
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

199

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

Implementation of FPGA based Firewall Using Behavioral
Synthesis

Rajanish K. Kamat1†, Pawan K. Gaikwad†† and Santosh A. Shinde1†††

Department of Electronics, Shivaji University, Kolhapur – 416 004, India

Summary
Behavioral design helps the designer to understand the design
space and subsequently coming up with a design that meets all
the constraints specifically in a field programmable gate array
(FPGA) based design paradigm. In this paper we have reported a
novel design framework for creation of behavioral design. We
have examined the opportunities brought about by finite state
machines and to harness them into a synthesizable register
transfer level (RTL) architecture. We discuss a case study of
packet parser its finite state machine (FSM), data path controller
architecture and issues related to its Handel-C implementation.
Key words:
Firewall, FPGA, Handel C, Behavioral Synthesis, ASIC .

1. Introduction

A firewall is a dedicated appliance, or software running on
a computer, which inspects network traffic passing
through it, and denies or permits passage based on a set of
rules. Its basic function is to regulate the flow of traffic
between computer networks of different trust levels.
Conventional firewalls operate at the network layer and
their operation is based on stateful or non-stateful type.
The former functions on the basis of information on the
state of connections (for example: established or not,
initiation, handshaking, data or breaking down the
connection) as part of their rules (e.g. only hosts inside the
firewall can establish connections on a certain port) [1].
The later type has packet-filtering capabilities however; it
is unable to make more complex decisions as regards to
the stage or level of communications between the hosts.
This leads to less security and functioning more like a
router from the packet filtering point of view.
Conventional firewalls working on the principle of stateful
analysis poses a typical tradeoff of security Vs latency.
More tightly the security implementations lead to
increased latency causing jamming and congestion over
the network. In order to overcome the traffic speed
bottleneck we are working on the packet filtering
approach for firewall implementation [2]. The work is
centered on a customized processor development with its
architecture tuned to the intended filtering functions. The
final prototyping will be achieved on a suitable FPGA
target which will serve as a programmable semi-custom

application specific integrated circuit (ASIC) to be
deployed in between the networks. As mentioned above,
building custom silicon in FPGAs leads to significant
advantages such as rapid design cycle, early time-to-
market, easy transition to structured ASICs and reduced
non recurring cost of engineering (NRE) costs. Although
the designers are choosing FPGA as a prototyping element,
it is observed that the target FPGA is just treated as a
black box. This makes the system designer to miss many
opportunities to optimize the design to fit within the
FPGA [3]. It again reiterates the optimization
misconceptions regarding the FPGA based systems in
comparison to the ASICs. The two most important design
specifications namely spatial and temporal can be
achieved in FPGAs too (as in ASIC) by adopting the
behavioral design strategy prior to adopting the register
transfer (RTL design). Behavioral design specifies abstract
description of the operations to be performed to a RTL
model with the details of how and when these operations
are carried out [3]. However, the design community lacks
know how connecting the behavioral design on one side
and the efficient RTL through the existing Hardware
Descriptor Languages HDLs on the other side. The present
paper reports a design frame work that links the behavioral
to RTL conversion using the FSM and data path controller
architecture. The FSM is used here for partitioning the
design into data path control architecture. The frame work
developed is applied to the packet parser of the FPGA
based firewall. The obvious advantages of adopting the
framework for the given applications are presented in this
communication.
The paper is organized in various sections. At the outset
the underlying details of the behavioral methodology and
datapath controller are presented. The problem statement
of packet parser development and its utility in the FPGA is
given. Subsequently the design flow from the FSM of the
packet parser to its equivalent data path controller and
implementation of one of the modules in Handel C is
discussed at length.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

200

2. Behavioral Synthesis and Data path
Controller architecture

The behavioral synthesis also known as the high level
synthesis is the process of generating a register level
design from an algorithmic behavioral specification. A
program that models a chip’s desired function is called as
the behavioral or functional model [4]. There are three
essential components of the behavioral synthesis model
first the inputs or stimulus to the system, second a module
library and third the spatial and temporal constraints.
The behavioral specification is generally written in a high
level general purpose language like C or in a Hardware
Description Language like VHDL or verilog. Our choice
is Handel C [5], which is basically a variant of C oriented
towards the behavioral modeling. It is a programming
language designed for compiling programs into hardware
images of FPGAs. A small subset of C, extended with a
few constructs for configuring the hardware device
facilitates generation of efficient hardware.
The second component of the behavioral model i.e.
module library consists of storage units like registers,
memories or FIFOs, execution units like adders and
multipliers, and interconnect units like multiplexers and
buses. Overall, the behavioral model provides valuable
information like the constraints such as area, clock speed,
power and the data dependcy or the temporal model of
execution. However, from the synthesis point of view, the
component-level environment of interest is register
transfer architecture. In this architecture, the components
are specific hardware manipulations of control and data
with connections showing the flow for the desired
algorithm. The behavioral synthesis is a process of
constructing the register transfer model from its behavioral
counterpart by adopting a process called as binding.
Binding comprises of two sub processes namely
scheduling and allocation. Scheduling information is
obtained from the behavioral model and the system
constraints. This is used so as to optimize the final RTL in
terms of delay and power. The allocation of the RTL
interms of FPGA resources are done so as to share them
based on the utility and idleness information obtained
from the temporal analysis. Traditionally, the output of
the synthesis system consists of two interacting
components namely data path and controller . With the
emergence of the data path controller architecture, the
constraints get effectively captured and the mapping of
behavioral description to hardware results into the high
performance and space efficient machines. The design
flow for mapping the system specification to the final
architecture is shown in figure 1.

Fig. 1: Design flow for mapping the system specifications to FPGA

3. Top Level Model of Input Packet Parser:

The main objective of the development reported in this
paper is a FPGA based firewall processor for high degree
of traffic selectivity, by avoiding the usual performance
penalty associated with IP level firewalls. Figure 2 shows
the top level diagram of the FPGA based packet processor
for implementation of the firewall. An incoming packet
received from network interface 1, is selectively filtered
and either passed to the network interface 2 or rejected.
The database of good and bad IPs and valid port numbers
is stored in the flash memory and updated on the fly with
the reconfiguration feature of the FPGA.

Fig. 2: Top Level Schematic of the FPGA based Firewall

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

201

4. Designing Finite State Machine Model of
the packet processor:

The behavioral model of the packet parser is designed
interms of its FSM implementation. The same is shown in
figure 3. The functionality of the FSM depends on the rule
base comprising of the IP addresses and port numbers. As
shown in the FSM, the incoming packets are stored in a
flash RAM and then parsed through the packet splitter for
extraction of the source IP address and the port number
form the IP header. The validity of the source IP address
and the port number is then compared with the IP tables
and port numbers stored in rule base. The IP tables stored
are of two types viz. a good one and other is bad to be
rejected. The incoming IP is primarily compared with the
BAD IP table and a decision regarding further
transmission or dropping is taken. The IP tables are
updated routinely as and when a new bad IP is detected.
The built in intelligence based on the statistical mechanism
ensures the fixing of bad IP at considerably less depth
which is an essential requirement for less latency.

Fig. 3: FSM model of the packet parser

Fig. 4: Basic architecture of a data path controller

4. FSM to data path controller architecture:

The FSM model of the packet parser resembles somewhat
to the Mealy machine wherein the primary outputs are a
function of both the primary inputs and states. The FSM
model can be manually synthesized towards its RTL by
categorizing the functionalities into data and control
sections as shown in table 1. The data section includes
loadable registers and regular arithmetic and logical
functions, while the control sections include random logic
and state machines.

Table 1: Data and Control sections of the packet parser

Control Data

Packet splitter Rule Base

Valid port comparator Packet buffer

Source IP comparator Packet extractor

Rule base update pointer Packet Forward mechanism

With the identification of the data path and controller
architectures, the basic datapath controller architecture of
figure 4 emerges out as shown in figure 5. With this
exercise the implicit hardware becomes clear. The basic
controller architecture has a ‘IF-Else’ type of construct in
Handel C and is used for checking the conditions,
comparing the IP addresses, port numbers etc,. The basic
datapath modules can be broken down to set of registers
for data and multiplexers for the path or routing part. For
instance one of the possible implementations of the rule
base could be an amalgamation of set of 32 bit registers
due to the 32 bit IP addresses and 16 a set of bit registers
for port numbers. The packet buffer will be simply a FIFO
pipeline and the packet extractor will be logic block to
extract the desired packet out of order from the FIFO.
Packet forward mechanism will be again a set of registers
which serves as a pipeline to the secured network
interface..

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

202

Fig. 5: FSM Categorized into the Data Path controller using manual
Behavioral Synthesis

The controller implementation has two obvious options
micro coded and hardwired
Looking at the paramount importance of reducing latency,
the hardwired style of implementation looks appropriate
for the firewall implementation. However, an intelligent
design alternative is even a processor less implementation
wherever possible to maximize the throughput as
described in the next point.

5. Dealing with the behavioral HDL dialects:

The Handel –C language used for the coding the above
datpath controller architecture, offers significant
advantages over the conventional HDLs such as VHDL or
Verilog which employ the basic bottom-up approach for
implementing the hardware functionality into the circuit
structure. The Handel-C synthesis flow is more abstract
and closely corresponds with a typical software flow. The
provision of add-on extensions required to describe
hardware such as flexible data widths, parallel processing
and communications between parallel threads effectively
the inherent concurrency. However, the behavioral
synthesis subsets of either the HDLs or the Handel-C are
not as standardized as the RTL subsets. A clever design
methodology can be used to resolve the spatial and
temporal issues. As an example, the implementation of
source IP comparator is done by using the EX-OR logic
and enabling a flag indicating a good or bad IP as shown

in figure 6. This alleviates the complicated execution of
the controller part in a much efficient spatial
implementation. By merely checking the status of the flag,
the decision regarding the passage or blocking the packet
is taken.

Fig. 6: IP Comparator using Ex-OR Logic

Fig. 7: Handel C Implementation of Ex-OR Logic

5. Summary and Conclusion:

There is a constant quest for optimization of the three
essential attributes namely speed, power and area in an
FPGA based semicustom ASIC implementations. Since
the basic architecture of the existing FPGAs has many
practical constraints such as limited design size, speed
degradation with large systems, relatively high power
budgets, PCB (printed-circuit-board) requirements, design
and verification requirements etc. Inspite of these
shortcomings, designers are constantly stepping forward
towards FPGAs as a truly viable production vehicles
rather than the ASIC-prototyping tools. It is observed that
the designers miss the targeted specifications because they
go for the readymade push button synthesis tools. Instead
they should go for a semiautomatic synthesis process
having a room for manual synthesis to achieve the
optimized specifications. This paper has reported such a
new design framework to optimize the design
specifications in FPGA domain. The framework has been
applied to a packet parser which is a core element of the
FPGA based firewall.
The design flow comprises of deriving the FSM model of
the packet parser. It is further categorized into the data

If (I R== IF) /* the I R represents 32-bit IP address
 stored in the memory and the IF represents
 the 32-bit IP address of the Input packet.*/
{
Match = 0;}
Else
{ match =1;}

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

203

path and controller to test against the implementation
tradeoff of speed Vs Area. As the design problem is from
computer networking domain, there is paramount
importance to the latency. One tends to obtain it by
implementing more parallelism by putting more hardware.
However, it not only leads to increased power, but
sometimes more multiplexer based routing resources
introduces the parasitic and results into worst timing
model. The analysis also reveals hardware sharing by
employing the scheduling algorithm. As an example the
packet splitter and source IP comparators are scheduled on
As-Soon-As-Possible (ASAP) basis. On the other hand the
packet extractor and buffer are scheduled on As-Late-As-
Possible (ALAP) basis. This clears the data dependcy and
temporal model of the system interms of clock cycles. The
designer can also take up the other issues such as whether
to go for a FIFO memory or pipeline approach for the
implementation of packet extractor. The pipelining
features ranks of the memory elements to reduce the clock
cycles at the cost of added latency. The FIFO memory
reduces the latency but at the cost of less intelligence
preventing the out of order execution and difficulty in
updation of the IP base.
Finally we put forth few remarks regarding the choice of
the tools for implementation. There are two high-level
synthesis alternatives namely the behavioral compilation
or simplified way to express parallelism. The behavioral
compilers pose a pushbutton approach, completely
automating the design flow with little room for the manual
intervention. This leaves no scope for the designers to
optimize the design. On the other hand a high-level
approach such as the Handel-C methodology
supplemented by prior analysis of the design problem
using the FSM and data path controller achieves the
desired specifications still working at the higher or
abstract level of the design. With the adoption of the
reported framework, designers can multifold their benefits
with the inherent features of Handel-C based compilers
such as partitioning and synthesis of entire systems
including multiple clock domains, control logic, and
datapath.

References
[1] L. Qiu, G. Varghese, and S. Suri. “Fast Firewall

Implementations for Software and Hardware-based
Routers.” Proceedings of 9th International Conference on
Network Protocols (ICNP’2001), November 2001.

[2] L. Qiu, G. Varghese, and S. Suri. “Fast Firewall
Implementations for Software and Hardware-based
Routers.” Proceedings of 9th International Conference on
Network Protocols (ICNP’2001), November 2001.

[3] Wolf Wayne, “FPGA based System Design”, PHI
Publications, 2006

[4] Wander O. Cesário, Zoltan Sugar, Rodolphe Suescun and
Ahmed A. Jerraya, “Overlap and frontiers between

behavioral and RTL synthesis”, Draft Version on web
retrieved from www.tima.imag.fr/SLS/documents/flex.pdf

[5] Handel-C Manual, www.celoxica.com
[6] Steven M. Rubin, Computer Aids for VLSI Design, Second

Edition, Addison-Wesley VLSI Systems Series, 1994
[7] http://www.ieice.org/eng/shiori/mokuji.html

Dr. R.K. Kamat is working as
Reader in the Department of
Electronics, Shivaji University,
Kolhapur, India. He has published
30 research papers and successfully
guided two Ph.D. students.

Mr. Pawan K. Gaikwad is working
as Lecturer and Head of the
Department of Electronics,
Willingdon College, Sangli, India.
His Ph.D. work is based on
development of FPGA based ECG
and pulseoximeter.

Dr. Santosh A. Shinde has completed
his Ph.D. on “Development of
programmable ASIC for
circumventing Spam”. He is active
researcher in the area of VLSI
Design.

