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Summary 
Life is governed by high-precision perfectly engineered control 
processes, from the simplest cell to the most sophisticated 
ecosystem - and beyond. Biological control systems are at the 
heart of life. This paper reports the study of regulation and the 
applicability of type-2 fuzzy control systems in bioinformatics. 
The framework of study is systems biology. In addition to two 
previously-described levels of bioinformatics discipline, 
characterized by intelligence-free programs, and artificial 
intelligence-based programs, respectively, another level is now 
proposed that incorporates intelligent control action exemplified 
by type-2 fuzzy control. As such, the new level reported here is 
the most complex as it is dedicated to offering a scientific and 
developmental framework for enhancing bioinformatics through 
the determination of optimal therapeutic strategies or tissue 
engineering. The resulting framework is a contribution towards 
practical innovations in engineering, medicine, and pharmacy.    
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1. Introduction 

Our aim is to integrate type-2 fuzzy control and regulation 
in bioinformatics, under one unified systems-oriented 
perspective within the framework of systems biology. The 
field of bioinformatics has naturally evolved with the 
primary task that involves the development of 
computational tools enabling efficient access, management, 
storing, retrieval, and interpretation of various types of 
biological data, including nucleotide and amino acid 
sequences, protein domains, and protein structures. 
Another major task is the development of enhanced 
algorithms and advanced statistical methods with which to 
assess relationships among members of large data sets, 
such as finding location of a gene within a sequence, 
predicting protein structure and/or function, and clustering 
protein sequences families of related sequences. The 
biological data must be compiled to form a comprehensive 
picture of normal cellular activities. Tools are developed 
to show the way these data are altered in different disease 
states [1]. It has been proposed that the field of 
bioinformatics went through two main historical phases,  
 

 
 
during which standard heuristics-free programs were used 
such as database management systems (DBMSs), followed 
by limited artificial intelligence-based programs [2]. How 
can the fuzzy control systems paradigm enhance 
bioinformatics? First of all, a control system for a physical 
system is an arrangement of hardware components 
designed to alter, to regulate, or to command, through a 
control action, that physical system so that it exhibits 
certain desired characteristics or behavior. Physical 
control systems are typically of two types: open-loop 
control systems, in which the control action is independent 
of the physical system output, and closed-loop control 
systems, also known as feedback control systems, in which 
the control action depends on the physical system actual 
output. Intelligent control uses methods and techniques 
from artificial intelligence (AI), such as fuzzy inference, 
and machine learning methods (ML), such as neural 
networks, among others. The integration of control 
methodology within biology and principally within 
metabolic processes has been on the way but is still in its 
infancy [3]. As a complement to a previous work, 
concentrating on the integration, within bioinformatics, of 
machine learning characteristics [4], and control systems 
paradigm [5], emphasis is now made on type-2 fuzzy 
control methods.  The main aim is to contribute to the 
development of future enhanced bioinformatics platforms 
through the integration of these theories within a coherent 
framework.   
The paper is organized as follows. Section 2 deals with the 
problem formulation. This section poses the fundamental 
question: “Why do we need a third level involving type-2 
fuzzy control in bioinformatics on top of the two 
purporting levels?” Section 3 describes some relevant 
biological issues. Section 4 describes the main 
components of the proposed solution. Section 5 describes 
methods from intelligent control relevant to bioinformatics, 
namely type-2 fuzzy control. A conclusion sums up the 
main results and points towards some potential future 
developments. 
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2. Problem Formulation 

The discovery of the structure of deoxyribonucleic acid 
(DNA), as a building bloc of living species, was a turning 
point in the history of science, culture and society. Its 
visible impacts on medicine, agriculture, energy 
production, social issues, ethics, and others, continues to 
create an intensive debate and interesting challenges in all 
human endeavors. To address these multidisciplinary 
issues, society requires scientists who are able to cross 
boundaries between many disciplines and who can make a 
valuable contribution to science and society at large. 
Awareness of the wholeness of this task as well as its 
implications, not only for science but for humanity, 
requires a sense of responsibility that is equally whole [6].   
As far as the study of bioinformatics is concerned, we 
suggest using the traditional entry points available to 
computer and control scientists. Specifically, the aim is to 
extend earlier works on control and give directions of 
application to bioinformatics [7] and especially to 
contribute to the enhancements of the previously-
described two levels of bioinformatics by the emphasis on 
type-2 fuzzy control. It is a challenging task owing to it is 
multidisciplinary. What are the main building-blocks of 
the proposed multidisciplinary framework? Before 
answering this central question, we need some basic 
definitions related to relevant biological issues. 

3. Biological relevant issues  

In this section, we concisely present the main concepts 
from biology relevant to our discussion. These concepts 
concern structure of genes, transcription, and transcription 
factors.   

3.1 From Genes to DNA 

3.1.1 DNA and Intelligence 

First of all, let us have a look at DNA and make an 
important introductory philosophical digression. DNA is 
not merely a molecule with a pattern. It is a code. It is a 
language, and a very sophisticated information storage 
mechanism. All codes of known origin are the product of a 
conscious mind.  DNA, as a code is no exception to this 
rule. DNA is therefore not the result of blind natural 
operations; otherwise there would remain no sense to the 
code and no useful language to be conveyed. DNA must 
have been designed and engineered by a conscious, 
intelligent mind. The complex language and information 
embodied within DNA are proofs of the intelligent action 
of this mind. Randomness is a belief that consists in 
supposing that DNA developed by chance alone. In fact 
randomness alone is a noise-like component. Adding noise 

to a noisy signal will not make it better. It simply generates 
the opposite result.  

3.1.2 Genes as Pieces of DNA  

Genes are pieces of DNA that encode for proteins through 
the intermediate action of messenger RNA (mRNA). 
Proteins are made of amino acids arranged in a linear 
chain and joined together by peptide bonds. A gene and 
the genomic region surrounding it consists of a transcribed 
sequence, which is converted into an mRNA transcript, 
and of various untranscribed sequences. The mRNA is 
transcribed from a DNA template, and carries coding 
information to the sites of protein synthesis called the 
ribosome. The mRNA consists of a coding sequence that 
is translated into a protein and of several untranslated 
regions (UTRs). The untranscribed sequences and the 
UTRs play a major role in the regulation of expression. 
Notably, the promoter region in front of the transcribed 
sequence contains the binding sites for the transcription 
factor proteins that start up transcription. Moreover, the 
region upstream of the transcription start contains many 
binding sites for transcription factors that act as activators 
and repressors of gene expression, although some 
transcription factors can bind outside this region [8].  

3.2 Transcription 

Transcription means the assembly of ribonucleotides into a 
single strand of mRNA whose sequence is dictated by the 
order of the nucleotides in the transcribed part of the gene. 
The transcription process is initiated by the binding of 
several transcription factors to regulatory sites in the DNA, 
usually located in the promoter region of the gene. The 
transcription factor proteins bind each other to form a 
complex that associates with an enzyme called RNA 
polymerase. This association enables the binding of RNA 
polymerase to a specific site in the promoter. Together, the 
complex of transcription factors and the RNA polymerase 
loosen the DNA and separate both strands. As a result, the 
polymerase proceeds down on one strand while it builds 
up a strand of mRNA complementary to the DNA, until it 
reaches the terminator sequence. In this way, an mRNA is 
produced that is complementary to the transcribed part of 
the gene. Then, the mRNA transcript leaves the RNA 
polymerase, and the polymerase breaks its contact with the 
DNA. In a later stage, the mRNA is processed, transported 
out of the nucleus, and translated into a protein [8]. 

3.3. Transcription Factors 

Transcription factors are proteins that bind to regulatory 
sequences on eukaryotic chromosomes thereby modifying 
the rate of transcription of a gene. Some transcription 
factors bind directly to specific sequences in the DNA 
(promoters, enhancers, and silencers), others bind to each 
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other. Most of them bind both to the DNA as well as to 
other transcription factors. The transcription rate can be 
positively or negatively affected by the action of 
transcription factors. When the transcription factor 
significantly decreases the transcription of a gene, it is 
called a repressor. If, on the other hand, the expression of 
a gene is upregulated, biologists speak of an activator [8]. 

4. Main components of problem solution 

The proposed integration of bioinformatics and control is 
done within the so-called systems approach as it originated 
in the early 1920’s. In addition, the main components of the 
solution are based on computational aspects and on the 
human metabolism  considered as a precise control system.  

4.1 Systems Approach  

4.1.1 System Theory 

System theory is an interdisciplinary theory about the 
nature of complex systems as they appear in nature, society, 
and science. It offers a framework through which it is 
possible to study any group of objects that work together to 
produce some prescribed result or goal. Systems theory 
first originated in biology in the 1920’s out of the need to 
explain the correlation between organisms and ecosystems. 
As a technical and general academic area of study system 
theory encompasses the science of systems that resulted 
from Bertalanffy’s general system theory (GST), among 
others, in initiating what became a project of systems 
research and practice. As far as control is concerned, if we 
take the example of parameter estimation, needed for most 
control applications, especially adaptive control, we can 
easily discern the heavy heritage of systems control vis-a-
vis system theory. Thus, the systems approach is 
particularly useful for our proposed framework since it 
helps in the integration of intelligent control methods and 
bioinformatics in a coherent manner. 

4.1.2 Systems Biology  

The passage from DNA to the cell to the organ to the 
organism to community of organisms to ecosystems, and 
beyond, represents different living levels, usually addressed 
by systems theory. All these levels express different 
behaviors and cannot be reduced to, nor understood only 
from, lower levels. Systems biology is based on this 
holistic view of biology. Going back to antiquity, holism is 
based on the idea that the whole is more than the sum of its 
constituent parts. For example, the different parts of a 
living organism taken separately do not tell us about what 
that organism might be. The functions of organisms are 
based not only on its constituent parts but also on the 
relation between them. Because one of the objectives of 
systems biology is the modeling of biological processes via 
mathematical models and computer simulation, it can 

therefore be a good candidate for the basis of the proposed 
framework and can represent, in its turn, a field of 
predilection of intelligent control application [6]. For many 
years, system biology has been part of the interests of 
control systems community [9].  

4.2 Computational Issues Biology vs. Biology  

4.2.1 Computational Biology vs. Biology  

An area called computational biology preceded what is 
now called bioinformatics. Computational biologists also 
gathered their inspiration from biology and developed 
some very important algorithms that are now used by 
biologists. Computational biologists take justified pride in 
the formal aspects of their work which often involves 
proofs of algorithmic correctness, complexity estimates, 
and other themes that are central to theoretical computer 
science. Nevertheless, the biologists’ needs are so pressing 
and broad that many other aspects related to computer 
science have to be explored. For example, biologists need 
software that is reliable enough that can deal with huge 
amounts of data, as well as interfaces that facilitate the 
human-computer interactions (HCI) with high-resolution 
graphics systems and intelligent search and retrieval 
processes [1].  

4.2.2 Gene Regulation 

The genome of a given organism contains thousands of 
genes, but not all these genes need to be active at any given 
moment. A gene is expressed when it is being transcribed 
into mRNA (and translated into protein), and there exist 
many cellular methods of controlling the expression of 
genes such that proteins are produced only when needed by 
the cell. Gene regulation gives the cell control over 
structure and function, and is the basis for cellular 
differentiation and morphogenesis. It is also responsible for 
the versatility and adaptability of any organism. Gene 
regulation may also serve as a substrate for change, since 
control of the timing, location, and amount of gene 
expression can have a profound effect on the functions 
(actions) of the gene in a cell or in a multicellular organism.  

4.2.3 Biological Modeling and Control  

Beside in vivo experimentation that characterizes biology, 
and as far as bioinformatics is concerned we have to 
inevitably use computational models for the understanding 
of the relevant biological phenomena [2]. Modeling is 
usually unavoidable because the production of data from 
techniques of genomic analysis is not always amenable to 
interpretation mainly due to the complexity of the data and 
to the large amount of data points. Modeling can handle the 
data and allow testing a given hypothesis; for instance, 
whether gene A is regulated by protein B that can be 
verified experimentally. Hence, modeling and simulation of 
genetic regulatory systems [10].  
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4.3 Human Metabolism as a Control System 

4.3.1 Metabolic Chemical Reactions 

Most of the structures that make up animals, plants and 
microbes are made from three basic classes of molecule: 
amino acids, carbohydrates and lipids (often called fats). 
As these molecules are vital for life, metabolic reactions 
focus on making these molecules during the construction of 
cells and tissues, or breaking them down and using them as 
a source of energy, in the digestion and use of food. Many 
important biochemicals can be joined together to make 
polymers such as DNA and proteins. Many proteins are the 
enzymes that catalyze the chemical reactions in metabolism 
i.e. the set of chemical reactions that happen in living 
organisms to maintain life. Other proteins have structural or 
mechanical functions, such as the proteins that form the 
cytoskeleton, a system of scaffolding that maintains the cell 
shape. Proteins are also important in cell signaling, immune 
responses, cell adhesion, active transport across membranes, 
and the cell cycle [11].  

4.3.2 Metabolic Control Analysis 

Metabolic control analysis (MCA) is a useful 
mathematical framework for describing metabolic, 
signaling and genetic pathways [3].  MCA quantifies how 
variables, such as fluxes and species concentrations, 
depend on network parameters. In particular it is able to 
describe how network dependent properties, called control 
coefficients, depend on local properties called elasticities. 
MCA was originally developed to describe the control in 
metabolic pathways but was subsequently extended to 
describe signaling and genetic networks. More recent 
work has shown that MCA can be mapped directly on to 
classical control theory and are as such equivalent 
[http://dbkgroup.org/mca_home.htm]. Concerning MCA 
useful set of FAQs is available at the site [http://bip.cnrs-
mrs.fr/bip10/mcafaq.htm]. Biochemical systems theory is 
a similar formalism, though with a rather different 
objectives. Both are natural off-shoots of an earlier 
theoretical analysis of sequential reactions dating back to 
the early sixties. 

5. Type-2 Fuzzy Control  

Type-2 fuzzy control is one aspect of intelligent control. 
Roughly speaking, intelligent control is at the intersection 
of artificial intelligence (AI) and control. It uses various AI 
computing approaches like neural networks, Bayesian 
probability, fuzzy logic, machine learning, evolutionary 
computation, genetic algorithms, expert systems and 
consciousness / cognition to control a given dynamic 
system [12]. Type-2 fuzzy systems are part of the soft 
computing family of tools.  

5.1 Soft computing  

Soft computing is not a closed and clear-cut discipline. It 
incorporates an emerging family of problem-stating and 
problem-solving methods that attempt to mimic natural 
intelligence; this latter reduced, in our discourse, to 
approximate reasoning, heuristics and the power of 
generalization. Basically, there are two important 
components, i.e., fuzzy logic-based models (FLMs) and 
experimental data learning methods such as neural 
networks (NNs) and support vector machines (SVMs). In 
addition, there are methods based on genetic algorithms 
(GAs), evolutionary algorithms (EAs), probabilistic 
reasoning, belief networks, rough sets, wavelets, fractal and 
chaos theories. Soft computing methods are used whenever 
it is not possible to devise a mathematical model from first 
principles. The aim of soft computing is to:  
- Learn from experimental data (examples, samples, 

measurements, records, patterns, observations…) by 
NNs or SVMs.  

- Embed existing structural human knowledge such as 
experience, expertise, and heuristics, rules of thumb into 
efficient mathematical framework such as IF-THEN 
rules.  

5.2 Fuzzy Logic Paradigm  

Classical or crisp logic is a mathematical system that 
operates on discrete values of either true or false, usually 
represented by 0 or 1. Fuzzy logic considers analog input 
values in terms of logical variables that take on continuous 
values between 0 and 1, called membership value or grade, 
in contrast to crisp logic.  

5.2.1 Advantages of Fuzzy Logic Models (FLMs)  

- Human knowledge embedding. Fuzzy logic models 
(FLMs) are efficient tools for embedding human 
knowledge into useful algorithms.  

- Approximators. FLMs are good approximators of any 
multivariate nonlinear function.  

- No need for explicit modeling. FLMs are useful when no 
mathematical model is available or when it is impossible 
to obtain it.  

- Robustness. FLMs operate successfully under a lack of 
precise sensor information.  

- Genericity. FLMs are appropriate tool in generic 
decision-making. 
 

5.2.2 Disadvantages of Fuzzy Logic Models (FLMs) 

- Structuring knowledge. Human experts may have 
problems in structuring their knowledge.  

- Inconsistencies and human subjectivity. Human expert 
mat sway between extreme decisions or tend to hide their 
knowledge.  

- Exponential explosion. The number of rules increases 
exponentially with increase in the number of fuzzy 
subsets per input variable.  
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- High constraints. Learning, i.e., changing membership 
functions shapes is highly constrained, typically more 
complex than Neural Networks. 

5.3 Type-2 Fuzzy Logic 

5.3.1 From Type-1 to Type-2 Fuzzy Membership 

As stressed above, in classical logic, the membership grade 
is either 0 or 1. In type-1 fuzzy logic, the membership 
grade is a number in the range [0,1]. Type-2 fuzzy logic is 
an answer to the question of what to do when there is 
uncertainty about the value of the membership function 
itself. In type-2 fuzzy logic, the membership grade is itself 
a fuzzy set in [0,1]. As a result, a type-2 fuzzy system is 
governed by fuzzy membership functions that are three 
dimensional and include a mark of uncertainty. It is the 
new third dimension of type-2 fuzzy sets and the mark of 
uncertainty that provide additional degrees of freedom that 
make it possible to directly model and handle uncertainties. 
A type-2 fuzzy set allows designers to incorporate 
uncertainty about the membership function into fuzzy set 
theory. It is a way to address the criticism of type-1 fuzzy 
sets that paradoxically relied on crisp membership 
functions. Obviously, type-2 systems reduce to type-1 
systems if there is no uncertainty; this being analogous to 
probability reducing to determinism when unpredictability 
disappears.  

The type-2 fuzzy sets are useful wherever it is difficult to 
determine the exact and precise membership functions. Not 
only have type-1 fuzzy systems been around since 1965, 
they have also been successfully used in many applications 
including systems control. However, such fuzzy systems 
have limited capabilities to directly model and minimize the 
effect of data uncertainties. Although type-2 fuzzy sets 
were introduced in 1975, very little was published about 
them until the mid-to late nineties. In the 1970’s, applied 
researches were undertaken using type-1 fuzzy sets, e.g., 
fuzzy control. Once it was clear what could be done with 
type-1 fuzzy sets, it was only natural for researchers to then 
undertake more challenging problems such as those tackled 
by type-2 fuzzy systems. Type-2 fuzzy logic systems have 
been used to date with great success [13].   

5.3.2 Type-2 FSs, Probability and Min Variance Design 

There are two important kinds of uncertainties, namely 
linguistic and random. Linguistic uncertainty is related to 
the fact that words can mean different things to different 
people. Random uncertainty is associated with 
unpredictability, tackled by probability theory. Fuzzy 
systems are used to handle linguistic uncertainty, and 
sometimes both kinds of uncertainty, because a fuzzy 
system may use noisy measurements or operate under 
random disturbances. Within probability theory, the 
designer begins with a probability density function (pdf) 
that embodies total information about random uncertainties 
characterized by the pdf’s moments. However, in most 

practical applications, it is impossible to know or determine 
the pdf. For most pdf’s, an infinite number of moments are 
required which represents an impossible task in practice.  
At the very least, two moments are used, namely the mean 
and variance. To just use first order moments would not be 
very useful because random uncertainty requires an 
understanding of dispersion about the mean. This 
information is provided by the variance. So, the accepted 
probabilistic modeling of random uncertainty focuses, to a 
large extent, on methods that use at least the first two 
moments of a pdf. This explains mean-squared errors 
designs. Just as variance provides a measure of dispersion 
about the mean, a fuzzy system also needs some measure of 
dispersion to capture more about linguistic uncertainties 
than just a single membership function, which is all that is 
obtained when a type-1 fuzzy system is used. A type-2 
fuzzy system provides the additional measure of dispersion 
[14].  

5.3.3 Fuzzy Control Systems (FCS) Design  

A fuzzy control system incorporates fuzzy logic an 
inference process. From a control theoretical point of view, 
fuzzy logic has been intermixed with all the important 
aspects of systems theory: modeling, identification, 
analysis, stability, synthesis, filtering, and estimation. A 
number of assumptions are implicit in a fuzzy control 
system (FCS) design. Six basic assumptions are commonly 
made whenever a fuzzy rule-based control policy is 
selected, namely: 

- A solution exists.  
- The plant is observable and controllable: state, input, and 

output variables are usually available for observation and 
measurement or computation.  

- There exists a body of knowledge comprised of a set of 
linguistic rules, engineering common sense, intuition, or a 
set of input–output measurements data from which rules 
can be extracted.  

- The control engineer is looking for a ‘‘good enough’’ 
solution, not necessarily the optimum one.  

- The controller is to be designed within an acceptable range 
of precision.  

The problems of stability and optimality are not addressed 
explicitly; such issues are, to a great extent, still open 
problems in fuzzy controller design. However, to account 
for this limitation, interest in stability criteria for fuzzy 
control systems has grown in recent years.  

5.3.4 General FCS Methodology 

The general fuzzy control system (FCS) methodology is 
based on the procedure for obtaining a control surface from 
approximations based on a collection of fuzzy IF–THEN 
rules that describe the dynamics of the controller. One of 
the most important difficulties with the creation of new 
stability criteria for any fuzzy control system has been the 
analytical interpretation of the linguistic part of fuzzy 
controller IF-THEN rules. Often fuzzy control systems are 
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designed with very modest or no prior knowledge of a solid 
mathematical model, which, in turn, makes it relatively 
difficult to tap into many tools for the stability of 
conventional control systems. With the help of Takagi-
Sugeno fuzzy IF-THEN rules in which the consequences 
are analytically derived, sufficient conditions to check the 
stability of fuzzy control systems are now available. These 
schemes are based on the stability theory of interval 
matrices and those of the Lyapunov approach. Frequency-
domain methods such as describing functions are also 
being employed for this purpose [15]. 

5.4 ANFIS Control  

5.4.1 Example of  ANFIS Application 

An adaptive neuro-fuzzy inference system (ANFIS) [15] is 
a method incorporating a neural network and a fuzzy 
inference system (FIS). An adaptive network is a multi-
layer feed-forward network in which each node (neuron) 
performs a particular function on incoming signals. The 
form of the node functions may vary from node to node. In 
an adaptive network, there are two types of nodes: adaptive 
and fixed. The function and the grouping of the neurons are 
dependent on the overall function of the network. Based on 
the ability of an ANFIS to learn from training data, it is 
possible to create an ANFIS structure from an extremely 
limited mathematical representation of the system. The 
ANFIS architecture can identify the near-optimal 
membership functions of fuzzy logic controller for 
achieving desired input-output mappings. The network 
applies a combination of the least squares method and the 
back propagation gradient descent method for training FIS 
membership function parameters to emulate a given 
training data set. The system converges when the training 
and checking errors are within an acceptable bound [16]. 
The ANFIS system generated by the fuzzy toolbox 
available in MATLAB™ allows for the generation of a 
standard Sugeno style fuzzy inference system or a fuzzy 
inference system based on sub-clustering of the data.  

5.4.2 Example: ANFIS Control Application to Cell Culture 

The development of a neuro-fuzzy control system for 
recombinant cell culture has been developed [17]. The 
introduced system has learnt the dynamics of the 
bioprocess in the form of a fuzzy inference system and also 
estimated major parameters of the controlled process. To 
produce a recombinant protein, it is critically important to 
optimize and control bioprocesses based on knowledge of a 
cell's genetic, metabolic, and kinetic behavior. It is, 
however, not straightforward due to the fact that the 
biosystem is highly nonlinear, time variant, and complex. 
Some intelligent control systems have been implemented 
for control of fed-batch cultivation of recombinant E. coli 
and yeast, namely, fuzzy pH-stat, fuzzy neural network, 

and fuzzy control coupled with a neural network estimator. 
In a fuzzy pH-stat control system, the relationship between 
pH change in the medium and glucose consumption rate is 
modeled by a fuzzy set and thereafter used to control the 
feed rate of glucose to obtain cell density as high as 72 g/L. 
In a fuzzy neural network (FNN) control system, an FNN 
was constructed to learn fuzzy control inference and then 
was applied to fed-batch cultivation of recombinant E. coli 
to attain a high expression of recombinant protein. In 
addition, a fuzzy control system was developed and 
coupled with neural network estimators that can on-line 
estimate residual glucose and galactose concentrations, 
which were utilized to control the feed rate of glucose 
(during the cell growth phase) and the feed rate of 
galactose (during the expression phase). Results of these 
control strategies are presented and their usefulness in the 
fed-batch cultivation of recombinant strains has been 
demonstrated. The idea behind these studies is to utilize 
predetermined experimental data to develop repetitive 
learning control using intelligent techniques.  

6. Conclusion  
We contributed to the study and integration of type-2 fuzzy 
control within bioinformatics. This framework constitutes  
a contribution to our understanding of biological processes 
based on the most powerful theoretical and technological 
tools available to computer and control scientists, entailing 
a better understanding of molecular biology. The impacts 
on many fields of research are expected to be important, 
not only on computer science and control theory as such 
but also on technology, medicine and pharmacy at large. 
Implementation of the present framework will represent an 
important asset for future bioinformatics platforms.   
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