem.  They 
choose an elliptic curve E defined over a finite field Fp. 
Users A and B now construct their public keys from a 
randomly chosen and agreed upon point G lying on the 
elliptic curve E. E, Fp  and G are made public. G need not 
be a generator of the group E but it is helpful if the 
subgroup of E generated by G is large and of the same 
order of size as E. 
User A then randomly chooses an integer a and  keeps it 
secret.  User A then computes the point aG and sends it to 
user B.  User B also randomly chooses an integer b and 
keeps it secret . User B then computes the point bG and 
sends it to user A. Both users A and B multiply their secret 
value by the received point. The computed shared key is 
abG. This shared key can now be used for subsequent 
encryption.  The security of this system lies in the fact that 
a third party C that knows only aG and bG cannot 
efficiently calculate the shared key abG as per the ECDHP. 

• Subliminal Channels 

Subliminal channels can be used to convey information in 
the output of a cryptosystem in a way different from the 
intended output. This notion was put forth by Simmons [1]. 
He demonstrated how a prisoner could leak secret 
messages to an outside partner without the warden 
knowing what is going on. The warden has the ability to 
read every message but still cannot read the secret message 
embedded within the cover message. Simmons further 
developed the concept to other applications including DSA 
[2]. 

• Kleptography 

Kleptography is defined as the study of stealing 
information securely and subliminally within the context 
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of cryptographic systems [3]. A kleptographic attack on 
the discrete logarithm problem has been introduced by 
Young and Yung in [3]. They defined a Secretly 
Embedded Trapdoor with Universal Protection (SETUP) 
as an algorithm that can be embedded within a 
cryptosystem to leak encrypted secret key information to 
the attacker in the output of that cryptosystem [4]. The 
encrypted secret key information is noticeable only to the 
attacker. The types of SETUP [3] and their definitions are 
listed below. 

Definition 1. Assume that C is a black-box cryptosystem 
with a publicly known specification. A (regular) SETUP 
mechanism is an algorithmic modification made to C to 
get C' such that: 

1. The input of C` agrees with the public specifications of 
the input of C.  

2. C` computes efficiently using the attacker's public 
encryption function E (and possibly other functions as 
well), contained within C`.  

3. The attacker's private decryption function D is not 
contained within C` and is known only by the attacker.  

4. The output of C` agrees with the public specifications 
of the output of C. At the same time, it contains 
published bits (of the user's secret key) which are easily 
derivable by the attacker (the output can be generated 
during key-generation or during system operation like 
message sending).  

5. Furthermore, the output of C and C' are polynomially 
indistinguishable (as in [5]) to everyone except the 
attacker. 

6. After the discovery of the specifics of the SETUP 
algorithm and after discovering its presence in the 
implementation (e.g. reverse-engineering of hardware 
tamper-proof device), users (except the attacker) cannot 
determine past (or future) keys.  

Definition 2. A weak SETUP is a regular SETUP except 
that the output of C and C ' are polynomially 
indistinguishable to everyone except the attacker and the 
owner/user of the device who is in control (knowledge) of 
his or her own private key (i.e., requirement 5 above is 
changed).  

Definition 3. A strong SETUP is a regular SETUP, but in 
addition we assume that the users are able to hold and fully 
reverse-engineer the device after its past usage and before 
its future usage. They are able to analyze the actual 
implementation of C' and deploy the device. However, the 
users still cannot steal previously generated/future 
generated keys, and if the SETUP is not always applied to 
future keys, then SETUP-free keys and SETUP keys 
remain polynomially indistinguishable.       

Definition 4. A kleptogram is an encryption of a value 
(hidden value) that is displayed within the bits of an 
encryption/signature of a plaintext value (outer value). 
Note that we say that a kleptogram is an encryption of a 
value, not a plaintext message. It is often the case in 
kleptography that the device is not free to choose this 
value. The device may calculate this hidden value, and 
then use it (for the 'randomness') in a subsequent 
computation, thus compromising that computation. 

Definition 5. A SETUP that has (m, n)-leakage bandwidth 
leaks m secret messages over the course of n messages that 
are output by the cryptographic device (or n of its 
executions). 

2. Proposed ECDLP SETUP Attack 
The SETUP attack on ECDLP assumes that the only value 
the device outputs is M = cG, where c is the generated 
secret and G is a base point of order n. The private key of 
the attacker is v and the public key is V = vG. H is a 
cryptographically secure hash function that generates 
values less than n. Hashing an elliptic curve point can be 
defined as hashing its x coordinate. The algorithm in the 
device works as follows: 
If this is the first time, run Algorithm 1, else run Algorithm 
2: 

Algorithm 1: 
1.1. Choose c1 randomly where 2 ≤ c1 ≤ n-1 
1.2. Store c1 in non-volatile memory of the 

device 
1.3. Output M1 = c1G 

Algorithm 2: 
2.1 Z = a.c1G + b.c1V + h.jG + e.uV, where:  

a, b, h, e are fixed integers < n 
j, u ∈R {0, 1} are uniformly and 
independently chosen at random 

2.2 c2 = H(Z) 
2.3 Store c2 in non-volatile memory of the 

device 
2.4 Output M2 = c2G 

The attacker needs to monitor the communication channel 
and obtain M1 and M2. The attacker can then calculate the 
user’s secret c2 using Algorithm 3 as follows: 

Algorithm 3: 
3.1 Z1 = a.M1 + b.vM1 = a.M1 + b.v.c1G = a.c1G 

+ b.c1V 
3.2 For each possible value of j, u: 
{ 

Calculate Z2 = Z1 + h.jG + e.uV 
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c2 = H(Z2) 

If c2G = M2 then output c2 and exit 

} 

3. Discussion and Analysis 
A. Security 
Since c1 is random it follows that Z is uniformly 
distributed within the group generated by G. This SETUP 
attack is secure in the sense  that a user not knowing the 
random choice c1 cannot calculate the second private key 
c2 as long as ECDHP is hard. This can be proven by 
supposing that an oracle A can solve the ECDH problem 
so that A(aG, bG) = abG. If A is applied on M1 and V then: 
A(M1, bV) = b.v.c1G = b.c1V, which can be used to 
calculate Z. Also an adversary that does not know the 
attacker’s private key v cannot calculate Z and therefore 
cannot calculate c2. This makes the universal protection 
property of the SETUP attack. Assuming that H is a 
pseudorandom function and that the device can be reverse-
engineered, the outputs of C and C` are polynomially 
indistinguishable. This results from Z being uniformly 
distributed and H being a pseudorandom function. This 
proves that the ECDLP SETUP attack is a strong SETUP 
as long as ECDHP is hard and the secret value generated 
by the device is inaccessible to the owner. The random 
values j and u are used to add randomization to further 
insure undetectability of SETUP in a black-box 
implementation. Adding them serves as a precaution so 
that if the secret values ci are available to the user and the 
hash function H is invertible, the user still cannot detect 
the presence of a SETUP in the device by running the 
device many times and guessing several different values of 
V. It also helps to curb trying to notice any possible 
probabilistic relations between some properties in V and 
some corresponding properties in Z. This kind of 
probabilistic detection by the user is very difficult in 
elliptic curve cryptosystems compared to discrete log 
systems where quadratic residuosity can be used to test a 
possible relation between the attacker’s public key and Z 
[3]. This makes elliptic curve devices a better candidate 
for kleptographic attacks in addition to the improved 
security and key length advantages of elliptic curve 
systems. 

B. Strong SETUP in ECDHP 
A strong SETUP attack on ECDHP can be implemented 
using the ECDLP SETUP attack as long as the 
contaminated device does not output the secret value it 
chooses to the user. To implement the attack, the attacker 
includes his public key V within the user’s device and uses 
it to compute the secret value starting from the second key 
exchange as described above. The attacker can then 
compute the shared key by multiplying the known private 

key of one partner by the public key of the other and thus 
be able to decrypt all encrypted communications that 
follow. 

C. Bandwidth 
We can increase the leakage bandwidth of the attack by 
chaining the leaked secret values such that Algorithm 2 is 
used to calculate c3 from c2, c4 from c3 and so on. Running 
the device for m + 1 times leaks m secret values. The 
leakage bandwidth is (m, m + 1). 

4. Conclusion 
We have shown that a strong SETUP attack can be 
mounted on ECDLP and ECDHP key exchange. This 
enables a malicious manufacturer of black-box 
cryptosystems like smart card devices to implement such 
attacks to get exclusive access to the user’s private key. 
The output of a dishonest device is indistinguishable from 
the output of an honest one. 
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