
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

250

Manuscript received June 5, 2010
Manuscript revised June 20, 2010

Simulator for Identifying Critical Components for Testing in a
Component Based Software System.

P K Suri1, Sandeep Kumar2,

1 Dean Science Faculty and Professor, Department of Computer Science and Applications, Kurukshetra University,
Kurukshetra (Haryana), India

2 Assistant Professor & Head, Department of Computer Applications, Dronacharya Institute of Management and
Technology, Kurukshetra (Haryana), India.

Summary
Component Based Development is the buzz word in software
industry. Lot of efforts are being put in by researchers,
academicians and industry professionals in making the CBSE as
the default technology of software development.. But very little
work has been done in the field of Testing Components and
component based systems. Any component based system is
composed of many components. While integrating these
components it is not possible to test each and every component.
So there is a need to identify the key components for testing. A
simulator has been designed here to identify the key components
(that are most important for the working of a component based
system) so that most of the efforts and resources can be put in to
test these critical components. A Component Execution Graph
(CEG) is the basis for developing such a simulator.
Keywords
Component, Component Based software, Testing,
Component Execution Graph (CEG), Simulation, Erlang

1. Introduction

Composability is the main aspect of the Component Based
Software Engineering. Instead of developing the system
from scratch software components (COTS) are purchased
from the market and then composed after adapting them
according to requirements. Besides this there are
components that are developed in house for some other
projects and can be reused in the current project as it is
and sometimes they may be upgraded for reuse in current
project. If the components are not available Off the Shelf,
neither have they been developed in house for some other
projects, then, we may need to develop them. They are
developed in such a way that their reusability aspect is not
compromised so that they can later be put into libraries of
reusable component. As the Software Component
Technology is evolving, it is becoming clearer that the
quality of a component based product depends upon the
quality of software components and the effectiveness of
the process that is used to test the component based
software [18]. Challenges related with component
testability in the form of component traceability&
observability, component controllability and component

understandability have been listed by Gao [6]. There is
always a strong possibility that the components, that are
composed together to make a new system, have been
developed using different languages on different
platforms. Among these, some would have been
purchased off the shelf and others developed in house.
Main advantage of such type of paradigm is the rapid
development and savings in the form of resources, efforts,
cost, time etc. But it also gives rise to many problems.
Any product developed using Component based
technology consists of hundreds of components. If any
one of these components is of poor quality, that may
effect the quality of the overall system. Problems may be
more severe if key components are not tested properly.
But identifying these key or critical components of a
system is a very challenging task. Testing of these critical
components should not be compromised at any cost. This
paper deals with this challenge. Basis for identifying the
most critical components in the system is a graph called
Component Execution Graph (CEG). CEG is a network
representation of a Component Based System. Each node
of the CEG represents a Component in the system and an
edge from node i to node j represents the transfer of
execution control from component i to component j. Each
execution starts at first component of the CEG and
finishes at the last component of the CEG. Before we can
proceed further and discuss the simulation model, it is
very important to discuss some of the problems associated
with existing testing techniques as far as their relevance to
the component based technology is concerned. Wu [1] has
listed following issues related with testing of component
based software.
Heterogeneity: As components are taken from
heterogeneous environments, it becomes very difficult to
integrate them and achieve desired results. Each
programming language has its own syntax, data
processing procedure, and way of using the data structures.
Component may have been developed on a particular
machine with a particular architecture and having a
particular operating system environment. Although
components may have been tested in their respective

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

251

environments for quality, it becomes very necessary to
test them in new integrated environment.
Non Availability of the source code: Different COTS
components are developed by different vendors and
generally source code of the COTS components is not
provided with it. It makes the task of testers more difficult
while integrating the components for a new application.
Evolvability: Components keep evolving with time
according to customer needs and evolving industry
standards. Each time some change is introduced it also
results in introduction of new types of errors and bugs.
Besides these problems Gao [18] has also mentioned
many problems associated with testing of Component
Based Software.

• Problems in testing Software Components
• Problems in component integration
• Problems in system testing Component Based

Software.
Since a long time, researchers and software testing tool
players have been developing many white box as well as
black box test methods for the traditional paradigms [19],
but from these problems associated with the Components,
it is clear that testing the components based software is
not similar to that of testing other types of software,
developed using other traditional methods. Many
references could be found in literature to prove this fact.

2. Related Work

Jerry Gao[17,18,19], in a series of articles on Testing
component based software, proposed a model to measure
the maturity levels of a component testing process. Issues
related to software components and Component based
software testing have been identified and classified. It
discusses component testability in terms of controllability,
traceability, test suit, presentation, test support, and
configuration management.
While integrating components from heterogeneous
environments, it is not possible to test each and every
component. One solution is to test potentially risky
component. Now the question arises how to select such
type of component. No AdHoc arrangements can be made
for such selection. According to McGregor [21] we
should select a component for testing when penalty for
component not working is greater than the effort required
to test it. Author uses application of a risk analysis
technique to the task of identifying which components to
be tested more intensely than rest. Author conducted an
analysis on the requirements to determine the potential
business and technical risks for the development process.
Using this analysis risks identified at the requirements
level were mapped onto the various components. All
components were classified according to three risk
categories (Low, Medium and High) and components

falling in one category were tested at the same coverage
level. But exact quantification of the risks associated with
each component is not possible using this technique and it
fails to give an account of number of most critical
components that need to be tested.
According to Wu [1] lot of work has been done in the
field of component based development; still there are very
few techniques available for the testing of component
based software. Author has also presented a test model
and suggested some key test elements for the component
based software. The base of the research work is the
interaction and dependence among components. Artifact
is a test adequacy criterion that results in optimization of
budget, schedule and quality requirements. Although
much work has been done for testing of object orients
systems [9,12,14,15,16], very few researchers have
extending this work to cover the testing of component
based software although, this can be an interesting
research area [2] . Rosemblum [22] has extended the
techniques of object oriented software and proposed a
model for adequate testing of the component based
software. Harrold et al. [13] have proposed a testing
technique that is based on analysis of component based
systems. But this technique uses the source code of the
components provided by the component vendors. But
there are very few vendors who will provide the source
code of the components.
C. Mao and Y. Lu [3] have again described non
availability of the details about components as a major
bottleneck in testing component based software. They
have analyzed the shortcomings of some existing
regression testing techniques for component based
systems [8,10] proposed a regression testing method for
systems composed of modified components. But this
method requires the constant interaction among
component developers and component testers.
In [4] Byoun et al. used the state transition model for
generation of test cases for interoperability test of
Component Based Systems. Main emphasis is on
checking the interoperability among various components
of a system.
Some of the problems related with testing component
based systems may be scaled down by selecting proper
components among many candidates. But that in itself is a
challenging task. According to [5] there is no existing
effective technique available that can quickly check the
various alternatives and focus on a subset of likely
compatible components. Further authors have given a
technique based on regression testing that uses a
behavioral model to represent interaction among
components and automatically generates and prioritize
test suits that test the compatibility among various
components of a system. Another author to make use of
regression testing for component based systems is Mao
[11]. This paper uses a built in test design. Test interfaces

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

252

are constructed after analyzing the effected methods in the
new component version by the component developers and
then components users pick-out the subset of test cases for
regression testing with these testing interfaces. This
method again requires a continuous interaction among
component developers and component users. Y Wu [1]
has suggested use of static and dynamic analysis to guide
test case generation. Integration among components is
used to determine what needs to be tested. This is done
using static analysis. During the process, interfaces that
are invoked and events that are triggered during each
execution are kept track by dynamic analysis. This
information is then used to determine the test adequacy.

3. CEG (Component Execution Graph): A
representation of Component Based System

As is clear from above discussion testing component
based systems is a challenging task. It is challenging in
the sense that pre-tested components are composed
together to make a new application but they may have to
be tested again when they become part of a different
environment. It is not possible to test all the components
of a system if the system is composed of hundreds of
components. The main challenge is to identify the
components that are critical for the overall working of the
system. Then critical components can be tested more
rigorously and thoroughly as compared to other
components. For identifying these critical components, we
make use of Component Execution Graph. Each
component based system (CBS) can be represented with
the help of a Component Execution Graph. It is a network
representation of the CBS. CEG consists of edges and
nodes. One node represents one independent component
and an edge from node i to node j represents an execution
link from component i to component j. Through each
execution link, execution control is transferred from
component “i” to component “j”. To achieve one
meaningful output or result, at least one path, starting at
the first node of the CFG and terminating in the last node
of CEG, must be executed. In between it may take any
courses of execution, depending upon the result desired.
So it is clear from this discussion that all nodes of the
CEG are not covered during each execution. Many
components in sequence make an execution path. Figure 1
shows a Component Based System in the form of a CEG.
This system contains 9 components and 11 edges. Each
component is assigned a weight which is a composite
value composed of four independent and sequential
parameters 1). I –Interfaces value, 2). E – Exceptions
value, 3). C – Complexity Value and 4). R – Reusability
value, in that sequence. All these four parameters are
quantifiable and stochastic in nature. They are
exponentially distributed. According to Erlang

distribution, if there are k independent random variables
vi(i= 1 to k), which in this case happens to be 4, having
the same exponential distribution given by the function:

f(vi) = ikvkeμμ where vi>0, μ>0, k a positive integer
then (1)

V = ∑
=

k

i
iv

1
 has the Erlang distribution (2)

We can obtain a random variate from Erlang distribution
by obtaining k random variates from the exponential
distribution and then summing them up. So if

vi = -
kμ
1

ln ri for i = 1 to k (3)

Then we can have

v = ∑
=

k

i
iv

1

= ∑
=

k

i 1
i rln

k
1 -
μ

= -
kμ

1
ln∏

=

k

i
ir

1

(4)

 So here I,E,C and R are composed together and the
composite weight is assigned to the corresponding
component and to all the execution links terminating into
that component in turn. This composite weight is Erlang-4
distributed because it is a composition of four independent
parameters.

4. Assumptions

Because we are trying to solve the problem with the help
of simulation, we will definitely make some assumptions.
These assumptions are given as under:

1. Each node of the graph represents one
independently developed/purchase off the
shelf/modified component.

2. One component is one unit of execution.
3. Control is transferred from one component to

another along an execution link depending upon
the result desired.

4. Each execution link is represented with the help
of an edge or arrow from source to destination
component

5. All the execution links are assigned number in
topological order according to Fulkersons’s ‘i-j’
rule [20].

6. One execution path of the CEG is a combination
of many execution links starting from first
component (node) of the graph and terminating
in the last component. In between there may lie

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

253

many link combinations forming many paths.
But each execution path starts from first node
and terminates in the last node.

7. Each execution link is assigned a weight “w”.
This weight is actually the weight of the
destination component. This weight is a
composite parameter composed of four
independent sequential parameters I,E, C and R
as already discussed. I, E, C and R follow
exponential distribution and their composition
follows Erlang-4 distribution pattern.

8. Weight ‘W’ of an execution path is the sum of all
‘w[i]’s of execution links along that path.

9. Execution path having the maximum weight is
called the “Critical Execution Path” and
execution links falling along that path are all
critical execution links and all the components
falling on this path are the critical components.

4.1 Terms and Notations used

Following are the terms and notations used to represent
various parameters in the algorithm:

• F Starting Component
• L Last Component
• SC[i]: Starting Component of

execution link i.
• TC[i] Terminating Component of

execution link i.
• Min_Start[i] Minimum starting cumulative

weight of Execution Link i.
• Min_Term[i] Minimum terminating

cumulative weight of execution
link i.

• Max_Start[i] Maximum starting cumulative
weight of Execution Link i.

• Max_Term[i] Maximum terminating
cumulative weight of execution
Link i.

• Min_C[j] Minimum weight of
component j

• Max_C[j] Maximum weight of
component j.

• SIMURUNS No of simulation runs
• M No of Components in the

system
• N No of Execution links in the

system
• w[i] Weight of execution link i.
• W Weight of complete execution

path.
• E Error
• CritIndex_E[i] Criticality index of ith

execution link.

• CritIndex_C[j] Criticality index of jth
component

 5. Algorithm

1. Input
a. SIMURUNS (Number of Simulation

Runs)
b. N (Number of Execution Links)
c. M (Number of Components)
d. SC[i] (Starting Component for each

execution link from 1 to N)
e. TC[i] (Finishing Component for each

execution link from 1 to N)
f. E (Error)

2. Initialize
a. CritIndex_E[i] = 0 for i = 1 to N

(Set Criticality Index of each execution
link to 0)

b. CritIndex_C[j] = 0 for j = 1 to M
(Set Criticality Index of each
component to 0)

3. Repeat steps 4 through 8 SIMURNS times
4. Generate N random variants from Erlang-4

distribution and store them in vector w i.e. w[i] =
n[i] for i = 1 to N.

5. Start Forward Traversal of the CEG
a. Min_Term[i] = Min_Start[i] + w[i]
b. (Each Component node may have many

execution links terminating into it.
Same process is applied on each
execution link. Once all the execution
links terminating into a component node
have been covered, minimum weight
that can be assigned to a component is
computed).
Min_C[j] = max{Min_Term(all

execution links
terminating into
component node j)}

c. (Once minimum weight of component j
has been computed, next step is to
compute the minimum cumulative
starting weight for the ith execution link
starting from this component as follows).
Min_Start[i] = Min_C[SC(i)]
Repeating this process for each
combination of execution links and
component nodes, ultimately end of the
CEG is reached

d. (Compute the minimum possible
weight for this last component).
Min_C[M] = W

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

254

6. Start Backward Traversal of CEG
a. Max_C[M] = W

(Last component node is assigned a
weight W computed during the forward
pass
Max_Term [All executing links
terminating in component M] =
Max_C[M]
Max_Start [N] = Max_Term[N] – w[N]

b. (Starting from the last component node,
compute the maximum starting weight
of each execution link
Max_Start[i] = Max_Term[i] – w[i]

c. (Once Max_Start for all the execution
links starting from a component node ‘j’
have been established, next step is to
compute the maximum weight that can
be assigned to component node ‘j’)
Max_C = min{Max_Start (All exection

links originiating from
component node j)}

d. (Compute Maximum Terminating
weight, Max_Term, of all components
of CEG
Max_Term (all execution links starting
from component j) = Max_C[j]

7. (Update Criticality Indecies)
a. If (Max_Start[i] – Min_Start[i] <= E

CritIndex_E[i] = CritIndex[i] + 1
b. If (Max_C[j] – Min_C[j] <= E

CritIndex_C[j] = CritIndex_C[j] + 1
8. Increment SIMURUNS

SIMURUNS = SIMURUNS + 1
9. Print Criticality Indices
10. Stop

6. Case Studies

6.1 Case Study 1

This simulator was developed in C language on windows
XP. For the first case study, we have taken a Component
Execution Graph with 9 components and 11 execution
links as shown in figure 1. Each execution link was
assigned a random weight. This random weight is actually
a composition of four independent sequential parameters I
(Interface Value), E (Exceptions), C (Complexity) and R
(Reusability value) that are respective values assigned to
destination component of execution link i, and hence it
follows Erlang-4 distribution. For 1000 simulation runs,
results obtained are shown in table 2 and 3.. Table 2
shows the criticality indices of various Execution Links
(No of times an execution link becomes critical) and its
graphical presentation in given in Graph1. Table 3 shows

the criticality indices of various components (No of times
a component becomes critical). This data has been plotted
in graph 2.

Figure 1: Component Execution Graph (CEG)

Table 1: Simulator input Data (Starting and Terminating Component for
each execution link)

Execution Link
Number

Starting
Component

Terminating
Component

1 C1 C2
2 C1 C4
3 C1 C7
4 C2 C3
5 C3 C6
6 C4 C5
7 C4 C8
8 C5 C6
9 C6 C9

10 C7 C8
11 C8 C9

Table 2: Simulation Output (Criticality Indices of Execution Links)
Execution Link Criticality Index

1 .426
2 .487
3 .087
4 .426
5 .426
6 .422
7 .065
8 .422
9 .847

10 .087
11 .152

c1 c4 c5 c6

c7 c8 c9

c2

c3

3

1

2

4

5

6

7

8

9

10 11

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

255

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11

Execution Link

C
rit

ic
al

ity
 In

de
x

Graph 1: Criticality Indices of Execution Links

Table 3: Simulation Output Data (Criticality Indices of Components)
Component Criticality Index

C1 1.0
C2 .426
C3 .426
C4 .487
C5 .422
C6 .847
C7 .087
C8 .152
C9 1.0

Component Criticality Indices

0

0.2

0.4

0.6

0.8

1

1.2

C1 C2 C3 C4 C5 C6 C7 C8 C9

Component

C
rit

ic
al

ity
 In

de
x

Series1

Graph 2: Criticality Indices of Components

6.2 Case Study 2

For the second case study we have taken a system with seven
components and 13 execution links as shown in figure 2. Results
obtained for the criticality indices have been shown in Table 5
and Table 6 and Graph 3 shows the critical indices of the
execution links and Graph 4 shows the Criticality Indices of the
Components.

Figure 2: Component Execution Graph

Table 4: Simulator input Data (Starting and Terminating Component for
each execution link

Execution Link
Number

Starting
Component

Terminating
Component

1 C1 C2
2 C1 C4
3 C1 C5
4 C2 C5
5 C2 C3
6 C3 C4
7 C2 C6
8 C3 C6
9 C4 C6

10 C5 C6
11 C4 C7
12 C5 C7
13 C6 C7

Table 5: Simulation Output (Criticality Indices of Execution Links)
Execution Link Criticality Index

1 .971
2 .010
3 .018
4 .165
5 .797
6 .732
7 .009
8 .067
9 .662

10 .154
11 .080
12 .029
13 .890

C1 C2

C3

C4

C5

C6 C7
1

2

3
4

5

6

7

8

9

10

11

12

13

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

256

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Execution Link No

C
rit

ic
al

ity
 In

de
x

Graph 3: Criticality Indices of Execution Links

Table 6: Simulation Output Data (Criticality Indices of Components)
Component Criticality Index

C1 1.0
C2 .971
C3 .799
C4 .742
C5 .183
C6 ..890
C7 1.0

0

0.2

0.4

0.6

0.8

1

1.2

C1 C2 C3 C4 C5 C6 C7

Component

C
rit

ic
al

ity
 In

de
x

Graph 4: Criticality Indices of Components

7. Discussion and Conclusions

From the output received for given inputs many decisions
can be made. It is clear from Table 2 and Graph 1 that
Execution Links numbered 1,2,4,5,6,8,9 are the ones that
are key links in this component based applications. Hence
we need to concentrate more on these execution links and
spend more resources and time to make these execution
links error free. As is clear from graph 1, among these
critical execution links, link number 9 is the most critical
one and this link is part of almost all the execution paths,
so this execution link needs to be tested most rigorously.
Execution links numbered 3, 7, 10 and 11 are not those
much critical and hence keeping this thing in mind the
project team can make its decision on spending resources

for various execution links. Also a decision can be made
looking at graph 2 which components need to be tested
more rigorously. As far as this data set is concerned,
component C1, C6 and C9 are the key components in this
application.
As far second case study is concerned, results of table 5
and graph 3 shows that Execution Links numbered 1,5,6,9
and 13 are the key execution links for this application and
more emphasis should be given on these links while
testing. It is clear from Table 6 and Graph 4 that for this
application components C1, C2, C6 and C7 are most
critical ones and there testing should not be skipped at any
cost.
Here for the simplicity sake, we have considered an
application that contains only 9 components and 11
execution links in first case study and 7 components and
13 execution links in the second case study respectively.
In practical, however, a component based application may
be composed of hundreds or thousands of components. In
such a situation, it becomes very difficult for the project
team to identify the components and execution links that
are more error prone and need more testing time and
efforts and to decide how to distribute the human as well
as financial resources in testing the components and their
interactions. This simulator can be a handy tool in such
situations. Besides this, it can also be decided, which
component and execution link needs to be tested up to
what level.

References:
[1] Wu, Y., et al, “Techniques for Testing Component Based

Software,” In the proceedings of 7th IEEE International
Conference on Engineering of Complex Computer Systems,
Skovde, June 2001, pp. 222-232.

[2] Chattergee, R. and Ryder, B., “Data Flow Based Testing of
Object Oriented Libraries,” Technical Report, DCS-TR-382,
Rutgers University, !999.

[3] Mao, C., and Lu, Y., “Regression Testing for Component
Based Software by Enhancing Change Information,” In the
proceedings of 12th IEEE Asia Pacific Software
Engineering Conference,2005, pp. 611-618.

[4] Byoun, W., et al, “Test Case Generation Techniques for
Interoperability Test of Component Based Software from
State Transition Model,” IJCSNS Internation Journal of
Computer Science and Network Security, Vol. 7, No. 5,
May 2007, pp. 151-157.

[5] Mariani, L., et al, “Compatibility and Regression Testing of
COTS- Component Based Software,” In the proceedings of
29th IEEE conference on Software Engineering, 2007, pp.
85-95.

[6] Gao, J., “Component Testability and Component Testing
Challenges,” In the proceedings of 3rd International
Workshop on Component Based Software Engineering:
Reflects and Practice,” 2000.

[7] Chattergee, R. and Ryder B., “Data Flow Based Testing of
Object Oriented Libraries,” Technical Report DCS-TR-382,
Rutgers University, 1999.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.6, June 2010

257

[8] Orso, A., et al, “Using Component Metacontent to Support
the Regression Testing of Component Based Software,” In
the proceedings of IEEE International Conference on
Software Maintenance, IEEE Press, 2001, pp. 716-725.

[9] Chenn, M. and Kao, M., “Effect of class testing on the
Reliability of Object-Oriented programs,”In Proceedings of
the Eighth International Symposium on Software R liability
Engineering, May 1997.

[10] Sanjeev, A. and Wibovo, B., “Regression Test Selection
Based on Version Changes of Components,” Proceedings
of 10th Asia Pacific Software Engineering Conference,
IEEE Press-2003, pp. 78-85.

[11] Mao, C., et al, “Regression Testing for Component Based
Software via Built in Test Design,” In the proceedings of
ACM Symposium on Applied Computing, 2007, pp. 1416-
1421.

[12] Chen, M. and Kao, M., “Testing Object Oriented Program-
An Integrated Approach,” 10th International Symposium on
Software Reliability Engineering, November 1999.

[13] Harold, M. Liang, D. and Sinha, S., “An Approach to
Analysing and Testing Component Based System” 1st
International ICSE workshop on Testing Distributed
Component Based Systems, L.A., USA, May 1999.

[14] Perry, D., and Kaiser G., “Adequate Testing And Object
Oriented Programming,” Journal of Object Oriented
Programming, Vol. 2, Issue 5, 1990, pp. 13-19.

[15] Weyuker, E, “The Ealuation of Program Based Software
Test Data Adequacy, Communication of ACM, June 1988,
pp. 668-675.

[16] Weyuker, E., “Testing Component Based Software: A
Cautionary Tale,” IEEE Software, Sep/Oct 1998, pp. 54-59.

[17] Gao, J., “Monitoring Software Componenets and
Component Based Software,” In the proceedings of 24th
Annual International Computer Software and Application
Conference, Taipei, Taiwan, Oct 2000.

[18] Gao, J., et al “Testing and Quality Assurance for
Component Based Software,” Artech House Inc, 2003.

[19] Gao, J., “Testing Coverage Analysis for Software
Component Validation,” In the proceedings of 29th Annual
International Computer Software and Applications
Conference, Edinburgh, Scotland, July 26-28, 2005.

[20] Wills, R., “A Note on the Generation of Project Network
Diagram,” Operation Research Society, Vol. 32, 1981, pp.
235-238.

[21] McGregor, J.D., “Component Testing,” Journal of Object
Oriented Programming, Vol. 10, No. 1, 1997. pp. 6-9.

[22] Rosenblum, D., “Adequate Testing of Component-Based
Software,” Univ. California, Irvine, T.R. UCI-ICS-97-34,
1997.

Dr. P.K. Suri received his Ph.D.
degree from Faculty of Engineering,
Kurukshetra University,
Kurukshetra, India and master’s
degree from Indian Institute of
Technology, Roorkee (formerly
known as Roorkee University),
India. He is working as Dean,
Science Faculty and Professor in
the Department of Computer

Science and Applications, Kurukshetra University, Kurukshetra
– 136119 (Haryana), India. He has earlier worked as Reader,
Computer Sc. & Applications, at Bhopal University, Bhopal
from 1985-90. He has supervised twelve Ph.D.’s in Computer
Science and thirteen students are working under his supervision.
He has around 125 publications in International/National
Journals and Conferences. He is recipient of 'THE GEORGE
OOMAN MEMORIAL PRIZE' for the year 1201-92 and a
RESEARCH AWARD –“The Certificate of Merit – 2000”for
the paper entitled ESMD – An Expert System for Medical
Diagnosis from INSTITUTION OF ENGINEERS, INDIA. His
teaching and research activities include Simulation and
Modeling, Software Risk Management, Software Reliability,
Software testing & Software Engineering processes, Temporal
Databases, Ad hoc Networks, Grid Computing, and
Biomechanics.

Sandeep Kumar received his
Masters Degree in Computer
Science from Department of
Computer Science and Applications,
Kurukshetra University,
Kurukshetra, Haryana, India in
2001. He is a Ph.D. scholar under
the guidance of Dr. P.K. Suri at
Department of Computer Science
and Applications, Kurukshetra

University, Kurukshetra. He has more than seven years of
teaching experience at institutions of repute. Presently he is
working as Assistant Professor and Head, Department of
Computer Applications, Dronacharya Institute of Management
and Technology (DIMT), Kurukshetra since July 2007. Prior to
this he worked as a lecturer at DIMT, Kurukshetra and Asia
Pacific Institute of Information Technology SD India (APIIT SD
India), Panipat, Haryana, India. He was the editor of
Proceedings of an International Conference (CNFE’ 05) at
APIIT SD India. His research interests include Component
Based Software Engineering, Simulation, and Operating
Systems.

