
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

1

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

A Linux Implementation of Windows ACLs

William Mahoney, James Harr

College of Information Science and Technology, University of Nebraska at Omaha

Summary
The file protection methods used within the Linux operating
system are based on the traditional flags associated with old-style
UNIX systems. The Access Control List (ACL) permissions
utilized in more recent additions of Linux are constructed on top
of these original permissions, and the result is a confusing blend
of the old style and new style file protection mechanisms. When
permission settings are confusing to the user, incorrect
permission settings are more likely; this leads to vulnerabilities
in systems which can then be taken advantage of by adversaries.
The various Windows operating systems use a more simplistic
ACL method for file permission checks, and the authors describe
an implementation of these permissions into the Linux file
system.

Key words:
Linux, Access Control Lists, File Security

1. Introduction

Computer security is often described in terms of objects O
being protected while subjects S attempt to access them. A
simple protection mechanism was first proposed by
Lampson [8] and later clarified by Graham and also
Denning [5][6], and recently again by Bishop [4]. The
mechanism is the Access Control Matrix (ACM), a table
of S rows of O columns, where each entry [s][o] in the
table describes the permissions available to subject s on
that particular object o. These permissions include the
ability to read the object, write to the object, execute the
object, and others as necessary by the characteristics of
that object.

A difficulty with the ACM model of software security is
that it does not scale well in real life. A computer system
might have tens of thousands of objects and as many users,
requiring an extremely large |S|×|O| matrix representation.
The access control matrix is good from a theoretical
standpoint but cumbersome in practice. A better solution
is to distribute the workload, so that each object maintains
its own concept of the users that are authorized to use that
object, and in what modes. This is an Access Control List
(ACL); each object is associated with a list of the users for
that object, and an explicit statement of what that users

permissions consist of. This is, in effect, storing the ACM
“a column at a time” across various objects.

Anderson characterizes Access Control as “… the
traditional center of gravity of computer security. It is
where security engineering meets computer science. Its
function is to control which principals (persons, processes,
machines, …) have access to which resources in the
system – which files they can read, which programs they
can execute, how they share data with other principals,
and so on” [1].

ACLs have a number of advantages, including the fact that
they are oriented towards data and can be maintained by
the owners of that data. People thus feel in control of their
own destiny. The ACL concept is also relatively simple to
implement, where each file has an area set aside for the
permissions on the file. The algorithm for checking these
permissions (with the Linux exception we describe below)
is correspondingly simple to implement and to verify. Of
course these advantages come at a price, namely that the
operating system must scan the ACL at each initial object
access, inherently slower than accessing a table entry in an
ACM. Another difficulty is the expense involved should
one desire to ask what files are accessible to a certain
subject s – the data is simply not maintained in this
manner. The case of an employee leaving or being
reassigned requires a search of all files should we desire to
remove all of the user permissions.

Regardless, the advantage of ACLs can not be denied – it
can be a very simple but secure protection mechanism if
employed properly. For these reasons we wish to add
ACLs to the popular Linux system. Readers familiar with
recent Linux distributions will realize that Linux already
has ACLs; but the implementation and the requirement for
backward compatibility nullifies one advantage of ACLs,
namely their simplicity. We thus describe an ongoing
implementation of simpler ACLs on top of existing Linux
file systems.

Section two of this paper provides the reader with the
background in ACL implementations on both the
Windows and Linux platforms. Note that other models,
Cisco for instance [10], are not described, as they are not
germane to the task we wish to accomplish. Section three

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

2

details the methods we are using to implement the
different ACL scheme in the Linux EXT3 file system.
Section four presents out conclusions. Note that we have
not included a section on prior work, since the majority of
this work has been on the ACL scheme we are replacing.

2. An Overview of ACL Models

The two models we review here are the Windows model
and the Linux model. In the case of the former, it is a very
straightforward method for determining the access rights
of a given subject against an object – a linear search of the
ACL is used to make the case. For Linux, though, the need
for backwards compatibility has a large impact on the
implementation algorithm and thus the lack of simplicity
when using this method.

2.1 Access Control Lists on Windows

The Windows style Access Control Lists are made up of a
set of Access Control Entries (ACEs). Each ACE
determines the access rights which are allowed, denied, or
audited for the user listed in the entry. The Windows ACL
model must be backwards compatible with older versions
of the operating system and for this reason, ACLs are not
strictly required on files. Older “FAT” file systems, for
instance, do not support the ACL model at all. As a result,
when a process tries to access a file, the system first
checks whether the type of the file system, and then if
necessary checks the entries in the ACL to determine
whether the appropriate permissions are available. If the
file has no ACL, then full access to the file is the result.
This maintains the backward compatibility to older file
systems. If the file system supports ACLs and a file
actually has an ACL but the ACL contains no ACEs (the
ACL is empty), then the system denies all attempts to
access the file. In the normal case, where the ACL actually
contains entries, the system checks each ACE in turn until
it finds one or more ACEs that allow the requested access
rights, or until any of the rights are denied.

Windows also contains two types of ACLs, a
Discretionary ACL or DACL, and a System ACL or
SACL. The SACLs are used primarily for auditing and
logging of security related events, and are not discussed
extensively here; nor are they a part of our Linux
implementation at this time. For this reason when we refer
to ACLs in this paper we are referring to DACLs.
Similarly, Windows documentation refers to ACLs in the
context of “securable objects”. We will simply call these
files.

Figure one shows an example of the Windows scheme. In
the figure, two processes (threads) attempt to access a file.
The ACL is shown in the figure and we note that user
Andrew is specifically denied access, regardless of what
groups he is in. In the case of Andrew, ACE one is
checked and the user is immediately denied. Jane requests
write access. She is checked against ACE one, which does
not apply, and then against ACE two and is allowed write
access because she is a member of Group A. Since access
was not denied, ACE three is also checked and Jane gains
read and execute permissions as well.

Fig. 1 Windows ACL Example

The Windows model stops checking the ACEs in the list
once the required access is explicitly known. This implies
that the order in which the ACEs are listed in the ACL is
important; swapping numbers one and three in the above
figure would allow access to Andrew, for instance.

Conceptually the Windows ACL model is elegant in its
simplicity and operates the way people would assume that
ACLs “should” operate.

2.2 Access Control Lists on Linux

Like the Windows Model, the Linux model must maintain
a certain level of backwards compatibility so that legacy
systems operate correctly. In this case the inode-based
UNIX permissions are utilized, as is described in many
references such as originally by Ritchie and Thompson
[12] and in their patent [14]. In this scheme a file has three
levels of permissions: “user”, “group”, and “other”. Each
of these, in turn contains “read”, “write”, and “execute”
permissions which are abbreviated as “rwx”. This scheme
was implemented originally by reserving nine bits in the
flags of the inode entry for the file, with the other bits in
the flags indicating directories, character or block devices,

File

ACE 1
Access Denied
Andrew: R,W,X

ACE 2
Access Allowed
Group A: W

ACE 3
Access Allowed
Everyone: R,X

Access Token
Jane
Member: Group A

Access Token
Andrew
Member: Group A
Member: Group B
Member: Group C

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

3

or other uses. A permission setting of “rwx-rw-r--”
indicates all “read”, “write”, and “execute” permissions
for the user, “read”, and “write” for users in the same
group, and “read” permission for anyone else. These are
the permissions commonly set by utilities such as chmod
and settings like umask.

Although this model is very simple to implement,
difficulties arise in complex settings where different
individuals must be allowed different permissions on the
files. Suppose Al, Betty, and Charles all require different
rights to a file, but the file is owned by Debbie. Setting the
“group” and “other” permissions may not cover the
requirements. Adding additional users only exacerbates
the problem. System administrators have managed to find
workarounds for the model's limitations, but some of these
workarounds require non-obvious group setups that may
not reflect organizational structures. An additional
difficulty is that only the root user can create groups or
change group membership. Thus, maintaining the correct
permissions under these circumstances proves to be
difficult. A common occurrence on today’s Linux systems,
for instance, is to have the user ID number and the group
ID number identical, thus creating groups of one; the
“other” category is thus the only setting if any importance.

The Linux process for file permission checking is
summarized in the following steps. Here we will use
“user”, “group”, and “other” (with quotation marks) to
refer to the inode-based UNIX style permissions on the
file, while named user and named group refer to ACL
entries for the file:

1. If the user ID of the process is the “user”, then use the

“user” entry in the inode-based flags to determine the
access.

2. Otherwise, if the user ID of the process matches one
of the named user entries, this entry determines the
access.

3. Otherwise, if one of the group IDs of the process
matches the “group” of the file, then use the “group”
entry to determine the access.

4. Otherwise, if one of the group IDs of the process
matches one of the named group entries, and if an
entry contains the needed permissions, then this entry
determines the access.

5. Otherwise, if one of the group IDs of the process
matches one of the named group entries, but none of
the entries has the necessary permissions, then the
access is denied.

6. Otherwise, use the “other” setting on the file.

Note in step four that there might be several groups
associated with a process, and several groups listed in the

ACL, so it is necessary to state the rule as above. Also,
Linux ACLs contain a mask entry which is utilized within
the group entries. This mask is and-ed with the
permissions so that, regardless of other settings, one can
turn off certain permissions by masking them with zero.

2.3 Motivation for Research

Now that we understand the basic differences between the
two models, we desire to implement the Windows model
onto the Linux file system. This is primarily motivated by
these factors:

• We feel that the Windows ACL methods accurately

reflect how users “think” about ACL control on a file.
• We feel that the Linux access control list algorithm is

sufficiently complex that many system administrators,
novice or experienced, may make mistakes.

• These mistakes lead to the potential for information
leakage, as well as potentially allowing unauthorized
persons execute permissions on files that they should
not have access to.

ACLs on Linux already exist, as noted above. However
we feel that they are overly complex, and also note that
others also feel this way, as evidenced for example by the
ACL simplifications added to the Solaris system [13] and
to HP-UX [7]. Further, different versions of NFS have
slight quirks when dealing with ACLs (see for example
[11]). We thus turn our attention to the implementation of
a simpler ACL model on the Linux system, one which
follows the simpler Windows style.

3. Implementation

In order to understand the methods used for the
implementation of our ACL scheme, we first introduce a
general overview of how the Linux file system is
organized and the layers contained within it. Referring to
figure two, various applications running on a Linux
system make operating system calls through the
application programming interface (API). These are traps
into the Kernel code for the Linux system, and the type of
the request and the appropriate parameters are decoded
and examined. The key data structures important for our
implementation are the directory entry structures, or
“dentries”, and the file information node entries or
“inodes”. Each is cached in the file system code for
improved performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

4

Fig. 2 File System Overall Arrangement

A key consideration when examining figure two is that the
dentry and inode caches and data structures exist on top of,
and independently of, the underlying file system. This
gives the Linux file system a certain amount of
independence over the actual file system structure below;
for example, a file system for a CD-ROM may operate in a
different manner than a block oriented file system on a
standard hard drive, but to the upper layers and the API it
appears identical. For these reasons the top level API and
cache is a Virtual File System (VFS) layer, and programs
actually interact with the VFS in Linux – not the
individual file systems as contained on the disks.

There is a long history of documentation available on the
usage and information contained in the inode. Good early
references include texts by Bach [3] and also Andleigh [2].
To summarize, though, the main role of the inode is to
contain the information necessary to locate the data
belonging to a certain file, and also to maintain other
sundry information such as timestamps. The inode is also
the location where the association between a file and its
owner is made, since the inode structure contains the
“user” and “group” numbers for the file as described
above, the protection (file mode), the size of the file, and
the dates of last access, creation and last modification.
When an inode is read into the cache, additional
information is also maintained for the data structure,
including its serial number, and a pointer to the
“superblock” of the file system containing the file. There
are also pointers to the dentries for this file. Further
complicating the matter, there is a difference between an
inode in the cache and an inode in a particular file system.
Early versions of Linux had a C language union

containing all variants of the inode belonging to the
different file system types. New versions translate back
and forth between a file system inode and a VFS inode,
making the upper levels of the file system code operate
independently relative to the actual inode on the disk.

In a Linux file system, the mapping from a file name to the
data in the file is by associating a directory entry name
with an inode number. The inode contains the data
necessary for maintaining the file, while the name of the
file is only used to map to the inode. It is possible (and
frequently occurs) that more than one file name is
associated with the same file contents.

Within the Linux system, however, the name association is
by “dentry”. Specifically, a dentry contains a pointer to the
associated inode in the inode cache, a pointer to the parent
dentry in the dentry cache, the name component in the file
name, and other information such as a pointer to the meta
data for the file system. At the level of the dentry,
operations exist to manipulate each of these structures.
The operations include dentry comparisons, deleting
and/or releasing a cache entry, and associating the dentry
with the inode. The name component in the dentry is the
portion of the file name that is contained within this dentry
and is a part of a potentially larger qualified filename.

This overall scheme is depicted in figure three, where we
show the relationship for various data structures involved
in the file “/home/jharr/file”, including the linked list of
dentry structures in the dentry cache, each of which is
pointing at the appropriate inodes in the inode cache.

Application Application

Block Cache

Device Drivers

File system 1
File system 2
File system 3

API Layer

Dentry Cache inode Cache

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

5

Fig. 3 Relationship Between Dentry and Inode

In figure three, inodes exist for each of the components of
the file; the inode for “/” controls the root directory,
“home” is a directory, and so on. The flags in the inode
determine what type of entity it is, whether it is a directory,
a FIFO, a device, or one of several other types of entities.
The lack of any of these flags being set indicates an
ordinary file, and we handle access control lists on these.

We next consider one specific file system within the Linux
world: EXT3. This is the third version of the extended file
system in the Linux community and has been in place
since 2002. Many if not most Linux distributions utilize
EXT3 as the default file system, although the user does
have the option of selecting an alternative. It is thus a
good candidate for our ACL research and we assume that
an EXT3 file system is available for our implementation.

Each inode in a Linux EXT3 file system contains an area
available for additional information; this extra data area is
the “extended attribute” area of the inode entry as it is on
disk. When an EXT3 file system is available and an inode
needs to be cached for the VFS level, the extended
attributes are copied into the cache as well as the other
inode data. Note that any file system can implement
extended attributes; all that is necessary is to implement
“get”, “set”, “list”, etc. for the extended attributes. It is
necessary to implement these in each file system, of course,
but it is much simpler at the higher levels because the

“where” and “how” is already managed, excepting any
decisions regarding how you want to translate in-memory
structures to on-disk structures. The VFS puts no
requirements on what extended attributes a FS has to
support. The file system just returns the appropriate error
if the needed attribute is not handled. The extended
attribute area is what we take advantage of and use to hold
our ACL data.

Extended attributes need space on the media, of course. In
the best case scenario, the attributes are stored in the inode
and no extra space is used. In the worst case, EXT4 for
example, another block is specifically set aside for
extended attributes. So the requirement is approximately
one block (typically 4k) minus some overhead for the
common case. The ACL entry structures are eight bytes,
so we have the capability for approximately 500 of them
on a single inode. POSIX ACLs have the same restriction.

The ACL entries overlay a structure containing the user ID
and permissions necessary for the Windows-style ACLs.
These include information similar to that which is detailed
in figure one above and includes a flag indicating whether
this entry is for permissions that are allowed or denied, the
user ID in question, and the permissions pertaining to this
entry.

Next we alter certain operating system calls within the
VFS layer; fore example, “may_open”, “may_delete”,
“may_creat” in “namei.c”, but all functions at the VFS
layer that involve access to the file need to be modified.
Each of these is altered to call a new function as part of
the permission processing. This function then scans the
ACL data in the extended attributes and determines the
permissions pertinent to the file. Scanning the ACL entries
during the traversal of a filename is necessary, and this
code is also scattered in much of the “namei.c” file,
particularly functions such as “do_path_lookup”.

This functionality is recursive. Referring back to figure
three, suppose that Jane wishes to write the file
/home/jharr/file and that the ACL appropriate for this file
is the same as we saw previously in figure one. Then, just
like before, the access should be allowed because Jane is
in Group A. However, our ACL implementation also
checks the parent directory ACL for /home/jharr, and then
checks /home, finally stopping after checking the file
system root. Since the dentry tree is a view of the
filesystem with path information, this is accomplished
with a simple while loop that retrieves ACL entries and
merges them together to form an effective ACL for that
dentry.

struct dentry {
 struct super_block *d_sb;
 struct dentry *d_parent;
 unsigned char *d_iname;
 struct inod *d_inode;
 ...
};

struct inode {
 struct list_head i_dentry;
 struct timespec i_atime, i_mtime, i_ctime;
 ...
 const struct file_operations *i_fop;
 const struct inode_operations *i_op;
 ...
};

struct dentry {
 struct super_block *d_sb;
 struct dentry *d_parent;
 unsigned char *d_iname;
 struct inod *d_inode;
 ...
};

struct inode {
 struct list_head i_dentry;
 struct timespec i_atime, i_mtime, i_ctime;
 ...
 const struct file_operations *i_fop;
 const struct inode_operations *i_op;
 ...
};

struct dentry {
 struct super_block *d_sb;
 struct dentry *d_parent;
 unsigned char *d_iname;
 struct inod *d_inode;
 ...
};

struct inode {
 struct list_head i_dentry;
 struct timespec i_atime, i_mtime, i_ctime;
 ...
 const struct file_operations *i_fop;
 const struct inode_operations *i_op;
 ...
};

struct dentry {
 struct super_block *d_sb;
 struct dentry *d_parent;
 unsigned char *d_iname;
 struct inod *d_inode;
 ...
};

struct inode {
 struct list_head i_dentry;
 struct timespec i_atime, i_mtime, i_ctime;
 ...
 const struct file_operations *i_fop;
 const struct inode_operations *i_op;
 ...
};

/home/jharr/file

File System Mount Point

file

jharr

home

inode dentry

inode dentry

inode dentry

inode dentry

/

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

6

One remaining issue is Linux file system links. A link in a
Linux file system is a case where more than one file name
refers to the same file contents. Recall that a file name is
simply a mapping from the string that we see over to the
inode number on the file system, and that the inode
contains the permissions and the data as to where the file
contents are stored. In our system the inode on the disk
also contains the ACL entries. In UNIX terminology there
are two types of links: hard links, and soft links. The latter
is of little consequence to our scheme; in a soft link, the
system follows the path for the file, and when the inode is
finally reached it indicates a new path to the file which is
actually to be used. For instance, /home/bmahoney/data
could be a soft link to /home/jharr/file. A request to open
the former follows all of the usual permission checks
(including ours), and upon the realization that this is a soft
link, the system then follows all of the permission checks
to /home/jharr/file. Incidentally, note that this could also
be a soft link to yet another file, and that there is no need
whatsoever for any of these to be on the same file system.
Windows users will recognize this as akin to a “shortcut”
on the Windows file system.

In contrast, a hard link is an issue for our ACL scheme and
must be dealt with. A hard link is a simple concept: two or
mode file names refer to the same inode on the disk. For
instance, imagine that /home/bmahoney/data and
/home/jharr/file are both referring to inode 356. In this
case the inode, which contains a “link count”, would have
a count of two. Hard links are quite common in UNIX file
systems because this is how directories link back to their
parents. The “..” entry in a directory is a hard link to the
inode of the parent, and this link is set up when the
directory is created.

The difficulty for hard links in our ACL scheme is that I
do not need permissions on a file in order to create a link
to the file. For instance I can create a link
/home/bmahoney/link to the /etc/shadow file, containing
the encrypted Linux passwords, even though I (hopefully)
do not have read access to the file. Now, opening
/home/bmahoney/link will have us consider the ACL
entries on this path when we should be considering the
ACL entries on /etc/shadow. Our tentative solution for this
problem is that we intercept the link system call and
disallow the link if the user issuing the call is not the
owner of the original file. We are currently testing to
determine whether this solution solves all cases and/or
causes any lack of functionality in existing packages.

4. Conclusions

The Windows style Access Control Lists are much simpler
conceptually than the Linux/POSIX model, and turn out to

be relatively easy to add to a stock Linux distribution. Our
implementation currently requires the use of the EXT3 file
system so that we have a convenient place to store the
ACL data, but this is not a severe restriction as most
systems already use EXT3; any file system with extended
attributes should be a candidate for our ACL scheme.

Currently we have verified that the overall approach
operates as we have planned, and we are in the process of
removing inefficient debugging software so as to make a
production Linux system for further testing. Once this is
accomplished we will turn our attention to determining
what, if anything, functions incorrectly due to the
modifications in our hard link requirements. Subsequent to
this we will determine the appropriate steps to bring in
outside testers and what procedures are best for releasing
our changes to the public domain. Ultimately the success
of the research will be simple to measure at that point –
will the software be used?

Acknowledgments

This research is partially funded by Department of
Defense (DoD)/Air Force Office of Scientific Research
(AFOSR), NSF Award Number FA9550-07-1-0499, under
the title “High Assurance Software”.

References
[1] Anderson, Ross, “Security Engineering: A Guide to

Building Dependable Distributed Systems”, 2ed, Wiley,
2008.

[2] Andleigh, Prabhat, “UNIX System Architecture”, Prentice
Hall, 1990.

[3] Bach, Maurice, “The Design of the UNIX Operating
System”, Prentice Hall, 1986.

[4] Bishop, Matt, “Computer Security – Art and Science”,
Pearson Education, 2003.

[5] Denning, Peter, “Third Generation Computer Systems”,
ACM Computing Surveys, Vol. 3 No. 4, pp 175-216,
December 1971.

[6] Graham, G. Scott, and Denning, Peter, “Protection –
Principles and Practice”, Proceedings of the Spring Joint
Computer Conference, Atlantic City, 1972, pp 417-430.

[7] HP-UX, “ACL – Introduction to Access Control Lists”
Reference Vol. 5, http://docs.hp.com/en/B2355-
90684/acl.5.html

[8] Lampson, Butler, “Protection”, Operating Systems Review,
Vol. 8 No. 1, pp 18-24, Jan 1974.

[9] Microsoft, http://msdn.microsoft.com/en-
us/library/aa446683(VS.85).aspx

[10] Morrissey, Peter, “Demystifying Cisco Access Control
Lists”, Network Computing,
http://www.networkcomputing.com/907/907ws1.html

[11] Red Hat bug report 454072, “cp and chmod don't respect
NFSv4 ACLs”, https://bugzilla.redhat.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

7

[12] Ritchie, D. M., Thompson, K., “The UNIX Time-Sharing
System”, Bell System Technical Journal 57 no. 6, part 2
(July-August 1978) and available via http://cm.bell-
labs.com/cm/cs/who/dmr/cacm.html

[13] Sun, “Solaris ZFS Administration Guide”,
http://dlc.sun.com/pdf/819-5461/819-5461.pdf

[14] U.S. Patent 4,135,240 available at
http://www.google.com/patents/about?id=HuA4AAAAEBA
J&dq=4135240

William R. Mahoney is an Assistant
Professor and Graduate Faculty at the
University of Nebraska at Omaha Peter
Kiewit Institute, and is the Director of the
Nebraska University Center for
Information Assurance (NUCIA). He has
been actively developing information

assurance curricula in order to enhance the degree program in the
technological areas.

He is a recipient of the College of IS&T 2008 Alumni
Outstanding Teaching Award, and has assisted the Omaha Public
Schools “A+ Excellence in Education” program by providing
electronics demonstrations during the summer at Omaha
elementary schools. Prior to the Kiewit Institute Dr. Mahoney
worked for 20+ years in the computer design industry,
specifically in the areas of embedded computing and real-time
operating systems. During this time he was also on the part time
faculty of the University of Nebraska at Omaha.

James Harr received the B.S. degree in Computer Science from
the University of Nebraska at Omaha, where he is also currently
a graduate student. In addition Mr. Harr is the University of
Nebraska at Omaha Network Engineer.

