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Summary 
In this paper, we present a general approach for gene selection of 
high dimensional DNA Microarray data. The proposed approach 
represents a powerful new tool in the analysis and exploration of 
complex data. Very few genes are assumed to anticipate the 
pathological behavior of cancers. To this end, we proposed a 
hybrid between genetic algorithms and artificial immune system 
method; it takes into account the main immune aspects: selection 
and cloning of the most stimulated cells, death of non-stimulated 
cells, affinity maturation and reselection of the clones with 
higher affinity, generation and maintenance of diversity, 
hypermutation proportional to the cell affinity. The proposed 
approach is experimentally evaluated on the widely studied 
Colon, Leukemia and Lymphoma data sets. The results show that 
our approach is able to obtain very high classification accuracy 
which emphasizes the effectiveness of the selected genes and its 
ability of filtering the data from irrelevant genes. Also the 
criterion of the number of genes was integrated into the fitness 
function. Obtaining multimodal solutions is a major strength 
point of our method, only biologists and medical scientists can 
say which one of these solutions (gene subsets) is more 
biologically relevant to cancer diagnosis. 
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1.  Introduction 

DNA microarray technology has greatly influenced the 
realms of biomedical research, with the hopes of 
significantly impacting the diagnosis and treatment of 
diseases. Microarray data has opened new possibilities and 
challenges in genetic studies. A basic assumption of the 
genetic studies is that the genome carries all the 
information about the characteristics and the development 
of an organism. Therefore an understanding of the genome 
would bring more objectivity in the problem under study. 
Gene expression microarrays allow measuring 
simultaneously the expression level of a great number of 
genes in tissue samples on a single microscope slide. Gene 

expression level indicates the amount of mRNA produced 
in a cell during protein synthesis and is thought to be 
correlated with the amount of corresponding protein. An 
important application of this technology is the prediction 
of disease state of a patient based on a signature of the 
gene expression levels. Such a diagnostic signature is 
typically derived from a dataset consisting of the gene 
expression measurements of a series of patients.  
The primary objective is to build a classifier which 
classifies a new sample as accurately as possible into one 
of the diagnostic categories, for example tumor/normal 
tissue, or benign/malignant. Another objective is to find a 
small number of genes, i.e. a signature, often referred to as 
‘biomarkers’ that  may be useful in segregating patients in 
diagnosis, prognosis and for appropriate therapeutic 
selection in clinical management This process of 
identifying the genes relevant to the classification task is 
known as feature selection. Gene feature selection also 
allows the discovery of the genetic network structure or of 
the genetic mechanisms which are responsible for the 
onset and progress of a disease. 
In general, since selected genetic markers contain the 
necessary “expression signatures” of important biological 
states (i.e., cancer, metastasis, etc.) they may provide 
guidance in experimental investigation of the pathogenesis 
of cancer. Researchers need to interpret results in the 
context of the inductive biases of each gene selection 
method before using these results to design expensive and 
labor-intensive experiments In effect, microarray studies 
provide geneticists with a short-list of genes worth 
investing hard-won funds into investigating. 
Feature selection identifies the subset of differentially-
expressed genes that are potentially relevant for 
distinguishing the classes of samples.  The selected gene 
set should be small enough to allow diagnosis even in 
regular clinical laboratories and ideally identify genes 
involved in cancer-specific regulatory pathways. 
Many selection techniques and methods, in particular 
Genetic Algorithms (GAs), have been developed to select 
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informative genes in microarray data [21,20,16,8,5]. 
Section 2 gives a review of some of the most popular 
methods. 

In this paper, gene selection and classification of 
DNA Microarray data is our major concern in order to 
distinguish tumor samples from normal ones. Therefore, 
we propose a novel approach for informative gene 
selection through adaptive search which is inspired from 
the artificial immune system and the genetic algorithms. 
The natural immune system uses a variety of evolutionary 
and adaptive mechanisms to protect organisms from 
foreign pathogens and misbehaving cells in the body. 
Artificial immune systems (AIS) seek to capture some 
aspects of the natural immune system in a computational 
framework, either for the purpose of modeling the natural 
immune system or for solving engineering problems [18]. 
The genetic algorithm is a probabilistic search algorithm 
that iteratively transforms a set of individuals (the 
population) into a new population of offspring individuals 
using the Darwinian principle of natural selection and 
using operations that are patterned after naturally 
occurring genetic operations, such as crossover and 
mutation. The proposed method is experimentally assessed 
on three well-known cancer datasets (Leukemia [12], 
Colon [2], and Lymphoma [1]). Comparisons with other 
selection methods show highly competitive results.  

2. Review of Feature Selection Methods 

In the literature there are three main approaches to solve 
this problem: the filter approach[9, 10, 12], the wrapper 
approach [16], and the embedded approach [13, 14 ]. In 
the filter approach, feature selection is performed without 
taking into account the classification algorithm that will be 
applied to the selected features. So a filter algorithm 
generally relies on a relevance measure that evaluates the 
importance of each feature for the classification task. A 
feasible approach to filter selection is to rank all the 
features according to their interestingness for the 
classification problem and to select the top ranked features. 
The drawback of such a method is to score each feature 
independently while ignoring the relations between the 
features. In contrast, wrapper approach, the gene subset 
selection algorithm conducts the search for a good subset 
by using the classifier itself as a part of evaluation 
function. The classification algorithm is used to evaluate 
each gene subset. Numerous search algorithms have been 
used to find an optimal gene subset. Evolutionary 
computation methods have been used to tackle this search 
problem which has advantage over ranking based gene 
selection method because different subsets of genes are 
evaluated in evolutionary computations through 
generation of different individuals of a population. In [17], 
a multi-objective evolutionary algorithm (MOEA) is used 

with the weighted voting classifier proposed by [12]. In 
[20], a probabilistic model building genetic algorithm 
(PMBGA) is presented as a gene selection algorithm. 
 
Finally, in embedded methods, feature selection is 
performed as a part of the training process. An example of 
this approach is the method that uses support vector 
machines with recursive feature elimination (SVM/RFE) 
[13]. Another example is given in [14] which composed of 
a pre-selection phase according to a filtering criterion and 
a genetic search phase to determine the best gene subset 
for classification. In this sense, embedded methods are an 
extension of the wrapper models. 
 
3. Proposed Gene Selection Method 
 
Gene expression data is represented in an M by N matrix, 
where element xij represents the expression level of gene i 

under sample j. Such a matrix
NMRX ×∈ , with M rows 

and N columns, is defined by its set of rows G = 
{ }Mgg ......,.........1 and its set of columns S = 
{ }Mss ......,.........1 .  
We will use the term individual to mean a gene subset 
which may be a possible solution of the problem at hand. 
Possible solutions (individuals) in GA will be called 
chromosomes which consist of binary string of 0’s and 1’s 
of length M. When a bit i have a value of 1 this means the 
corresponding gene i is selected. Antibodies will be used 
to refer to individuals in AIS. Binary Hamming shape-
space will be used, in which each antibody is represented 
by a bit string of length M. 
Randomly fixed-length binary strings for L individuals 
were first generated to build up the initial population. Each 
string represents a gene subset and the values at each 
position in the string are coded as either presence or 
absence of a particular gene. Then, we calculate the fitness 
(i.e., how well a gene subset survives over the specified 
evaluation criteria) for each gene subset. A one-point 
crossover was then applied to form the new population. 
One crossover point (locus) is selected randomly, binary 
string from beginning of chromosome to the crossover 
point is copied from one parent and the rest is copied from 
the second parent. Parents are selected to crossover 
according to their fitness. The better the chromosomes are, 
the more chances to be selected. Roulette Wheel selection 
method was used to select parents. Crossover greatly 
accelerate search early in evolution of the population 
toward promising regions of the search space, also leads to 
effective combination of schemata(sub-solutions on 
different chromosomes) results in the propagation of the 
characteristics of the fittest individuals by exchanging 
genetic material [3]. 
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Making the new population only by new offsprings can 
cause a loss of best chromosomes from the last population. 
Elitism was used to prevent losing best found solutions. 
Elitism first copies a few best chromosomes to the new 
population, the rest are replaced by the resulted offsprings 
form crossover process. 
The clonal selection principle inspired from natural 
Immune system is then applied on the new resultant 
population. The concentration of antibodies (individuals) 
with high affinity (fitness) is increased in a process known 
as Cloning. The n highest affinity antibodies from the 
available antibody repertoire (population) were selected to 
be cloned (reproduced) independently. Because there may 
be multiple gene subsets (optima) that give high accuracy, 
the number of clones generated for each of the n 
antibodies is assumed to be the same. So that the number 
of clones generated for all these n selected antibodies is 
given by: 

∑
=

=
n

i
LLc

1
α

     (1) 
Where LC is the total number of clones generated α is a 
multiplying factor, L is the total number of antibodies. 
The reproduced (cloned) antibodies are then mutated with 
a rate that is inversely proportional to the affinity: the 
higher the affinity, the smaller the mutation rate. This 
process called somatic hyper-mutation. Somatic hyper-
mutation allow the immune system to explore local areas 
around a specific antibody by making small steps towards 
an antibody with higher affinity. The affinity of the 
mutated clones is then calculated, and the n highest 
affinity mutated clones are selected and inserted in the 
new repertoire instead of the n lowest affinity antibodies. 
Hyper-mutation combined with clonal expansion is an 
adaptive process known as affinity maturation [4]. 
Maintaining multiple suitable solutions is desirable as 
multiple antibodies (gene subsets) can give us high 
accuracy. This can be accomplished by editing similar 
antibodies (self-reactive receptors) [11] [19]. 
The receptor editing process in our algorithm was 
accomplished by first creating a pool of distinct antibodies 
and then adding entirely newcomers to this pool in place 
of low affinity antibodies. The distinct antibodies in the 
pool are created such that the Hamming distance between 
any two antibodies is greater than a thresholdε . 
 
 The Hamming distance between any two antibodies is 
given by: 

∑
=

=
M

l
ji ababD

1
),( ω

                    (2) 

Where ω =1 when jlil abab ≠
 and ω =0 otherwise.  

Receptor editing offers the ability to escape from 
unsatisfactory local optima. Also adding a fraction of 
newcomer antibodies to the pool allows the diversity of 
the population and boarder search for the global optimum. 
Somatic hyper-mutation and receptor editing balance the 
exploitation of the best solutions with the exploration of 
the search space. 
We have performed experiments on different microarray 
data sets but in each run, it terminates with many genes 
selected. In the research on microarray data, it is assumed 
that only a few genes anticipate the pathological behavior 
of cancers. Obtaining small subsets of selected genes with 
a high clustering accuracy is desirable. With this goal in 
mind: 
 
1. We have designed our maturation mechanism in which 
the clones of n highest affinity antibodies will be muted 
with probability i.e., bits from the antibodies will be set to 
0 with probability inversely proportional to its affinity. 
 
2. In the final stage of the algorithm, we will add 
newcomers to the population with smaller subset of genes. 
The number of genes in these newcomer decrease from 
generation to the next one. 
 
The detailed computational procedures are given in Fig. 1 
as follows: 
(1) P ←  Generate L individuals (initial population) of 
different gene subsets. 
(2) F ←Evaluate initial population P. 
(3) Rm ←  Produce m new offsprings from m parents 
using one-point crossover. 
(4) Pd ← Retain d individuals from P with the highest 
evaluation (fitness),  
          where d =L-m. 
(5) P ←Combine Pd with Rm. 
(6) Pn←Select the n highest affinity (fitness) antibodies 
(individuals) such that the Hamming distance between any 

two antibodies is greater than 1ε . 
(7) CLc ← Reproduce (clone) individuals in Pn 
independently with the same clone number Lα . 

(8) 
*
LcC  ← Submit antibodies in CLc to affinity 

maturation process. 

(9) 
*

nP ← Re-select the n highest affinity antibodies 

from
*
LcC . 

(10) P* ←Replace the lowest n affinity antibodies in P 

by
*

nP  . 
(11) P ← Select antibodies from P* such that the 
Hamming distance between any two antibodies is greater 
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than 2ε  (Receptor editing). Then add newcomers 
(repertoire diversity) such that the total number of 
antibodies is L. 
 
Gene subset evaluation 
When we evaluate a gene subset (chromosome or 
antibody), we don’t take into consideration its accuracy on 
training data only but also the number of genes selected in 
it. In our method, the fitness (affinity) of an individual is 
given by: 
 
F(Y) = w * ACC(Y) + (1- w) * (1- g(Y)/M)                 (3) 
where ACC(Y ) is the accuracy on training data using only 
the expression levels of the selected genes in Y, g(Y ) is 
the number of selected genes in Y, w ∈  [0, 1] is the 
weight assigned to accuracy and M is the total number of 
genes. This type of weighted fitness was used in [17]. 

 

Fig. 1: Main steps in our hybrid GA-AIS algorithm 

4.  Accuracy Estimation  
Since number of samples in training data set is small, 
cross-validation technique is used. In k-fold cross-
validation, sometimes called rotation estimation, the data 
D is randomly partitioned into k mutually exclusive 
subsets, (D1, D2,…,Dk) of approximately equal size. The 
classifier is trained and tested k times; each time i (i = 1, 
2,…, k), it is trained with Di  excluded from D and tested 
on Di. When k is equal to the number of samples in the 
data set, it is called Leave-One-Out-Cross-validation 
(LOOCV) [15]. The cross-validation accuracy is the 
overall number of correctly classified samples, divided by 
the number of samples in the data. To avoid over-fitting, 
five-fold cross-validation is employed. 
 

For the classifier, we used the GS method (sometimes 
called weighted voting classifier) proposed by Golub et al. 
[12], [23]: 
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Where 
g

1μ ,  
g

1σ  and 
g
2μ , 

g
2σ  are the mean and standard 

deviation for values of gene g in the classifier of class 1 

and 2, respectively, and  gx
 is the expression values of 

gene g in sample x. If the computed value is positive, 
sample x belongs to class 1, negative value means x 
belongs to class 2. This classifier is only applicable to data 
sets with two classes. For multiclass problem, other 
sophisticated classifiers should be used, e.g. a SVM 
classifier [6]. 
 
5.  Experimental Results  
5.1 Data Sets 
To evaluate the performance of our method, we applied it 
to three well-known gene expression data sets: the Colon 
[2], Leukemia [12], and Lymphoma [1]. The details of 
these data sets are summarized in table 1 after 
preprocessing. 
 

Table 1: Summary of microarray data sets. 
Title # Genes # Samples Classes 

Colon  2000 62 2 
Leukemia 7129 72 2 

Lymphoma  4026 96 2 

 
Colon Data Set: The colon cancer data set contains 62 
tissue samples, each with 2000 gene expression values. 
The tissue samples include 22 normal and 40 colon cancer 
cases. The data set is available at 
http://www.molbio.princeton.edu/colondata and was first 
studied in [2]. These gene expression values have been log 
transformed, and then normalized. The data is divided into 
training set and test set. The training set consists of 30 
normal and 15 colon cancer cases, the test set consists of 
10 normal and 7 cancer cases. 
Leukemia Data Set: Leukemia Data Set is a collection of 
gene expressions of 7129 genes of 72 leukemia samples 
reported by Golub et al. [12]. The data set consists of 47 
samples of Acute Lymphoblastic Leukemia (ALL) and 25 
samples of Acute Myeloblastic Leukemia (AML). The 
data sets can be downloaded from 
http://www.genome.wi.mit.edu/ MPR .The affymetrix control-
genes are first removed. Since many expression levels are 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 
 

 

80

too low to be interpreted with confidence we further 
removed all genes where any of the gene expressions are 
below 20. Finally, we obtained 1762 genes. The logarithm 
of each value to the basis 2 is performed. This type of 
preprocessing has been used in [7]. The training set 
consists of 30 ALL and 15 AML, the test set consists of 17 
ALL and 10 AML. 
 Lymphoma Data Set: The Diffused Large B-Cell 
Lymphoma (DLBCL) data set [1] contains gene 
expression levels of 96 normal and malignant lymphocyte 
samples, each measured using a specialized cDNA 
microarray, containing 4026 genes. The expression data in 
raw format are available at 
http://llmpp.nih.gov/lymphoma/data/ figure1/figure1.cdt. It 
contains 42 samples of DLBCL and 54 samples of other 
types. The training set consists of 30 DLBCLl and 36 
other types, the test set consists of 12 DLBCL and 18 
other types. 
 
5.2 Experimental Setup 
The parameters of gene selection algorithm are: 
Population size L = 100, number of parents selected for 
crossover m = γL, γ= 0.9, number of individuals chosen 
for reproducing (cloning) n = 10, number of clones for 
each antibody is αL, α was chosen to be 0.2, total run = 
20, w = 0.9, w was chosen to give more emphasize on 
accuracy rather than on number of selected genes. n is 
crucial to the algorithms’ capability of locating a large 
number of local optima, α is strongly related to the 
convergence speed and computational time required to run 
the algorithm. The number of generations is set to 50. At 
each run, the data set is split randomly into two subsets, a 
training set and a test set. The training set contains 2/3 of 
the samples and the test set contains 1/3 of the samples. 
After each run, instead of taking the best individual that 
has the highest fitness, we take all the gene subsets from 
the population that have the highest training accuracy and 
calculate test accuracy of each gene subset by the classifier.  
 
5.3 Experimental Results and Comparisons 
Here we present the experimental results of our GA/AIS 
method on the three datasets. In table 2, the best 
classification accuracy on training and test data and the 
number of genes selected are shown. 
 
As shown, the highest training accuracy on Colon data is 
97.78 % which is obtained with a gene subset having 8 
genes, and the corresponding test accuracy is 97.78 %. 
Only 4 gene subsets get this high accuracy on training data 
as shown in table 3. 
 
 
 
 
 

Table 2: Best results obtained by our hybrid GA/AIS method 

Data set Best training 
accuracy Best test accuracy Minimum number 

of selected genes 

Colon 

97.78 % 
(Test acc. 
=88.24%) 

(#Genes=8) 

100 % 
(Train acc. 
=93.33%) 

(#Genes=12) 

              2  
(Train acc. 
=95.56%) 
(Test acc. =64.70%) 

Leukemia 
 

100 % 
(Test acc. 
=100%) 

(#Genes=2) 

100 % 
(Train acc. =100%) 

(#Genes=2) 
              2 
(Train acc. =100%) 
(Test acc. = 100%) 

Lymphoma 

100 % 
(Test acc. 
=96.67%) 

(#Genes=10)

100% 
(Train acc. 
=98.48%) 

(#Genes=5) 

               3 
(Train acc. =100%) 
(Test acc. =86.67%) 

 
The maximum test accuracy on this data is 100%, the 
corresponding training accuracy is 93.33% and the 
number of selected genes is 12. The lowest number of 
genes in a subset is 2 which produce 95.56% and 64.70% 
training and test accuracy, respectively.  
On Leukemia data set, the highest accuracy on both 
training and test (100%) is obtained by only two genes 
"M23197_at" and "M31523_at". Figure 2 shows that these 
two genes make the two classes of Leukemia data (ALL, 
AML) linearly separable. 
 
On Lymphoma data set, the highest training accuracy 
obtained is 100 % with a gene subset having 10 genes, and 
the corresponding test accuracy is 96.67 %. The highest 
test accuracy on this data is 100%, the corresponding 
training accuracy is 98.84% and the number of selected 
genes is 5. These genes are "13978", "19292", "13071", 
"17791" and "16895". The minimum number of genes in a 
subset is 3 which produce 100% and 86.67% training and 
test accuracy, respectively.  

 

Figure 2: The two classes of Leukemia are linearly separable using the 
two genes selected by our method 
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Table 3: The four gene subsets that produce the highest training accuracy 
on Colon Data 

Name 
Gene 
subset 

1 

Gene 
subset 

2 

Gene 
subset 

3 

Gene 
subset 

4 
Hsa.2699     
Hsa.27685     
Hsa.19  D12765     
Hsa.692 M76378     
Hsa.2448     
Hsa.9102     
Hsa.421 D16294     
Hsa.2291     
Hsa.865 M84490     
Hsa.43331     
Hsa.3952     
 
 
Table 4: Comparison of three ranking-based methods with our method. 

 
Table 5: Comparison of other genetic approaches and our method. 

 
 
Comparison with ranking-based Selection Methods 
 
Table 4 shows results of three ranking based method 
which are compared with results obtained  by our  method . 
these methods are The BW ratio introduced by Dudoit et 
al.[10] , the Correlation between a gene and a class 
distinction, proposed  by Golub et al. [12] and The 
Fisher’s discriminant criterion [9].  These methods were 
used in [14] on the same data sets . In each case, our 
method gets better accuracy than ranking- based methods.  
As shown in table 4, our method has a high accuracy on 
unseen data (test data). 
 
In Table 4: Comparison of three ranking-based methods 
with our method.. Acc is the average classification rate 

(%) on test set. A value of the form σμ ±  indicates 
mean valueμ  with standard deviationσ . 
 
Comparison with Other Genetic Approaches 
 
In [17], a multi-objective evolutionary algorithm (MOEA) 
is proposed, where the fitness function evaluates 
simultaneously the misclassification rate of the classifier, 

the difference in error rate among classes and the number 
of selected genes.  In [20], the authors present a 
probabilistic model building genetic algorithm (PMBGA) 
as a gene selection algorithm. In [14], a genetic embedded 
method for gene selection and classification of Microarray 
data is proposed. The proposed method is composed of a 
pre-selection phase according to a filtering criterion and a 
genetic search phase to determine the best gene subset for 
classification. Table 5 shows the average of our results on 
the three data sets together with those reported in [17], 
[20] and [14]. 
 
 
 
 
 

 

 
 
Table 6 summarizes the best results obtained by our 
method for the Leukemia and Colon datasets together with 
the best results of five state-of-the-art methods from the 
literature. The conventional criteria are used to compare 
the results: the classification accuracy in terms of the rate 
of correct classification (first number) and the number of 
used genes (the number in parenthesis). 
 

Table 6: Comparison of our GA/AIS method with five state of the art 
methods 

Data set 
 

Methods 

[5] [24] [21] [13] [22] Our 
method 

Colon 99.83 
(15) 

91.9 
(3) 

93.55
(12) 

97.0 
(7) 

98.0 
(4) 

100 
(12) 

Leukemia 100 
(25) 

100 
(8) 

100 
(6) 

100 
(4) 

100 
(2) 

100 
(2) 

 
 
For the Leukemia dataset, we obtain a classification rate of 
100% using only 2 genes, which is much better than that 
reported in [5, 24, 21, 13].  However, [22] obtained the 
same result as our method. The most interesting results 
that we obtained with our model concern the Colon dataset 
since our approach offers the highest correct classification 

Data set 
 

BW ratio criteria Correlation criteria Fisher’s Criterion Our method ( GA/AIS) 

#genes Acc. #genes Acc #genes Acc. #genes Acc 

Colon 8.05±1.57 78.81 10.43±2.77 76.32 9.17±2.03 76.59 7.125±2.07 87.7 

Leukemia 3.93±1.16 89.05 5.07±1.98 85.59 4.71±1.44 86.95 4.327±1.6 98.33 

Lymphoma 5.96±1.31 88.27 8.01±1.94 84.47 7.13±1.86 86.02 5.829±1.464 96.6 

Data set 
 

[17] [20] [14] Our method ( GA/AIS) 
#genes Acc. #genes Acc. #genes Acc. #genes Acc. 

Colon 11.4±4.27 80 ±8.3 4.44±1.74 81 ±8 7.05±1.07 84.6 ±6.6 7.125±2.07 87.7±5.06 
Leukemia 15.2±4.54 90 ±7.0 3.16±1.00 90 ±6 3.17±1.16 91.5 ±5.9 4.327±1.6 98.33±1.87 
Lymphoma 12.9±4.40 90 ±3.4 4.42±2.46 93 ±4 5.29±1.31 93.3 ±3.1 5.829±1.46 96.6±2.25 
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rate (100%); the number of selected genes is greater than 
the one obtained by [24,13,22], but it is smaller than the 
one reported in [5] and same number of genes as in [21]. 
 

6 Conclusion 
In this paper, we presented a general approach for gene 
selection of high dimensional DNA Microarray data. The 
proposed approach represents a powerful new tool in the 
analysis and exploration of complex data. Very few genes 
are assumed to anticipate the pathological behavior of 
cancers. To this end, we proposed a hybrid between 
genetic algorithms and artificial immune system method; it 
takes into account the main immune aspects: selection and 
cloning of the most stimulated cells, death of non-
stimulated cells, affinity maturation and reselection of the 
clones with higher affinity, generation and maintenance of 
diversity, hypermutation proportional to the cell affinity. 
The proposed approach was experimentally evaluated on 
the widely studied Colon, Leukemia and Lymphoma data 
sets. The results show that our approach is able to obtain 
very high classification 
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