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Summary 
The file protection methods used within the Linux operating 
system are based on the traditional flags associated with old-style 
UNIX systems. The Access Control List (ACL) permissions 
utilized in more recent additions of Linux are constructed on top 
of these original permissions, and the result is a confusing blend 
of the old style and new style file protection mechanisms. When 
permission settings are confusing to the user, incorrect 
permission settings are more likely; this leads to vulnerabilities 
in systems which can then be taken advantage of by adversaries. 
The various Windows operating systems use a more simplistic 
ACL method for file permission checks, and the authors describe 
an implementation of these permissions into the Linux file 
system.  
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1. Introduction 

Computer security is often described in terms of objects O 
being protected while subjects S attempt to access them. A 
simple protection mechanism was first proposed by 
Lampson [8] and later clarified by Graham and also 
Denning [5][6], and recently again by Bishop [4]. The 
mechanism is the Access Control Matrix (ACM), a table 
of S rows of O columns, where each entry [s][o] in the 
table describes the permissions available to subject s on 
that particular object o. These permissions include the 
ability to read the object, write to the object, execute the 
object, and others as necessary by the characteristics of 
that object.  
 
A difficulty with the ACM model of software security is 
that it does not scale well in real life. A computer system 
might have tens of thousands of objects and as many users, 
requiring an extremely large |S|×|O| matrix representation. 
The access control matrix is good from a theoretical 
standpoint but cumbersome in practice. A better solution 
is to distribute the workload, so that each object maintains 
its own concept of the users that are authorized to use that 
object, and in what modes. This is an Access Control List 
(ACL); each object is associated with a list of the users for 
that object, and an explicit statement of what that users 

permissions consist of. This is, in effect, storing the ACM 
“a column at a time” across various objects. 
 
Anderson characterizes Access Control as “… the 
traditional center of gravity of computer security. It is 
where security engineering meets computer science. Its 
function is to control which principals (persons, processes, 
machines, …) have access to which resources in the 
system – which files they can read, which programs they 
can execute, how they share data with other principals, 
and so on” [1]. 
 
ACLs have a number of advantages, including the fact that 
they are oriented towards data and can be maintained by 
the owners of that data. People thus feel in control of their 
own destiny. The ACL concept is also relatively simple to 
implement, where each file has an area set aside for the 
permissions on the file. The algorithm for checking these 
permissions (with the Linux exception we describe below) 
is correspondingly simple to implement and to verify. Of 
course these advantages come at a price, namely that the 
operating system must scan the ACL at each initial object 
access, inherently slower than accessing a table entry in an 
ACM. Another difficulty is the expense involved should 
one desire to ask what files are accessible to a certain 
subject s – the data is simply not maintained in this 
manner. The case of an employee leaving or being 
reassigned requires a search of all files should we desire to 
remove all of the user permissions.   
 
Regardless, the advantage of ACLs can not be denied – it 
can be a very simple but secure protection mechanism if 
employed properly. For these reasons we wish to add 
ACLs to the popular Linux system. Readers familiar with 
recent Linux distributions will realize that Linux already 
has ACLs; but the implementation and the requirement for 
backward compatibility nullifies one advantage of ACLs, 
namely their simplicity. We thus describe an ongoing 
implementation of simpler ACLs on top of existing Linux 
file systems. 
 
Section two of this paper provides the reader with the 
background in ACL implementations on both the 
Windows and Linux platforms. Note that other models, 
Cisco for instance [10], are not described, as they are not 
germane to the task we wish to accomplish. Section three 
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details the methods we are using to implement the 
different ACL scheme in the Linux EXT3 file system. 
Section four presents out conclusions. Note that we have 
not included a section on prior work, since the majority of 
this work has been on the ACL scheme we are replacing.  

2. An Overview of ACL Models 

The two models we review here are the Windows model 
and the Linux model. In the case of the former, it is a very 
straightforward method for determining the access rights 
of a given subject against an object – a linear search of the 
ACL is used to make the case. For Linux, though, the need 
for backwards compatibility has a large impact on the 
implementation algorithm and thus the lack of simplicity 
when using this method.  
 

2.1 Access Control Lists on Windows 

The Windows style Access Control Lists are made up of a 
set of Access Control Entries (ACEs). Each ACE 
determines the access rights which are allowed, denied, or 
audited for the user listed in the entry. The Windows ACL 
model must be backwards compatible with older versions 
of the operating system and for this reason, ACLs are not 
strictly required on files. Older “FAT” file systems, for 
instance, do not support the ACL model at all. As a result, 
when a process tries to access a file, the system first 
checks whether the type of the file system, and then if 
necessary checks the entries in the ACL to determine 
whether the appropriate permissions are available. If the 
file has no ACL, then full access to the file is the result. 
This maintains the backward compatibility to older file 
systems. If the file system supports ACLs and a file 
actually has an ACL but the ACL contains no ACEs (the 
ACL is empty), then the system denies all attempts to 
access the file. In the normal case, where the ACL actually 
contains entries, the system checks each ACE in turn until 
it finds one or more ACEs that allow the requested access 
rights, or until any of the rights are denied.  
 
Windows also contains two types of ACLs, a 
Discretionary ACL or DACL, and a System ACL or 
SACL. The SACLs are used primarily for auditing and 
logging of security related events, and are not discussed 
extensively here; nor are they a part of our Linux 
implementation at this time. For this reason when we refer 
to ACLs in this paper we are referring to DACLs. 
Similarly, Windows documentation refers to ACLs in the 
context of “securable objects”. We will simply call these 
files.  
 

Figure one shows an example of the Windows scheme. In 
the figure, two processes (threads) attempt to access a file. 
The ACL is shown in the figure and we note that user 
Andrew is specifically denied access, regardless of what 
groups he is in. In the case of Andrew, ACE one is 
checked and the user is immediately denied. Jane requests 
write access. She is checked against ACE one, which does 
not apply, and then against ACE two and is allowed write 
access because she is a member of Group A.  Since access 
was not denied, ACE three is also checked and Jane gains 
read and execute permissions as well.  
 

 

Fig. 1 Windows ACL Example 

The Windows model stops checking the ACEs in the list 
once the required access is explicitly known. This implies 
that the order in which the ACEs are listed in the ACL is 
important; swapping numbers one and three in the above 
figure would allow access to Andrew, for instance.  
 
Conceptually the Windows ACL model is elegant in its 
simplicity and operates the way people would assume that 
ACLs “should” operate. 

2.2 Access Control Lists on Linux 

Like the Windows Model, the Linux model must maintain 
a certain level of backwards compatibility so that legacy 
systems operate correctly. In this case the inode-based 
UNIX permissions are utilized, as is described in many 
references such as originally by Ritchie and Thompson 
[12] and in their patent [14]. In this scheme a file has three 
levels of permissions: “user”, “group”, and “other”. Each 
of these, in turn contains “read”, “write”, and “execute” 
permissions which are abbreviated as “rwx”. This scheme 
was implemented originally by reserving nine bits in the 
flags of the inode entry for the file, with the other bits in 
the flags indicating directories, character or block devices, 

File 

ACE 1 
Access Denied 
Andrew: R,W,X 

ACE 2 
Access Allowed 
Group A: W 

ACE 3 
Access Allowed 
Everyone: R,X 

Access Token 
Jane 
Member: Group A 

Access Token 
Andrew 
Member: Group A 
Member: Group B 
Member: Group C 
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or other uses. A permission setting of “rwx-rw-r--” 
indicates all “read”, “write”, and “execute” permissions 
for the user, “read”, and “write” for users in the same 
group, and “read” permission for anyone else. These are 
the permissions commonly set by utilities such as chmod 
and settings like umask.  
 
Although this model is very simple to implement, 
difficulties arise in complex settings where different 
individuals must be allowed different permissions on the 
files. Suppose Al, Betty, and Charles all require different 
rights to a file, but the file is owned by Debbie. Setting the 
“group” and “other” permissions may not cover the 
requirements. Adding additional users only exacerbates 
the problem. System administrators have managed to find 
workarounds for the model's limitations, but some of these 
workarounds require non-obvious group setups that may 
not reflect organizational structures. An additional 
difficulty is that only the root user can create groups or 
change group membership. Thus, maintaining the correct 
permissions under these circumstances proves to be 
difficult. A common occurrence on today’s Linux systems, 
for instance, is to have the user ID number and the group 
ID number identical, thus creating groups of one; the 
“other” category is thus the only setting if any importance. 
 
The Linux process for file permission checking is 
summarized in the following steps. Here we will use 
“user”, “group”, and “other” (with quotation marks) to 
refer to the inode-based UNIX style permissions on the 
file, while named user and named group refer to ACL 
entries for the file:  
 
1. If the user ID of the process is the “user”, then use the 

“user” entry in the inode-based flags to determine the 
access. 

2. Otherwise, if the user ID of the process matches one 
of the named user entries, this entry determines the 
access. 

3. Otherwise, if one of the group IDs of the process 
matches the “group” of the file, then use the “group” 
entry to determine the access. 

4. Otherwise, if one of the group IDs of the process 
matches one of the named group entries, and if an 
entry contains the needed permissions, then this entry 
determines the access. 

5. Otherwise, if one of the group IDs of the process 
matches one of the named group entries, but none of 
the entries has the necessary permissions, then the 
access is denied.  

6. Otherwise, use the “other” setting on the file.  
 
Note in step four that there might be several groups 
associated with a process, and several groups listed in the 

ACL, so it is necessary to state the rule as above. Also, 
Linux ACLs contain a mask entry which is utilized within 
the group entries. This mask is and-ed with the 
permissions so that, regardless of other settings, one can 
turn off certain permissions by masking them with zero.  

2.3 Motivation for Research 

Now that we understand the basic differences between the 
two models, we desire to implement the Windows model 
onto the Linux file system. This is primarily motivated by 
these factors: 
 
• We feel that the Windows ACL methods accurately 

reflect how users “think” about ACL control on a file. 
• We feel that the Linux access control list algorithm is 

sufficiently complex that many system administrators, 
novice or experienced, may make mistakes. 

• These mistakes lead to the potential for information 
leakage, as well as potentially allowing unauthorized 
persons execute permissions on files that they should 
not have access to. 

 
ACLs on Linux already exist, as noted above. However 
we feel that they are overly complex, and also note that 
others also feel this way, as evidenced for example by the 
ACL simplifications added to the Solaris system [13] and 
to HP-UX [7]. Further, different versions of NFS have 
slight quirks when dealing with ACLs (see for example 
[11]). We thus turn our attention to the implementation of 
a simpler ACL model on the Linux system, one which 
follows the simpler Windows style. 

3. Implementation 

In order to understand the methods used for the 
implementation of our ACL scheme, we first introduce a 
general overview of how the Linux file system is 
organized and the layers contained within it. Referring to 
figure two, various applications running on a Linux 
system make operating system calls through the 
application programming interface (API). These are traps 
into the Kernel code for the Linux system, and the type of 
the request and the appropriate parameters are decoded 
and examined. The key data structures important for our 
implementation are the directory entry structures, or 
“dentries”, and the file information node entries or 
“inodes”. Each is cached in the file system code for 
improved performance.  
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Fig. 2  File System Overall Arrangement 

A key consideration when examining figure two is that the 
dentry and inode caches and data structures exist on top of, 
and independently of, the underlying file system. This 
gives the Linux file system a certain amount of 
independence over the actual file system structure below; 
for example, a file system for a CD-ROM may operate in a 
different manner than a block oriented file system on a 
standard hard drive, but to the upper layers and the API it 
appears identical. For these reasons the top level API and 
cache is a Virtual File System (VFS) layer, and programs 
actually interact with the VFS in Linux – not the 
individual file systems as contained on the disks. 
 
There is a long history of documentation available on the 
usage and information contained in the inode. Good early 
references include texts by Bach [3] and also Andleigh [2]. 
To summarize, though, the main role of the inode is to 
contain the information necessary to locate the data 
belonging to a certain file, and also to maintain other 
sundry information such as timestamps. The inode is also 
the location where the association between a file and its 
owner is made, since the inode structure contains the 
“user” and “group” numbers for the file as described 
above, the protection (file mode), the size of the file, and 
the dates of last access, creation and last modification. 
When an inode is read into the cache, additional 
information is also maintained for the data structure, 
including its serial number, and a pointer to the 
“superblock” of the file system containing the file. There 
are also pointers to the dentries for this file. Further 
complicating the matter, there is a difference between an 
inode in the cache and an inode in a particular file system. 
Early versions of Linux had a C language union 

containing all variants of the inode belonging to the 
different file system types. New versions translate back 
and forth between a file system inode and a VFS inode, 
making the upper levels of the file system code operate 
independently relative to the actual inode on the disk. 
 
In a Linux file system, the mapping from a file name to the 
data in the file is by associating a directory entry name 
with an inode number. The inode contains the data 
necessary for maintaining the file, while the name of the 
file is only used to map to the inode. It is possible (and 
frequently occurs) that more than one file name is 
associated with the same file contents.  
 
Within the Linux system, however, the name association is 
by “dentry”. Specifically, a dentry contains a pointer to the 
associated inode in the inode cache, a pointer to the parent 
dentry in the dentry cache, the name component in the file 
name, and other information such as a pointer to the meta 
data for the file system. At the level of the dentry, 
operations exist to manipulate each of these structures. 
The operations include dentry comparisons, deleting 
and/or releasing a cache entry, and associating the dentry 
with the inode. The name component in the dentry is the 
portion of the file name that is contained within this dentry 
and is a part of a potentially larger qualified filename.  
 
This overall scheme is depicted in figure three, where we 
show the relationship for various data structures involved 
in the file “/home/jharr/file”, including the linked list of 
dentry structures in the dentry cache, each of which is 
pointing at the appropriate inodes in the inode cache.  

Application Application 

Block Cache 

Device Drivers 

File system 1 
File system 2 
File system 3 

API Layer 

Dentry Cache inode Cache 
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Fig. 3  Relationship Between Dentry and Inode 

In figure three, inodes exist for each of the components of 
the file; the inode for “/” controls the root directory, 
“home” is a directory, and so on. The flags in the inode 
determine what type of entity it is, whether it is a directory, 
a FIFO, a device, or one of several other types of entities. 
The lack of any of these flags being set indicates an 
ordinary file, and we handle access control lists on these. 
 
We next consider one specific file system within the Linux 
world: EXT3. This is the third version of the extended file 
system in the Linux community and has been in place 
since 2002. Many if not most Linux distributions utilize 
EXT3 as the default file system, although the user does 
have the option of selecting an alternative. It is thus a 
good candidate for our ACL research and we assume that 
an EXT3 file system is available for our implementation.  
 
Each inode in a Linux EXT3 file system contains an area 
available for additional information; this extra data area is 
the “extended attribute” area of the inode entry as it is on 
disk. When an EXT3 file system is available and an inode 
needs to be cached for the VFS level, the extended 
attributes are copied into the cache as well as the other 
inode data. Note that any file system can implement 
extended attributes; all that is necessary is to implement 
“get”, “set”, “list”, etc. for the extended attributes. It is 
necessary to implement these in each file system, of course, 
but it is much simpler at the higher levels because the 

“where” and “how” is already managed, excepting any 
decisions regarding how you want to translate in-memory 
structures to on-disk structures. The VFS puts no 
requirements on what extended attributes a FS has to 
support. The file system just returns the appropriate error 
if the needed attribute is not handled. The extended 
attribute area is what we take advantage of and use to hold 
our ACL data. 
 
Extended attributes need space on the media, of course. In 
the best case scenario, the attributes are stored in the inode 
and no extra space is used. In the worst case, EXT4 for 
example, another block is specifically set aside for 
extended attributes. So the requirement is approximately 
one block (typically 4k) minus some overhead for the 
common case. The ACL entry structures are eight bytes, 
so we have the capability for approximately 500 of them 
on a single inode. POSIX ACLs have the same restriction. 
 
The ACL entries overlay a structure containing the user ID 
and permissions necessary for the Windows-style ACLs. 
These include information similar to that which is detailed 
in figure one above and includes a flag indicating whether 
this entry is for permissions that are allowed or denied, the 
user ID in question, and the permissions pertaining to this 
entry.  
 
Next we alter certain operating system calls within the 
VFS layer; fore example, “may_open”, “may_delete”, 
“may_creat” in “namei.c”, but all functions at the VFS 
layer that involve access to the file need to be modified. 
Each of these is altered to call a new function as part of 
the permission processing. This function then scans the 
ACL data in the extended attributes and determines the 
permissions pertinent to the file. Scanning the ACL entries 
during the traversal of a filename is necessary, and this 
code is also scattered in much of the “namei.c” file, 
particularly functions such as “do_path_lookup”. 
 
This functionality is recursive. Referring back to figure 
three, suppose that Jane wishes to write the file 
/home/jharr/file and that the ACL appropriate for this file 
is the same as we saw previously in figure one. Then, just 
like before, the access should be allowed because Jane is 
in Group A. However, our ACL implementation also 
checks the parent directory ACL for /home/jharr, and then 
checks /home, finally stopping after checking the file 
system root. Since the dentry tree is a view of the 
filesystem with path information, this is accomplished 
with a simple while loop that retrieves ACL entries and 
merges them together to form an effective ACL for that 
dentry. 
 

struct dentry { 
    struct super_block *d_sb; 
    struct dentry *d_parent; 
    unsigned char *d_iname; 
    struct inod *d_inode; 
    ... 
}; 
 

struct inode { 
    struct list_head i_dentry; 
    struct timespec i_atime, i_mtime, i_ctime; 
    ... 
    const struct file_operations *i_fop; 
    const struct inode_operations *i_op; 
    ... 
}; 

struct dentry { 
    struct super_block *d_sb; 
    struct dentry *d_parent; 
    unsigned char *d_iname; 
    struct inod *d_inode; 
    ... 
}; 
 

struct inode { 
    struct list_head i_dentry; 
    struct timespec i_atime, i_mtime, i_ctime; 
    ... 
    const struct file_operations *i_fop; 
    const struct inode_operations *i_op; 
    ... 
}; 

struct dentry { 
    struct super_block *d_sb; 
    struct dentry *d_parent; 
    unsigned char *d_iname; 
    struct inod *d_inode; 
    ... 
}; 
 

struct inode { 
    struct list_head i_dentry; 
    struct timespec i_atime, i_mtime, i_ctime; 
    ... 
    const struct file_operations *i_fop; 
    const struct inode_operations *i_op; 
    ... 
}; 

struct dentry { 
    struct super_block *d_sb; 
    struct dentry *d_parent; 
    unsigned char *d_iname; 
    struct inod *d_inode; 
    ... 
}; 
 

struct inode { 
    struct list_head i_dentry; 
    struct timespec i_atime, i_mtime, i_ctime; 
    ... 
    const struct file_operations *i_fop; 
    const struct inode_operations *i_op; 
    ... 
}; 

/home/jharr/file 

File System Mount Point 

file 

jharr 

home 

inode dentry 

inode dentry 

inode dentry 

inode dentry 

/ 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 
 

 

6

One remaining issue is Linux file system links. A link in a 
Linux file system is a case where more than one file name 
refers to the same file contents. Recall that a file name is 
simply a mapping from the string that we see over to the 
inode number on the file system, and that the inode 
contains the permissions and the data as to where the file 
contents are stored. In our system the inode on the disk 
also contains the ACL entries. In UNIX terminology there 
are two types of links: hard links, and soft links. The latter 
is of little consequence to our scheme; in a soft link, the 
system follows the path for the file, and when the inode is 
finally reached it indicates a new path to the file which is 
actually to be used. For instance, /home/bmahoney/data 
could be a soft link to /home/jharr/file. A request to open 
the former follows all of the usual permission checks 
(including ours), and upon the realization that this is a soft 
link, the system then follows all of the permission checks 
to /home/jharr/file. Incidentally, note that this could also 
be a soft link to yet another file, and that there is no need 
whatsoever for any of these to be on the same file system. 
Windows users will recognize this as akin to a “shortcut” 
on the Windows file system. 
 
In contrast, a hard link is an issue for our ACL scheme and 
must be dealt with. A hard link is a simple concept: two or 
mode file names refer to the same inode on the disk. For 
instance, imagine that /home/bmahoney/data and 
/home/jharr/file are both referring to inode 356. In this 
case the inode, which contains a “link count”, would have 
a count of two. Hard links are quite common in UNIX file 
systems because this is how directories link back to their 
parents. The “..” entry in a directory is a hard link to the 
inode of the parent, and this link is set up when the 
directory is created.  
 
The difficulty for hard links in our ACL scheme is that I 
do not need permissions on a file in order to create a link 
to the file. For instance I can create a link 
/home/bmahoney/link to the /etc/shadow file, containing 
the encrypted Linux passwords, even though I (hopefully) 
do not have read access to the file. Now, opening 
/home/bmahoney/link will have us consider the ACL 
entries on this path when we should be considering the 
ACL entries on /etc/shadow. Our tentative solution for this 
problem is that we intercept the link system call and 
disallow the link if the user issuing the call is not the 
owner of the original file. We are currently testing to 
determine whether this solution solves all cases and/or 
causes any lack of functionality in existing packages.  

4. Conclusions 

The Windows style Access Control Lists are much simpler 
conceptually than the Linux/POSIX model, and turn out to 

be relatively easy to add to a stock Linux distribution. Our 
implementation currently requires the use of the EXT3 file 
system so that we have a convenient place to store the 
ACL data, but this is not a severe restriction as most 
systems already use EXT3; any file system with extended 
attributes should be a candidate for our ACL scheme.  
 
Currently we have verified that the overall approach 
operates as we have planned, and we are in the process of 
removing inefficient debugging software so as to make a 
production Linux system for further testing. Once this is 
accomplished we will turn our attention to determining 
what, if anything, functions incorrectly due to the 
modifications in our hard link requirements. Subsequent to 
this we will determine the appropriate steps to bring in 
outside testers and what procedures are best for releasing 
our changes to the public domain. Ultimately the success 
of the research will be simple to measure at that point – 
will the software be used? 
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