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ABSTRACT 
The kmeans algorithm is an unsupervised classification algorithm. 
This algorithm however, suffers from two difficulties which are 
the initialization phase and the local optimums. We present in this 
paper some improvements to this algorithm based on the 
evolutionary strategies in order to get around these two difficulties. 
We have designed a new evolutionist kmeans algorithm. We have 
proposed a new mutation operator in order for the algorithm to 
avoid local solutions and to converge to the global solution for a 
low computational time. This approach is validated on some 
simulation examples. The experimental results obtained confirm 
the rapidity of convergence and the good performances of the 
proposed algorithm.  
Keywords 
Classification, evolutionary strategies, evolutionist kmeans 
algorithm, mutation operator  

1. Introduction  

Classification consists of partitioning a set of objects into 
groups or classes in such a way that all objects belonging to 
one same class are all resembling between them and 
different from objects of other classes. This approach 
requires both a technique for measuring the resemblance 
between objects and the choice of an adequate criterion 
which measures the quality of the obtained grouping of 
objects. The classification problem becomes then a problem 
of optimizing a criterion.  The kmeans algorithm (KM) is an 
unsupervised classification algorithm based on this 
approach [2,3,4], it is widely used for classification 
problems.  
 However the KM algorithm suffers from two difficulties 
which are the initialization phase and the local optimums 
[5,6,7,8]: this algorithm converges in a finite number of 
iterations but the obtained solution depends on the initial 
values chosen for the algorithm, if indeed, we reinitialize 
the algorithm with a set of other values, it will converge to 
an other local solution which is entirely different from the 
first one.  
We present in this work some improvements to this 

algorithm based on the evolutionary strategies. The purpose 
is to get around the two difficulties shown by the KM 
algorithm.  

We have designed a new evolutionist kmeans algorithm 
(EKM) which has so many advantages over the 
conventional KM algorithm. These are viewed in its 
generality, its parallelism and the genetic operations. The 
KM algorithm deals with one unique solution at each 
iteration, while the proposed EKM algorithm deals with a 
population of solutions in the same time. These solutions 
are subjected, during the iterations, to a Gaussian 
perturbation, which makes it then possible to avoid the local 
solutions. 
 We have proposed a new mutation operator in order to be 
able to control the Gaussian disturbance level and to reduce 
the computation time required to converge towards the 
global solution.  
 In section 2, we introduce evolutionary strategies. Then, in 
section 3, we give some definitions, and we recall the 
kmeans algorithm. We describe in section 4 our evolutionist 
kmeans algorithm. While in section 5, the performances of 
this new method are evaluated by some experimental results. 
Finally, we give a conclusion.  

2. Evolutionary strategies   

Evolutionary strategies (ES) are particular methods for 
optimizing functions. These techniques are based on the 
evolution of a population of solutions which under the 
action of some precise rules optimize a given behavior, 
which initially has been formulated by a given specified 
function called fitness function [9]. 
  An ES algorithm manipulates a population of constant size. 
This population is formed by candidate points called 
chromosomes. Each of the chromosomes represents the 
coding of a potential solution to the problem to be solved, it 
is formed by a set of elements called genes, these are reals 
[3].  
  At each iteration, called generation, is created a new 
population from its predecessor by applying the genetic 
operators: selection and mutation. The mutation operator 
perturbs with a Gaussian disturbance the chromosomes of 
the population in order to generate a new population 
permitting to further optimize the fitness function. 
This procedure allows the algorithm to avoid the local 
optimums. The selection operator consists of constructing 
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the population of the next generation. This generation is 
constituted by the pertinent individuals [3,9].  
 Figure 1 illustrates the different operations to be performed 
in a standard ES algorithm [9,10]:  
  
Random generation of the initial population 
Fitness evaluation of each chromosome 
Repeat 
     Select the parents 
     Update the genes by mutation 
     Select the next generation 
     Fitness evaluation of each chromosome 
Until Satisfying the stop criterion 

Figure 1: Standard SE algorithm. 

3. Kmeans classification   

3.1 Descriptive elements 
Let us consider a set of  maxobs objects {O1, O2, ..., 
Oi , ..., Omaxobs} characterized by N attributes, grouped in 
a line vector form V = (a1 a2 ... aj  ... aN). Let Ri = (aij) 1≤j≤N 
be a line vector of RN where aij is the value of the attribute 
aj for the object Oi. Let mat_obs  be a matrix of maxobs  
lines ( representing the objects Oi) and N columns 
( representing the attributes aj), defined by:  

           ( )
Nj
obsiijaobsmat

≤≤
≤≤=
1

max1_                 (1) 

V is the attribute vector, Ri is the observation associated 
with the object Oi or the realization of the attribute vector V 
for this object, RN is the observations space1 and mat_obs is 
the observation matrix associated with V. The ith line of  
mat_obs  is the observation Ri. Each Ri belongs to a class 
CLs, s=1, …, nbc. 

From a geometric point of view, if we represent each 
observation by a point in the observations space RN, the set 
of observations will then provide a cloud of points in this 
space. 

3.2 Kmeans algorithm 
The kmeans algorithm is one of the most common 
algorithms used for the classification. We are given maxobs 
observations (Ri)1≤i≤maxobs which must be associated with 
nbc classes (CLs)1≤s≤nbc of centers (gs)1≤s≤nbc. The centers 
(gs)1≤s≤nbc are line vectors of N dimension.  

The kmeans is based on the minimization of the 
optimization criterion given by [2,3,4]:    

2
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1
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where  . is a distance which is generally supposed to be 
Euclidean.   
  The KM algorithm supposes that the number of classes 
nbc is known a priori.  
Figure 2 gives the KM algorithm flowchart [3, 4]. 

1. Fix the number of classes nbc. 
2.  Initialize the centers at random values in the 

observation space 
3. Assign the observations to classes having the 

closest centers. 
4. Update the class centers 
5. Stop the algorithm when the centers do not 

change, if not go to 3. 

Figure 2: Flowchart  of the KM algorithm. 

4. Evolutionary kmeans classification  

4.1 Proposed coding  
The KM algorithm consists of selecting among all of the 
possible partitions the optimal partition by minimizing a 
criterion. This yields the optimal centers (gs)1≤s≤nbc.. Thus 
we suggest the real coding as:  

Njnbcssjgchr ≤≤≤≤= 1,1)(  

    ( )nbcNnbcsNsNN gggggggg ............ 11221111=        (3) 
The chr chromosome is a real line vector of dimension 
nbc×N. The genes  (gsj)1≤j≤N  are the components of the gs 
center:  

Njsjs gg ≤≤= 1)(  

                             )....( 21 sNsjss gggg=              (4) 
To avoid that the initial solutions be far away from the 
optimal solution, each of the chromosome of the initial 
population should satisfy the condition:  

] max ,  [min  
max1max1 obsiijobsiijsj aag

≤≤≤≤
∈           (5) 

In the evolutionist kmeans algorithm EKM, we must discard 
any chromosome of the initial population having a gene 
which does not satisfy this constraint. This gene, if any, is 
replaced by an other one which complies with the constraint.   

4.2 The proposed fitness function 
Let chr be a chromosome of the population formed by the 
centers (gs)1≤s≤nbc, for computing the fitness function value 
associated with chr, we define the fitness function F which 
expresses the behavior to be optimized (J criterion): 

2max

1 12
1)( si

obs

i

nbc

s
gRchrF −= ∑ ∑

= =

 (6)

The chromosome chr is optimal if  F is minimal.   
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4.3 The proposed mutation operator 
The performances of an algorithm based on evolutionary 
strategies are evaluated according to the mutation operator 
used [11]. One of the mutation operator form proposed in 
the literature [7,12,13] is given by:  

chr* = chr + σ × N(0,1) (7)

where chr* is the new chromosome obtained by a Gaussian 
perturbation of the old chromosome chr. N(0,1) is a  
Gaussian disturbance of mean value 0 and standard 
deviation value 1, σ is the strategic parameter. σ   is high 
when the fitness value of chr is high. When the fitness value 
of chr is low, σ  must take very low values in order to be 
not far away from the global optimum.  

 We have been inspired from this approach to propose a 
new form of the mutation operator. The fact that we have 
proposed a new mutation operator is motivated by our 
interest to reach the global solution in a small 
computational time.   
 Let chr be a chromosome of the population formed by the 
centers  (gs)1≤s≤nbc.  
Let

si
ss

nbcssisi gRgRifCLR −=−∈
≠
=

'
,1min , i.e. the class 

consisting of the Ri observations that are closest to the 
center gs . Let g°s  be the center of gravity of CLs (figure 3).  

     
s

i

l

CLR
R

sg si

∑
∈=°   where  )( sCLcardsl =                     (8) 

 

Figure 3: Illustration example in a two dimensional space. 

  The mutation operator which we propose in this work 
consists in generating from the old chromosome a new one  
by :   
      g*s = gs + fm × ( g°s - gs) × N(0,1)               (9)  

where fm is a constant multiplicative factor taken to be 
between 0.5 and 1. The new strategic parameter proposed   

σ’  = fm × ( g°s - gs ) 

is low when gs gets closer to g°s and is high when gs is far 
from g°s. The σ’  proposed  parameter has two advantages:  

- When chr is far from the global solution, chr is 
subjected to a strong Gaussian perturbation allowing 
chr to move more quickly in the research space and 
in the same time to avoid local solutions.  

- σ’   controls the Gaussian perturbation level. Indeed, 
as the chromosome chr gets closer to the global 
solution, the Gaussian perturbation level is reduced 
until becoming null at convergence.  

 From generating children chromosomes from parent 
chromosomes  we have adopted the technique of choice by 
ordering. We have also used the elitist technique [14].  

4.4 The proposed EKM algorithm  
Figure 4 shows the different steps of the proposed EKM 
algorithm.  
 Stage 1: 

1.1. Fix: 
- The size of the population maxpop. 
- The maximum number of generations maxgen. 
- The number of classes nbc. 
1.2. Generate randomly the population P: 

P = {chr1, .., chrk, ..., chrmaxpop} 
1.3. Verify for each chr of P the constraint: 

 gsj∈[min aij, max aij], 1≤i≤maxobs 
1.4. Attribute for each chr of P, the observations Ri to the 
corresponding classes: 

si
ss

nbcssisi gRgRifCLR −=−∈
≠
=

'
,1min  

1.5. Update the population P, for each chr of P do: 

s

is

l

CLR
Rg

sg si

+

+

=

∑
∈

1
'  where )( sCLcardsl =  

1.6. Compute for each chr of P its fitness value F(chr). 
Stage 2: 

Repeat 
2.1. Order the chromosomes chr in P from the best to the 
poor ( in an increasing order of F). 
2.2. Choose the best chromosomes chr. 
2.3. Attribute for each chr of P, the observations Ri to the 
corresponding classes: 

si
ss

nbcssisi gRgRifCLR −=−∈
≠
=

'
,1min  

2.4. Generate randomly the constant fm (fm ∈ [0.5, 1]). 
2.5. Mutation of all the chromosomes chr of P except the 
first one (elitist technique): 

g*s = gs + fm × ( g°s - gs) × N(0,1) 
2.6. Attribute for each chr of P except the first one, the 
observations Ri to the corresponding classes: 

si
ss

nbcssisi gRgRifCLR −=−∈
≠
=

'
,1min  
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2.7. Update the population P, for each chr of P except for 
the first one, do: 

s

is

l

CLR
Rg

sg si

+

+

=

∑
∈

1
'    where )( sCLcardsl =  

 (The population P obtained after the updating is the 
population of the next generation ) 
2.8. Compute for each chr of P its fitness value F(chr). 
 
Until Nb_gen (generation number) ! maxgen 

Figure 4: The proposed EKM algorithm. 

5. Experimental results and evaluations  

5.1 Introduction 
We have considered four simulation tests in the 
observations space of dimension 2 (N=2). These tests are 
different from each other by the repartition type of the 
classes in the observations space. In each test, the classes 
are generated randomly by Gaussian distributions and each 
class contains 100 observations.   

5.2 Test 1 
In this test, the number of classes chosen is nbc=3 and the 
overlapping degree between the classes is null. The classes 
are well separated between them. Table 1 gives the real 
centers of the classes and figure 5 shows the repartition of 
the observations in the observations space.  

. Table 1: Real centers of the classes. 
Class CL1 CL2 CL3

Center Vector 6  3 8  5 4   5
The proposed evolutionist algorithm runs quickly. Figure 6 
shows the evolution of the fitness value of the best 
chromosome of the current population as long as the 
generations progress. The optimal chromosome chropt 
obtained is: 
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Figure 5: Repartition of the observations in the space. 

chropt= (5.9641  2.8913  7.9981  5.0404  4.0456   4.9975 )     (10) 
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Figure 6: Fitness evolution. 

We noticed that in very few generations, the EKM 
algorithm converges to the global optimum and determines 
the class centers. This is due to the parallel nature of the 
evolutionist algorithm and also to the nature of the proposed 
mutation operator which has rapidly guided the algorithm, 
by means of an adapted Gaussian perturbation, to the global 
solution. The local solutions have well been avoided. The 
centers obtained are slightly shifted from the real centers.  
The classification results obtained by the proposed 
evolutionist algorithm are summarized in figure 7 and table 
2.  
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Figure 7: Optimal classes and centers obtained by the EKM algorithm. 

Table 2: Confusion matrix. 

 Estimated
CL1 

Estimated 
CL2 

Estimated
CL3

CL1 100 0 0 
CL2 0 100 0 
CL3 0 0 100 
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 These results show that all the observations are correctly 
attributed to their corresponding classes, the error rate 
obtained is null. 
Thus, we notice that the proposed EKM algorithm has 
improved the performances of the KM algorithm. The 
initialization problem is removed, the result obtained is the 
same for many different initializations. The proposed 
mutation operator has permitted to the algorithm to avoid 
local optimums and to converge rapidly to the global 
solution. 

5.3Test 2  
In this test, we have considered three other classes, but the 
overlapping degree in this case is high. The classes are very 
close to each other and have the same centers as the classes 
of test 1. Figure 8 shows the repartition of the observations 
in the observations space. We notice that it is difficult to 
find the optimal partition in this case.  
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Figure 8: Repartition of the observations in the space. 

    Figure 9 shows the evolution of the fitness value of the 
best chromosome of the current population with respect to 
the progressing generations. It shows that the proposed 
algorithm converges rapidly to the global solution. The 
rapidity of the algorithm is not sensitive to the overlapping 
degree. The optimal chromosome chropt is obtained:  
chropt= (6.0230   3.0166   8.1836   5.0796  4.0740   5.0656 )    (11)  
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Figure 9: Fitness evolution. 

Figure 10 and table 3 summarize the classification results 
obtained by the proposed algorithm. 
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Figure 10: Optimal classes and centers obtained by the EKM algorithm. 

Table 3: Confusion matrix. 
 Estimated

CL1  
Estimated 

CL2 

Estimated
CL3 

CL1 91 1 8 
CL2 4 94  2 
CL3 2 1 97 

The number of misclassified observations in this case is 18. 
The corresponding error rate is:  

%6
300

18
==τ                               (12) 

 The error rate has increased with the overlapping degree. 
By analyzing the repartition of the classes, we noticed that 
the misclassified observations are situated:  

- Either far away from the space of their 
corresponding classes, for instance the class CL3 
contains 8 observations of class CL1 ( figure 8).  

- Either in the boundaries of separation between the 
classes, for instance the boundary which separates 
the two classes CL2 and CL3 ( figure 8).  

   It is then normal that these observations are misclassified, 
this explains the high error rate value obtained.   

5.4 Test 3  
In this test, we evaluate the performance of the algorithm 
EKM for a high number of classes, we chose nbc = 6. The 
degree of overlap between classes is low. The real centers 
of 6 classes generated are shown in Table 4, and Figure 11 
shows the distribution of observations in the observations 
space. 

Table 4: Real centers of the classes. 
Class CL1 CL2 CL3 CL4 CL5 CL6

Center Vector 6   3 8   5 8   7 4   7 4  5 6   6
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The proposed evolutionary algorithm runs quickly. Figure 
12 shows the evolution of the fitness value of best 
chromosome of the current population with respect to the 
progressing generation generations. The optimal 
chromosome  chropt is obtained: 
chropt   =(5.9771     2.9653    8.0050    4.9850   7.9742   7.0039            

4.0437    6.9720    3.9240    5.0007    6.0951     6.0457)             (13) 
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Figure 11: Repartition of the observations in the space. 
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Figure 12: Fitness evolution. 

The classification results obtained by the EKM algorithm 
are summarized in figure 13 and table 5.  

Table 5: Confusion matrix.  
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Figure 13: Optimal classes and centers obtained by the EKM algorithm.  

The table 5 shows the number of misclassified observations 
(30 observations, the corresponding error rate is: 

        %5
600

30
==τ    (14) 

The error rate obtained by the algorithm EKM remains low, 
which confirms the good performance. 

5.5 Test 4  

For this test, the same class centers are taken as for test 3 
hawever, the overlapping degree between the classes is high.  
Figure 14 shows the repartition of the classes in the 
observations space, it shows that it is difficult to find the 
best partition for such a case. The observations of each class 
are indeed not concentrated around their class center. It is 
then possible to find observations of a class CLs which are 
more close to the center of an other class CLs’ than they are 
to their own center (figure 14). These observations are 
generally misclassified.   
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Figure 14:  Repartition of the observations in the space.  

 
Estimated 

CL1 

Estimated 

CL2 

Estimated 

CL3 

Estimated 

CL4 

Estimated 

CL5 

Estimated

CL6 

CL1 100 0 0 0 0 0
CL2 0 93 5 0 0 2
CL3 0 1 96 0 0 3
CL4 0 0 0 97 2 1
CL5 0 0 0 5 92 3
CL6 0 1 3 1 3 92
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The proposed EKM algorithm converges in a small number 
of generations (not more than 6) towards the global 
optimum (figure 15). The optimal chromosome chropt is 
obtained:  
chropt = (6.0089     2.9531     8.0318     4.9672     7.9680     7.0387     

4.0193   6.9713    3.8823    4.9214    6.0691   6.0332)          (15) 
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Figure 15: Fitness evolution.  

    The classification results obtained by the EKM algorithm 
are summarized in figure 16 and table6.  

2 3 4 5 6 7 8 9 10 11 12
1

2

3

4

5

6

7

8

9

a1

a2

class1
class2
class3
class4
class5
class6
center

 
Figure 16: Optimal classes and centers obtained by the EKM algorithm. 

Table 6: Confusion matrix. 

 Estimated 
CL1 

Estimated 
CL2 

Estimated
CL3 

Estimated 
CL4 

Estimated
CL5 

Estimated
CL6 

CL1 97 0 0 0 2 1 
CL2 1 88 8 0 0 3 
CL3 0 3 91 0 0 6 
CL4 0 0 0 95 2 3 
CL5 1 0 0 8 87 4 
CL6 0 2 8 1 4 85 
The number of misclassified observations is 57, the 
corresponding error rate is:  

              %5.9
600

57
==τ    (16) 

 Whilst the number of classes increases with a high 
overlapping degree between the classes, the error rate value  
obtained remains low. This confirms the good performances 
of the EKM algorithm presented even when the number of 
classes is high.  

6. Conclusion  

The unsupervised classification by the KM algorithm 
suffers from two difficulties which are the initialization 
phase and the local optimums.  

   We have proposed in this work a new approach to get 
around these two difficulties. The new approach is based on 
the evolutionary strategies. We have presented a real coding 
and we have defined an adequate fitness function suitable 
for the behavior to be optimized. We have proposed a new 
mutation operator which have permitted to the algorithm to 
avoid local solutions and to converge rapidly to the global 
solution.  

  The proposed EKM algorithm was tested on several 
simulation examples. The experimental results obtained 
show the rapidity of convergence and the good 
performances of the presented classification method. The 
two problems of initialization and local optimums are 
discarded.  
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