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Summary 
Pattern search learning is known for simplicity and faster 
convergence. However, one of the downfalls of this learning is 
the premature convergence problem. In this paper, we show how 
we can avoid the possibility of being trapped in a local pit by the 
introduction of stochastic value. This improved pattern search is 
then applied on a recurrent type neuro-fuzzy network (ANFIS) to 
solve time series prediction. Comparison with other method 
shows the effectiveness of the proposed method for this problem. 
Key words: 
stochastic pattern  search  method, ANFIS, , time series 
prediction. 

1. Introduction 

In recent years, the study of time series such as approximation, 
modulation, prediction and others constitutes a useful task for 
many fields of research.  A reliable system is a model that is able 
to forecast with minimal error to yield good preparation for the 
future and serves as a good decision-making. For these goals, 
different methods have been applied:  linear methods such as 
ARX, ARMA, etc. [1], and nonlinear ones such as artificial 
neural networks [2]. In general, these methods try to build a 
model of the process where the last value of the series is used to 
predict the future values. The common difficulty of the 
conventional time series modeling is the determination of 
sufficient and necessary information for an accurate prediction.  
On the other hand, neural fuzzy networks [3, 4] have become a 
popular research topic [3-5]. They are widely applied in fields 
such as time series prediction [6], control problem [7], and 
pattern recognition [8]. The integration of neural network and 
fuzzy logic knowledge combines the semantic transparency of 
rule-based fuzzy systems with the learning capability of neural 
networks. However, a major disadvantage of existing neuro-
fuzzy systems is that their application is limited to static 
problems as a result of their internal feed forward network 
structure. Therefore, without the aid of tapped delays, it cannot 
represent a dynamic mapping such as in the case of recurrent 
networks [9-11].  
Taking this into consideration, we choose ANFIS which is a 
pioneering result of the early years of neuro fuzzy.  In fact, it is 
also regarded to be one of the best in function approximation 
among the several neuro-fuzzy models [12].  As mentioned 
earlier, since ANFIS is based on a feed forward structure, it 
unable to handle time series patterns successfully because it does 
not have any dynamics features as in the case of recurrent 
network. Despite of the research that has already been 

done in the area of neuro-fuzzy systems the recurrent 
variants of this architecture are still rarely studied, 
although the most likely first approach was presented 
already several years ago [13].  Thus, in this paper we 
perform a time series prediction on a modified structure of 
ANFIS with self feedbacks. By doing so, we can forego 
the necessity of preprocessing the time series data to map 
the dynamic structure of the network.  
As reported by Y.Bengio [14] in his paper, gradient-based 
optimization is not suitable to train recurrent type 
networks. Simi1ar results were also obtained by Mozer 
[15], where it was found that that back-propagation was 
not sufficiently powerful to discover contingencies 
spanning long temporal intervals. Learning based on 
gradient descent learning algorithms includes real-time 
recurrent learning (RTRL) [16], ordered derivative 
learning [17] and so on [18]. Disadvantages of these 
methods include the complexity of learning algorithms and 
local minimum problems. When there are multiple peaks 
in a search space, search results are usually stuck in a local 
solution by the gradient descent learning algorithm. To 
avoid these disadvantages, parameter design by genetic 
algorithms (GAs) seems to be a good choice. However, 
the learning speed of GA is not satisfactory and sometimes 
difficult to find convergence.   
Most of these algorithms suffer from local optimal 
problem due to the fact that the error function is the 
superposition of nonlinear activation that may have 
minima at different points which often results in non 
convex error surface. Motivated by this understanding, we 
introduced a random operator in order to provide the 
mechanism required to escape the local pit and at the same 
time reduce the possibility of premature convergence.  
The concept of pattern search is to find a better candidate 
nearby the current one before move to the next stage of 
search [19]. By introducing a random operator, we 
temporary increase the error when it comes across a local 
pit but by doing so, we are also creating a boast much 
required to escape the pit.  
In this paper we proposed improved pattern search 
learning for a time series prediction for a neuro-fuzzy 
model that was designed to learn and optimize a 
hierarchical fuzzy rule base with feedback connections. 
The recurrent nature of the ANFIS networks allows us to 
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store information of prior system states internally, which 
may also lead to a reduced complexity, since no additional 
input variables providing information of prior system 
states have to be used.  By using an improved pattern 
search, we can often times avoid local minima problems 
and thus have a higher probability of success for attaining 
the global maxima. Moreover, the advantages of the 
proposed learning are that since it is based on pattern 
search, it is simple and can be implemented with short 
computation time. Furthermore, the mathematical 
calculation is also easier to understand as compared to the 
tedious derivative calculations found in back propagation 
or the complicated process in genetic learning. 

2. Recurrent type neuro-fuzzy network 

The network consists of five layers as proposed by Jang in 
his paper [20]. The details are introduced in the following. 
Layer 1: Fuzzification Layer  

(x)    (1)                                                              
Layer 1 is the input layer and it specifies the degree to 
which the given x satisfies the quantifier Ai. A bell-shaped 
membership function is chosen with minimum and 
maximum set to 0 and 1 while the parameters of ai, bi, ci is 
the parameter set, where b is a positive value and c locates 
the center of the curve. As the values of these parameters 
change, the bell-shaped functions varies accordingly, thus 
exhibiting various forms of membership functions on 
linguistic label Ai  

μAi (x)  =              (2)                                 

Layer 2: Rule layer where by the incoming signals are 
multiplied by the AND operation and sends out the 
product as the firing strength of a rule.  

 = μAi (x) * μBi (y)        (3)    
Layer 3: Normalization of  firing strengths 

  for i = 1, 2…..   (4) 

This layer calculates the normalized firing strengths by 
calculating the ratio of the i-th rule's firing strength to the 
sum of all rule's firing strengths. 
Layer 4: Defuzzification  layer 

(pix + qiy + ri)  ………     (5)             
where s the output from layer 3 and pi, q, ri  is the 
parameter set. 
Layer 5: Summation 

      (6)               
It computes the overall output as the summation of all the 
incoming signals. 

 
As mentioned earlier in the introduction, the conventional 
ANFIS network is adapted with 2 feedback connections so 

that the result of the time series of the previous input can 
be fed back from the time sequence to the current input. 
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Fig1: The structure of the recurrent type neuro-fuzzy 

network 
 

 
Fig 2: Output Self-feedback 

 
As shown in Fig 2 and Fig 3, the output of the feed 
forward network is fed-back to the input of the system. 
The output at time t is defined as y (t), f represents a feed 
forward ANFIS network and external variable U represent 
the network input at a defined time. Therefore it can be 
represented as such: 

 
y(t) = f[y(t - 1), ….. y(t - N), U(t - 1),………U (t - M)]

       (7) 
By doing so, we are able to train the canonical ANFIS as a 
recurrent of order N by providing the time delay element 
at the output. 
For the error self-feedback, it is similar to the NARMAX 
(Non-linear Auto Regressive Moving Average model with 
eXogenous variables) approach. It predicts a time series y 
at time t using as regressors the last p values of the series 
itself and the network input U of the last P values. Also 
included is the last P value of the prediction error, which 
forms a self feedback layer. The non-linear function f 
represents a feed forward ANFIS network and its weights. 
The feed-back connection from the output is feedback to 
the input node by the equation stated below: 
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y(t) = f[Yp(t - 1)………Yp(t - N),U(t - 1); e(t - 
1)…………..e(t - P)]                     (8) 
where the error, e(t) = Yp(t) - Y (t) 
The error feedback describes the difference relating the 
current output to combinations of inputs and past outputs. 
The proposed model is well suited to identify with the 
temporal behavior of FF networks by passing the error 
through a time-delay back to the network inputs. 

 

 
Fig 3: Error Self-Feedback 

 

3. Traditional Pattern Search Method 

Pattern search has become a widely accepted technique for 
the solution of hard combinatorial optimization problems. 
Some of the earlier works of pattern search have already 
been described in the late fifties and the early sixties but it 
is only in the last ten to fifteen years that pattern search 
algorithms have become very popular and successfully 
applied to many problems. The renewed interest in pattern 
search algorithms has several reasons.  An important 
aspect is that pattern search algorithms are intuitively 
understandable, flexible, generally easier to implement 
than exact algorithms, and in practice have shown to be 
very valuable when trying to solve large instances. The 
solution of large instances has been made feasible by the 
development of more sophisticated data structures, for 
example, to search more efficiently the neighborhood of 
solutions and the enormous increase in computer speed 
and memory availability.  
Pattern search technique is based on iterative exploration 
of neighborhoods of solutions trying to improve the 
current solution by local changes. The search starts from 
an initial solution α and continues to replace α with a 
better solution in the neighborhood N (α) until no better 
solution is found. N (α) is a set of solutions obtained from 
α with a slight perturbation. Based on our multi-layered 
feed forward network, the neighborhood consists of the 
weights between all layers threshold of the neurons. 

N = [w11,w12,……wij ]T     (9)   
By interactively adjusting N through the search, we are 
able to minimize the error. The error for this system can be 
defined as the difference between the actual system output 
and the expected output. The search begins at some initial 
feasible solution, N0 and uses a subroutine improve to 
search for a better solution in the N neighborhood as 
defined previously. The direction it takes can be either one 
of the many n directions which represents the number of 
elements in the neighborhood, N. The first direction vector  

 at k iteration can be defined as such: 
 

  = (0……0, , 0,………0)T    (10) 

E(Nk + ∆k ) < E(Vk) or           
( 11) 

E(Nk - ∆k ) < E(Vk)    
       (12) 

 
In which case 1 is initiated as 1,2,….n when is a positive 
step size parameter. When such a point is found, then the 
iteration is declared successful, subsequent is 

 
Nk+1 = Nk + ∆k     or      

             (13) 
Nk+1 = Nk + ∆k          

                 (14) 
 

The iteration can be termed as unsuccessful if no such 
point is found. Instead a pattern search option would be 
taken and the next iteration would be the same as the 
current point, Nk+1 = Nk . The new step size would be 
reduced to η∆k, where 0 < η < 1. A constant for all the 
iterations provided with N = 0 and 0. As for the batch 
mode the weights of the network are updated only after the 
entire pattern search training set has been applied to the 
network. The gradients calculated at each training example 
are added together to determine the change in the weights.  

4. Stochastic Pattern Search Method 

During a pattern search, “bumpy" landscapes are serious 
concern because it can result in a minimum within the 
neighborhood which might not be a global minimum. 
Although some problems have been alleviated by 
increasing the step size, this has often times lead to 
inaccurate solutions. Furthermore, different step sizes 
cause the search along different paths, effecting final 
outcomes. As pointed out by Magoulus [21], by providing 
a mechanism to escape the local minimum, we are able to 
overcome this problem. The improved approach of pattern 
search introduces randomness into a function estimation 
procedure to improve the search performance. It also 
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modifies the evaluation function of a penalty weight of a 
random function. This random penalty provides an escape 
route from a local pit by making a move from the current 
candidate solution's to a higher function values of some of 
its neighbors. By doing so, we temporary experience an 
error increase but nevertheless move away from the 
stagnation. 
 

 
Fig 4: Conceptual graph of the stochastic method 

 
The basic idea is explained in the following. Fig.4 is a 
conceptual graph of the error landscape with a local 
minimum and global minimum. The X-coordinate denotes 
the state of the network and the Y-coordinate denotes the 
value of error function. For example, if the network is 
initialized onto point A. Because of the mechanism of the 
local search method, the state of network moves towards 
decrease direction and reaches the local minimum (Point 
B). If we change the dynamics of the MVL at point A to 
increase the value of error temporarily, point A can 
become a new point C. From point C, the network returns 
to move towards decrease direction and reaches the global 
minimum point D. 
 
The random penalty for the above algorithm is given by 

 
μ(t) =   (15)  

where the function of random(a,b) returns a value between 
a and b. The function  removes the fractional part of x 
and returns an integer value.  
 

 
Fig 5: The characteristics graph of h(x) 

 

If x is negative, it returns the first negative integer less 
than or equal to x. Parameter t denotes the epoch. As for 
h(t) = 1 - 2e -t/m , whose characteristics graph is shown in 
Fig.5 , with varying the value of m, we noticed that climb 
to attain the saturated level becomes slower. At the 
beginning, μ(t) appears randomly as 1, 0 or -1 but as time 
goes on it eventually becomes 1. The three possible 
conditions with μ(t) can be summarized as following: 
 
Algorithm scheme for Improved Pattern search 
procedure step HLS(α,N) 
input problem instance α, candidate solution N 
output candidate solution N* 
1. Begin 
2. α := chosen element of Assing(N) 
3. For try:=1, ..., maxTries do 
4.  if (∆E+ < 0 and ∆E- < ∆E+) then 
5.   Nk+1  = Nk + μ(t)∆k  
6. Else if (∆E-  < 0 and ∆E- < ∆E+) then 
7.   Nk+1  = Nk - μ(t)∆k  k 
8. Else 
9.   Nk+1 = Nk 
10.   N* = localsearch(α, Nk+1 , N) 
11.  EndIf 
12. EndFor 
13. End 
 
Condition 1: μ(t) = -1. The sequence of iteration is 
selected contrary to the original pattern search direction 
and so the value of error increases temporarily. 
Condition 2: μ(t) = 0. No move is taken, remains at the 
current value. No change in error. 
Condition 3: μ(t) = 1. The algorithm is similar to the 
pattern search. 

5. Simulation Results 

In the following section, we discusses the simulation that 
has been carried out with the proposed method on 4 types 
of time series data set such as Mackey Glass, sunspot data, 
laser series and Box-Jenkins. Comparison with other 
proven methods is carried out in order to show the 
effectiveness of the proposed model. 

 

5.1 Mackey-Glass data 

The method has also been applied to the well-known 
Mackey–Glass chaotic series given by the following 
equation.  
 

=  - bx(t)   (16) 
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Table 1: Comparison of Mackey Glass test results for various methods 
Models[ref #] RMSE 

ANFIS and fuzzy system [20] 0.007 
PG-RBF network [22] 0.0028 

Neural tree [23] 0.0069 
Radial basis function network [24] 0.0015 

Local linear wavelet with hybrid learning 
[25] 0.0036 

Evolving radial basis function with input  
selection[26] 0.00081 

Proposed Improved Pattern search 0.00050 
 
The objective is to compare our results with those 
obtained by other authors on the same data. The 
parameters of the series are the following: =17, the 
sampling rate is ∆= 6, the training and the test sets are set 
to 500 respectively. Table 1 contains the results obtained 
with our method (last line), and those obtained with other 
methods.  Our method is shown to be more efficient since 
it increases the prediction accuracy on the test set.  
 

 
Figure 6 (a) Mackey’s Prediction Vs Actual 

 

 
Figure 6 (b) Mackey’s Prediction Error 

Based on Table 1, it is obvious that with our proposed 
learning, we are able to attain much smaller RMSE as 

compared to the rest of the methods especially the more 
recently reported work by H.Du’s ERB with genetic 
learning and Chen’s local linear wavelet method. 

5.2 Box-Jenkins Data 

The gas furnace data (series J) of Box and Jenkins (1970) 
is well known and frequently used as a benchmark 
example for testing identification and prediction 
algorithms. The data set consists of 296 pairs of input-
output measurements. The input u(t) is the gas flow into 
the furnace and the output y(t) is the CO2 concentration in 
outlet gas. The sampling interval is 9s. For this simulation, 
4 inputs variables are used for constructing a proposed 
model. Following previous researchers in order to make a 
meaningful comparison, the inputs of the prediction model 
are selected as u (t-4) and y (t-1) and the output is y (t-P).  
 
 

Table 2: Comparison of Box- Jenkins test results for various methods 
Method RMSE
ARMA 0.843 
Tong’s model 0.685 
Pedryc’s model 0.566 
Xu’s model 0.573 
Sugeno’s model 0.596 
Surmann’s model 0.400 
Lee’s model [17] 0.638 
Lin’s model [18] 0.511 
Nie’s model [20] 0.412 
ANFIS model [10] 0.085 
FuNN model [11] 0.071 
HyFIS model [16] 0.042
Neural tree model [4] 0.026 
Chen’s LWNN 0.01095 
Proposed Improved Pattern search 0.0065 

 
 
 

 
 

Figure 7 (a) Box-Jenkins Prediction Vs Actual 
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Figure 7(b) Box-Jenkins Prediction Error 

 
For box Jenkins case, we try to predict y(t) based on the  
Nie’s approach as cited Table 4. Compared with the recent 
result presented as published [26], we can see the 
developed improved ANFIS with proposed learning 
method can achieve higher prediction accuracy than the 
rest of the cited works.  The predicted time series and the 
desired time series are plotted as well as the prediction 
error. 
As seen in the simulation, all the 4 sets of data series 
shows the lowest predicted error when compared to some 
other methods.  Results obtained by using improved 
pattern search shows good predictability ability and are 
suitable to be used in time series prediction.  

 
5.3 Laser data 

Laser data was utilized in the 1992 Santa Fe time series 
competition. The laser generated data consists of intensity 
measurements made on an 81.5 micron 14NH3 cw (FIR) 
laser. The data are a cross-cut through periodic to chaotic 
intensity pulsations of the laser. The chaotic pulsations 
follow the theoretical Lorenz model of a two level system. 
The data series were scaled between [0, 1]. The calculated 
NMSE is compared to the result of other works. 
 

 
Figure 8(a) Laser Data Prediction Vs Actual  

 
Figure 8(b) Laser Data Prediction Error 

 
Table 3: Comparison of Laser test results for various methods 

Models[ref number] NMSE 
FIR network [31] 0.00044 
Multiscale ANN [32] 0.00074 
Proposed  Improved Local .Search 0.000025 

 
6. Conclusion 
 
In this paper, a method for predicting time series was 
presented by using a recurrent based ANFIS network.  The 
improvement made to the conventional ANFIS network is 
to further strengthen the capability of handling temporal 
data series data.  The success of any neuro-fuzzy model 
not only depends on the structural layout but also on the 
learning algorithm since the appropriate tuning of 
membership function and the rules plays an important role 
in improving the prediction accuracy. Based on this 
assumption, we improved the canonical local by 
introducing a stochastic parameter in order to provide the 
required escape needed to avoid a local pit. By doing so, 
we not only retain the advantages of the conventional 
pattern search but also improving the disadvantages of 
local optimum problem. The various data series 
simulations clearly show the effective and the superiority 
of the proposed algorithm in a time series application. 
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