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Summary 
This paper presents an approach to mount secretly embedded 
trapdoor with universal protection (SETUP) attacks on elliptic 
curve cryptosystems. The attacked cryptosystem used is the 
elliptic curve analog of ElGamal encryption. The attacker can 
obtain the user’s confidential message covertly. The 
cryptographic black-box devices with this hidden trapdoor 
behave exactly like an honest devices while actually leaking the 
confidential message to the attacker only. 
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1. Introduction 

• Elliptic Curves 

Elliptic curves are known for their security. The common 
fields used for encryption are prime fields and 
characteristic 2 fields. Elliptic curves over prime fields are 
on the form: 
E: y2 = x3 + ax + b mod p 
where a, b ∈ Fp and 4a3 + 27b2 ≠ 0 mod p 

The addition of two points P(x1, y1) and Q(x2, y2) is 
calculated by: 
R(x3, y3) = P + Q where: 
x3 = λ2 – x1 – x2,  
y3 = λ(x1 – x3) – y1, 
λ = (y2 – y1)/(x2 – x1) if P ≠ Q 
λ = (3x1

2 + a)/2y1 if P = Q 

The multiplication of points by a scalar is a series of 
doublings and additions of points. The multiplication by 
−1 converts P to –P by negating the y coordinate of P, i.e., 
the negative of P = (x, y) gives –P = (x, –y). Similar 
formulas exist for elliptic curves over characteristic 2 
fields. 

• Elliptic Curve Discrete Logarithm Problem 
(ECDLP) 

Given a point P of order n in an elliptic curve E over a 
finite field Fp and a point Q in E , the ECDLP is to find an 
integer m, where 0 ≤ m ≤ n −1, and Q = m× P if such a 
number exists. 

• Elliptic Curve Diffie-Hellman Problem (ECDHP) 

Given a point P of order n in an elliptic curve E over a 
finite field Fp and two points kP and lP where 0 ≤ k, l ≤ n 
−1, the ECDHP is to find the point ( k × l × P ). This 
problem is used in the elliptic curve Diffie-Hellman key 
exchange algorithm. 

• ElGamal Elliptic Curve Encryption Scheme 
(ElGamal-ECES) 

In the elliptic curve analog of ElGamal encryption a 
plaintext message represented as point M on an elliptic 
curve E is encrypted to the ciphertext C. H is a 
cryptographically secure hash function that generates 
values less than n. The system parameters are the elliptic 
curve E, the base point G of order n, the private key d and 
the public key Q = dG. 

Encryption Algorithm: 
Input: Plaintext message point M 
Output: Ciphertext C 
Choose a random integer k ≤ n −1 
A = kG 
B = kQ + M 
C = (A, B) 

Decryption Algorithm: 
Input: Ciphertext C = (A, B) 
Output: Plaintext message point M 
dA = d.kG = kQ 
M = B - dA 

• Subliminal Channels 

Subliminal channels can be used to convey information in 
the output of a cryptosystem in a way different from the 
intended output. This notion was put forth by Simmons [1]. 
He demonstrated how a prisoner could leak secret 
messages to an outside partner without the warden 
knowing what is going on. The warden has the ability to 
read every message but still cannot read the secret message 
embedded within the cover message. Simmons further 
developed the concept to other applications including DSA 
[2]. 

• Kleptography 

Kleptography is defined as the study of stealing information 
securely and subliminally within the context of 
cryptographic systems [3]. A kleptographic attack on the 
discrete logarithm problem has been introduced by Young 
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and Yung in [3]. They defined a Secretly Embedded 
Trapdoor with Universal Protection (SETUP) as an 
algorithm that can be embedded within a cryptosystem to 
leak encrypted secret key information to the attacker in the 
output of that cryptosystem [4]. The encrypted secret key 
information is noticeable only to the attacker. The types of 
SETUP [3] and their definitions are listed below. 

Definition 1. Assume that C is a black-box cryptosystem 
with a publicly known specification. A (regular) SETUP 
mechanism is an algorithmic modification made to C to 
get C' such that: 

1. The input of C` agrees with the public specifications of 
the input of C.  

2. C` computes efficiently using the attacker's public 
encryption function E (and possibly other functions as 
well), contained within C`.  

3. The attacker's private decryption function D is not 
contained within C` and is known only by the attacker.  

4. The output of C` agrees with the public specifications 
of the output of C. At the same time, it contains 
published bits (of the user's secret key) which are easily 
derivable by the attacker (the output can be generated 
during key-generation or during system operation like 
message sending).  

5. Furthermore, the output of C and C' are polynomially 
indistinguishable (as in [5]) to everyone except the 
attacker. 

6. After the discovery of the specifics of the SETUP 
algorithm and after discovering its presence in the 
implementation (e.g. reverse-engineering of hardware 
tamper-proof device), users (except the attacker) cannot 
determine past (or future) keys.  

Definition 2. A weak SETUP is a regular SETUP except 
that the output of C and C ' are polynomially 
indistinguishable to everyone except the attacker and the 
owner/user of the device who is in control (knowledge) of 
his or her own private key (i.e., requirement 5 above is 
changed).  

Definition 3. A strong SETUP is a regular SETUP, but in 
addition we assume that the users are able to hold and fully 
reverse-engineer the device after its past usage and before 
its future usage. They are able to analyze the actual 
implementation of C' and deploy the device. However, the 
users still cannot steal previously generated/future 
generated keys, and if the SETUP is not always applied to 
future keys, then SETUP-free keys and SETUP keys 
remain polynomially indistinguishable. 

Definition 4. A kleptogram is an encryption of a value 
(hidden value) that is displayed within the bits of an 
encryption/signature of a plaintext value (outer value). 
Note that we say that a kleptogram is an encryption of a 
value, not a plaintext message. It is often the case in 
kleptography that the device is not free to choose this 

value. The device may calculate this hidden value, and 
then use it (for the 'randomness') in a subsequent 
computation, thus compromising that computation. 

Definition 5. A SETUP that has (m, n)-leakage bandwidth 
leaks m secret messages over the course of n messages that 
are output by the cryptographic device (or n of its 
executions). 

2. Proposed ElGamal-ECES SETUP Attack 
ElGamal-ECES is chosen to demonstrate the possibility of 
embedding SETUP attacks on elliptic curve encryption. 
Attacks similar to the one presented here are possible on 
other elliptic curve cryptosystems. The private key of the 
attacker is v and the public key is V = vG. Hashing an 
elliptic curve point can be defined as hashing its x 
coordinate. The device operates as follows: 

Encryption Algorithm with SETUP: 
Input: Plaintext message point M 
Output: Ciphertext C 

For the first time the algorithm runs: 
Choose a random integer k1 ≤ n −1 
A1 = k1G 
B1 = k1Q + M1 
C1 = (A1, B1) 
Store k1 in non-volatile memory 

For the next run times: 
Z = a.k1G + b.k1V + h.jG + e.uV, where:  

a, b, h, e are fixed integers < n 
j, u ∈R {0, 1} are uniformly and independently 
chosen at random 

k2 = H(Z) 
A2 = k2G 
B2 = k2Q + M2 
C2 = (A2, B2) 
Store k2 in non-volatile memory 

The normal user is able to decrypt and retrieve the 
message M in a normal way at all times using his private 
key d. The attacker can retrieve M2 and the next messages 
by obtaining C1 and C2 from the channel and computing k2 
as follows. 

SETUP Decryption Algorithm: 
Input: Ciphertext C1 = (A1, B1), C2 = (A2, B2) 
Output: Plaintext M2 
Z1 = aA1 + b.vA1 = a.k1G + b.v.k1G = a.k1G + b.k1V 
For each possible value of j, u: 

{ 
Z2 = Z1 + h.jG + e.uV 
k2 = H(Z2) 
If k2G = A2 then the current k2 is the right one so 

exit the loop 
} 
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M2 = B2 - k2Q 
Thus M2 is obtained without knowing the user’s private 
key d. 

3. Discussion and Analysis 
A. Security 
Since k1 is random it follows that Z is uniformly 
distributed within the group generated by G. This SETUP 
attack is secure in the sense  that a user not knowing the 
random choice k1 cannot calculate the second private key 
k2 as long as ECDHP is hard. This can be proven by 
supposing that an oracle A can solve the ECDH problem 
so that A(aG, bG) = abG. If A is applied on A1 and V then: 
A(A1, bV) = b.v.k1G = b.k1V, which can be used to 
calculate Z. Also an adversary that does not know the 
attacker’s private key v cannot calculate Z and therefore 
cannot calculate k2. This makes the universal protection 
property of the SETUP attack. Assuming that H is a 
pseudorandom function and that the device can be reverse-
engineered, the outputs of C and C` are polynomially 
indistinguishable. This results from Z being uniformly 
distributed and H being a pseudorandom function. Even if 
the user knows his private key d he still cannot recover k. 
Thus the ElGamal-ECES SETUP attack is a strong SETUP 
as long as ECDHP is hard and the random parameter 
generated by the device is inaccessible to the user. The 
random values j and u are used to add randomization to 
further insure undetectability of SETUP in a black-box 
implementation. Adding them serves as a precaution so 
that if the random parameter ki is available to the user and 
the hash function H is invertible, the user still cannot 
detect the presence of a SETUP in the device by running 
the device many times and guessing several different 
values of V. It also helps to curb trying to notice any 
possible probabilistic relations between some properties in 
V and some corresponding properties in Z. This kind of 
probabilistic detection by the user is very difficult in 
elliptic curve cryptosystems compared to discrete log 
systems where quadratic residuosity can be used to test a 
possible relation between the attacker’s public key and Z 
[3]. This makes elliptic curve devices a better candidate 
for kleptographic attacks in addition to the improved 
security and key length advantages of elliptic curve 
systems. 

B. Bandwidth 
Retrieving one message requires the system to run twice. 
This leads to a bandwidth of (1, 2). By chaining the 
generation of k we can increase the bandwidth to (m, m + 
1). 

C. Implications for Hybrid Encryption 
In hybrid encryption messages are encrypted by a 
symmetric cipher using a session key that is encrypted by 

public key encryption. In his case the message M2 that the 
attacker has been able to decrypt by the attack above is 
actually a session key. Obtaining it enables the attacker to 
decrypt all messages encrypted with that session key. 

4. Conclusion 
We have shown that a strong SETUP attack can be 
mounted on ElGamal elliptic curve encryption. This 
enables a malicious manufacturer of black-box 
cryptosystems like smart card devices to implement such 
attacks and thus have the exclusive ability to decrypt the 
user’s encrypted messages. The output of a dishonest 
device is indistinguishable from the output of an honest 
one. 
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