
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

91

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

Enriching DataEnriching DataEnriching DataEnriching Data----Intensive DomainIntensive DomainIntensive DomainIntensive Domain----Ontologies for Useful Ontologies for Useful Ontologies for Useful Ontologies for Useful

Transformation of Natural Language QueriesTransformation of Natural Language QueriesTransformation of Natural Language QueriesTransformation of Natural Language Queries

S. M. Abdullah Al-Mamun
 †
 and Mohammad Moinul Hoque

 ††

Department of Computer Science and Engineering
Ahsanullah University of Science and Technology, Dhaka, Bangladesh

Abstract
This paper presents a scheme for purposeful enhancement of
domain knowledgebases which are supposed to be repositories of
public information and also to be subject to frequent interaction
by non-technical people through natural languages. In place of
rigorous syntactic study of natural language queries, an
acceptable alternative in the form of gradual simplification and
recognition of useful semantic structures is proposed.
Localization of matching procedures by isolating significant
phrases and disambiguation of complicatedly ordered phrase
components by heuristic rules are emphasized. Use of finite state
machines for recognition and generation of data structures is
fruitfully accommodated. Besides, techniques of inexact string
matching for mapping query elements to database details have
been incorporated to justify the usability of the enhancements.
Index Terms:

Domain Ontology, Natural Language Query, Semantic Structure

Recognition, Approximate String Matching.

1. Introduction

Making information easily accessible to wide mass in our
era of internet is very much obvious. Achievements of
human endevour in varieties of domains and in various
corners of the Glob are being published every now and
then. It is within the virtual vicinity of many, but not within
the reach of all of them. Representational differences with
respect to conceptualization and languages play a vital role
here, in our consideration. Enumerable useful information
repositories of scientific and business interest stay out of
reach of or seem very complicated to a lot of people. In
this context age old efforts to share information and
knowledge through automated natural language interfaces
appear to remain in the fore front and open ended. Our
basic assumptions regarding these issues are as follows:

a. A database system or a domain knowledgebase is
better to be treated as a domain ontology with
most of the characteristics and consequences.

b. General tools for enriching domain ontologies are
to be sought after to provide easier
implementation and access.

c. Adoption of the natural language basis in development
and querying common purpose information
repositories has a proven record of success.

d. Search for effective and efficient techniques for
interpreting natural language queries is a real example
of quest for accuracy, generality and simplicity.

A domain ontology, at least in its content, resembles a
database system. Their resemblance is very much apparent
with various components they include: individuals, classes,
attributes, relations, function terms, events, restrictions,
etc., [11, 19, 20]. As far as the ultimate goal to develop
those is concerned, we believe that it is the useful
information people are always after. Moreover, ‘ontology’
in principle better suits the purpose in terms of sharing.
On the other hand, general tools are essential to resolve
linguistic and conceptual incompatibilities which
inevitably arise as diverse groups are involved in sharing
and translating varieties of information, [9, 11].
Accommodating advancements in formal languages,
automata and text search seems very much in line with the
need, [7, 22]. Research results in artificial intelligence and
intelligent user interface, we think, also provide a good
promise in this regard, [12, 21].
Further, developing natural language based shared
terminology for effective interaction with information
repositories is a quite old research trend, [29], that survives
vigorously till our days, [3, 4]. Discovering and
popularizing resources for overcoming language barriers
can also be cited as great efforts here, [8]. Many works are
just dedicated to make information more useful, [5, 14, 15].
Our last assumption is regarding efforts for appropriate
ways of processing natural language queries to information
repositories. Methodologies based on exhaustive
tokenization and rigorous syntactic analysis have a deep
root in the field, [13]. Systems assuming customization of
grammatical parsers, like Microsoft English Query, are
also available. Alternatively, systems emphasizing
semantic analysis enjoy not less a popularity in the
community, [24, 27].
We decided to stick more to pragmatic note of the problem
exploring novel ways. Practically, it went down to
applying useful semantic structures avoiding extreme

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

92

syntactic analysis. We were inspired by a number of works
in this respect, [10, 16, 23]. Some general references to
relevant problems did also help us build up necessary
confidence, [26, 28]. We also note that avoiding the
potentially intractable problem of exhaustive string
matching was very much in our mind. And we consulted
general approaches, [18], as well as more specific ones,
[17, 25], to be pragmatic through approximation.
Moreover, we went for heuristics to help us. Some of the
intermediate results of our efforts have been presented in
international conferences recently, [1, 2].
Rest of this paper is organized in 8 sections followed by a
list of references. Section 2 characterizes domain
knowledgebases putting them before users interacting in
natural languages. Section 3 has a detailed description of
the significant phrases that we distinguish in a natural
language query (NLQ), while section 4 illustrates how
those phrases can be isolated in case of English queries.
Section 5 is dedicated to the proposed enhancements of a
database which are supposed to enable it to interpret NLQs.
Section 6 sketches possible ways of mapping phrases
isolated in NLQs to database details, and section 7
describes the fundamental components of the required
inference engine. Experimental verification of our
propositions is presented in section 8. Section 9 is a
discussion that elaborates our concluding remarks and
possible future study in the field.

2. Peculiarities of a Domain Knowledgebase

and Natural Language Queries to it

Common components of a domain knowledgebase are the
database and the inference engine. Usually, the database is
that part of the domain knowledgebase which contains
descriptions of numerous similar entities of the domain and
also the descriptions of the specified relationships among
various entities. So, essentially, an NLQ to a database must
contain explicit or implicit narratives of some entities
and/or entity relationships. The inference engine, on the
other hand, usually contains predefined procedures for
delivering decisions or hypothesizing over the existing
database. Those predefined procedures may be enlisted
and made available to the users in a manageable fashion
for the users. We here are interested in some additional
generic procedures that may be incorporated to the
inference engine for effective recognition of general
purpose NLQs addressing mainly the database content. In
case an NLQ maps onto the functionality addressed to by
an existing procedure, it may also be recognized so that the
procedure can just be invoked in time. We will restrict the
predefined procedures to those that correspond to most
common and general types, like ‘Show the total number of
students.’ Or ‘How many courses are available?’, and thus

avoid considering those types of NLQs. Here and hereafter
we will use query examples from a simple database domain,
‘Result Processing System’ (RPS), that assumes very
common scenarios of course evaluation of undergrads.
For simplicity, we bind our presentation with the
terminology of relational databases. NLQs, to which we
direct our investigation, are just restricted types of English
Interrogative and Imperative sentences. Such a sentence
thus necessarily has to be rich with phrases, identifying
objects of the domain, their attributes and attribute values.
And those are the significant phrases which can be isolated
indeed, [2]. If we consider the queries, ‘What is the
address of the student with id 050104019?’ or ‘Display the
address of the student with id 050104019.’, we find that
important are the phrases [address], [student] and [id
050104019] only. And the order of the phrases found is
also important. The header phrases here just fall short of
having any importance in forming the answer expected by
the user. The same fate awaits the punctuation marks at the
end or the determiners used here and there. Potential
delimiters and contents of some ‘significant phrases’ only
remain for paying attention to.

3. Significant Phrases in Natural Language

Queries

Discussion in the preceding section reveals that unlike
common sentences, NLQs to databases are supposed to
contain some phrases that are and only that are important
for retrieval of information. We further postulate that
instead of analyzing them, from the very beginning, in
terms of grammatical phrases like noun phrases, verb
phrases, adjective phrases, etc., it is more effective to
analyze them in terms of phrases describing various
aspects of objects, in database or ontological sense of the
term. Our assumptions, in line with the ideas underlying
formal query languages, also include the fact that there are
a very few types of such phrases. We take it as a clear
indication of an advantage over the methodologies taking
into consideration the numerous grammatical phrases.

3.1. Attribute Phrase (AP)

The first and foremost of the phrases that are to be taken
into account are the Attribute Phrases. An Attribute Phrase
denotes an ‘attribute’ in a ‘relation’ or ‘table’. This type is
most common, but obvious of the parameters used in a
formal query language for information retrieval. ‘student
ID number’ or ‘roll’ may simply denote the attribute ‘id’ in
a possible ‘student’ relation. Attribute Phrases here
represent those object attributes, values of which the user
of the Natural Language Interface wants to see as the
output of his or her query.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, November 2008

93

3.2. Attribute Value Phrase (AVP)

Next come Attribute Value Phrases, which specify the
values associated to some attributes for addressing specific
objects. The attributes are very much likely to be provided
within the query, although they may remain implicit in
some cases. Natural language flexibility may also allow
those values and the corresponding attributes to be in a
heavily messed up form. This leads to the need for
identification of phrases that denote objects through values
of the attributes. We eventually come to the concept of
Attribute Value Phrases. Let us take the query, ‘What is
the CGPA of the student bearing identification number
050204003?’. The phrase ‘identification number
050204003’ is a simple AVP, which contains both an
attribute portion and its value. While ‘newly enrolled
female’ in ‘Display the rolls and names of newly enrolled
female students in the department of CSE.’ is an example
of a compound and complicated AVP. Moreover, negation
descriptors are also usually placed in the AVP portion. So,
the system needs to isolate the AVP portion including the
negation descriptors which may have any of the forms like
‘not’, ‘do not’, ‘have not’, ‘not in’, ‘was not’ etc. The
process of isolating AVPs thus requires special attention.

3.3. Object Identifying Phrase (OIP)

The concept of Object Identifying Phrases is to be
introduced for coping up with those nuances of NLQs that
essentially include pointers to specific relations of the
database in terms of typical descriptors, which are common
to multiple relations. Distinguishing ‘male patient’ and
male doctor’ in a Hospital Information System is a must. If
an OIP is explicitly mentioned in the NLQ, it helps us to
identify easily possible relations from where the data must
be fetched. For example, in the NLQ, 'List the names of
those students who are from CSE department', we see that
'those students' is a simple OIP which seems to have no big
effect. But, during analysis of the NLQ for generating a
response, this can provide enough hints in favor of the fact
that information be fetched from the 'student relation'.
More simple use of OIPs can be demonstrated in the query
‘List the students of third year 1st semester’. Here no AP is
specified, but records of students are to be fetched,
although it is unlikely that an ordinary Data Dictionary has
an option for that.

3.4. Aggregate Function Phrase (AFP)

Aggregate Function Phrases are common in queries as well.
There is no doubt that we are going to have phrases
containing words like average, total, sum, highest, lowest,
best, first, last, etc., and we refer to them as AFPs. It also
comes out very interesting to isolate AFPs and recognize

them in combination with APs, AVPs and OIPs present in
a query. For example, in the NLQ ‘What is the average
CGPA of the students of 3rd year 1st semester?’ the AFP
marking word ‘average’ needs to be taken care of in
association with the AP ‘CGPA’. But in the NLQ 'List the
students who scored highest grade in CSE101.' we see that
in ‘scored highest grade’ the AFP is mixed up with an
AVP and it refers to the OIP ‘students’. So, we have all the
reasons to consider seriously these phrases mentioned in
various places of NLQs.
For illustration of the various significant phrases described
above let’s consider the query, ‘What are the names,
resident addresses and CGPAs of the students bearing id
numbers 050204001 and 050204009?’. The structure of
this query can be presented as a syntactic rule like the one
below.

 Query → HW1 AP1 , AP2 and AP3 of OIP1
oip_del1 AVP1 and AVP2

HW1 (Head Word 1) here stands for ‘What’, AP1 for
‘names’, AP2 for ‘resident addresses’, AP3 for ‘CGPAs’
OIP1 for ‘students’, oip_del1 (OIP delimiter 1) for
‘bearing’ (a delimiter from a set of delimiters that may
possibly appear after an OIP), AVP1 for ‘id numbers
050204001’ and AVP2 for ‘050204009’. We further add
that HW1 (Head Word 1) could take the value ‘List’,
‘Display’, ‘Show’, etc. with no noteworthy change in
semantics.
Let’s have another illustrative example that contains an
aggregate function phrase, ‘Show the average grade points
of 1st year 1st semester CSE students in CSE103’. The
corresponding rule will have the following form.

 Query → HW2 AFP1 of AVP1 in AVP2

AFP1 here stands for ‘average grade points’, and AVP1 for
‘1st year 1st semester CSE students’, which is a compound
and quite complicated attribute value phrase.

4. Isolating Significant Phrases in NLQs

The boundaries of useful phrases in NLQs that we are set
to isolate need to be marked first. It means that we have to
localize possible APs, AVPs, OIPs, etc. From our
discussion above we reach to the point that there are some
words or phrases in an NLQ that do not play an important
role in interpreting it and responding to it. Thus we come
to the idea of preprocessing or normalizing an NLQ first,
which enable us to have only a headword in a more general
form, some words as delimiters of potential significant
phrases that we refer to as ‘Non-Delimiter Phrases’
(NDPs) and the NDPs, of course. The normalized NLQ is
then passed to an algorithm, [2], the output of which is a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

94

phrase structure (PS). A PS is a sequence of pairs
containing NDPs and NDP classes. An important feature
of the algorithm is that it uses a set of Finite Automata,
referred to as DFAs, to recognize the delimiter sequence in
the normalized NLQ. Another important feature is that a
set of Moore Machines (MMs) is used to generate the PS
consisting of the NDP-NDP class pairs.
It happens that normalizing an NLQ for filtering out words
that do not play any role in formation of an executable
query simplifies the overall process to a great extent. It is
in line with the idea of disregarding ‘words not
semantically important’, [13]. We have marked them as
‘insignificant’. The words ‘is’ and ‘the’ may be marked
insignificant in the NLQ ‘What is the CGPA of the 3rd year
student Abdul Karim?’. The sequence is supposed to
undergo further refinement that frees it from words that
may come into conflict with predefined phrase delimiters.
While ‘of’ is a very important phrase delimiter in our
objects of investigation, this very ‘of’ in the phrase
‘department of CSE’ will be a misleading delimiter.
The normalization process includes a number of steps,
most important of which are head word modification,
removal of semantically not important words,
distinguishing and generalizing delimiters and
standardization of mathematical and temporal expressions.
A simple head word ‘display’ can replace ‘What’, ‘I would
like to see’ or ‘Please tell me’, while expression ‘<=’ may
replace any of ‘not over’, ‘not greater than’, ‘did not get
over’, etc. Similarly, changing ‘current semester’ with
‘semester spring 2010’ may help a lot.
After the normalization process the query is ready for
probation of its delimiter sequence using a DFA from the
predefined DFA set. The query, ‘What are the names,
resident addresses and CGPAs of the students bearing id
numbers 050204001 and 050204009?’ is normalized to
‘display names and resident addresses and cgpas of
students with id numbers 050204001 and 050204009’. The
delimiter sequence, ‘display and and of bearing and’ is
accepted by the following DFA (Fig. 4.1).

Fig. 4.1. DFA that recognizes delimiter sequence DS1

We note here that the DFA shown in Fig. 4.1 can equally
successfully recognize numerous instances of delimiter
sequences of queries of different size and content. Once
the delimiter sequence is accepted, a rule is generated to
narrate the content of the given query highlighting the
isolated significant phrases. Here it takes the following
form:

 Query → HW1 AP1 and AP2 and AP3 of OIP1
oip_del1 AVP1 and AVP2

The rule in its turn invokes an MM (Moore Machine) from
the predefined set of MMs, and the MM has the transition
diagram like the one in the following figure (Fig. 4.2).

Fig. 4.2: Moore Machine that returns Phrase Structure PS1

Some typical queries, including the one analyzed above,
and their Phrase Structure Output (PSO) generated by
MMs are shown in the Table 4.1.

5. Database Enhancement for Recognition of

Significant Phrases

Capability of a domain ontology to respond properly to
NLQs essentially requires additional information about the
domain. This additional information is to encounter
ambiguity & multiplicity of natural language elements. Our
efforts here are directed to finding general forms of
enhancement of the database embedded in the ontology. As
we are supposed to have isolated phrases in the NLQs that
are to be mapped to database contents, we concentrate on
possible forms of a number of tables that have the potential
to capture the representational diversity of those phrases.
First of all, for every specific database domain, we need an
AP Table that contains the attribute phrases in the
justifiable spectrum of their possible synonyms associated
to the attributes from different relations. The synonyms
may appear interchangeably in the NLQs for the
corresponding attributes under that domain. Values in the
AP Table are domain specific. For example, the synonym
‘id number’ referring to the attribute ‘StudentId’ in RPS
may be related to a different attribute named ‘EmployeeId’
in a different database domain. Some entries of a possible
AP Table for the RPS are shown in Table 5.1.
In our Enhanced data dictionary we also need a Typical
Value Table (TVT) as shown in Table 5.2. It contains
typical values and their synonyms in association with the
attributes and relations they refer to. This table is essential
for that, some NLQ are very much likely to have sketched
an AVP using only a commonly understood value of the
relevant attribute, and not mentioning the attribute itself.
The typical value ‘male’ always refers to the attribute that
represents ‘Gender’ and the typical value ‘CSE’ or ‘EEE’
refers to an attribute that may be named as ‘DeptName’.
When the system needs to recognize an AVP, the TVT is

 S0 S3
display of with

 S2 S1

and

and and

of with
 APi, AP OIPi, OIP AVPi, AVP

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, November 2008

95

consulted first. If a match is found in the TVT, partial
matching of the possible AP portion of the AVP becomes

redundant.

Table 4.1 Examples of isolated significant phrases

NLQ PSO

What are the names, resident addresses and CGPAs of the
students bearing id numbers 050204001 and 050204009?

((names, AP), (resident addresses, AP), (cgpas, AP), (students,
OIP), (id numbers 050204001, AVP), (050204009, AVP))

List the female students of CSE department who got A+ in
CSE101.

((students, OIP), (female, AVP), (cse department, AVP), (a+,
AVP), (cse101, AVP))

Find the average marks of the 2nd year 1st semester students
of the department. of EEE.

((average marks, AFP), (students, OIP), (2nd year, AVP), (1st
semester, AVP), (department eee , AVP))

Please show the names and ids of students whose names
has ‘Hasan’ as a part.

((names, AP), (ids, AP), (students, OIP), (names hasan, AVP))

Can you please display the total number of courses offered
by the CSE department?

((total number courses offered, AFP), (cse department, AVP))

TABLE 5.1. Sample entries to an AP table for RPS

Attribute Phrase Attribute Relation

id number StudentId Student

roll number StudentId Student

course id CourseNo Course

credit hour Credit Course

course number CourseNo Course

student number StudentId Student

TABLE 5.2. Sample entries to the Typical Value Table
(TVT) for RPS

Typical Value Attribute Relation

Male Gender Student

female Gender Student

cse DeptName Department

eee DeptName Department

computer DeptName Department

To be sensible, we only consider those attributes for the
TVT whose sets of possible values are of a very limited
cardinality. There might be some other attributes of
relations on which a user of the database system places
queries containing AVPs without AP portion. For example,
in the query, ‘What is the address of the student Abdul
Karim?’, the AVP ‘Abdul Karim’ has no AP part

mentioned. But the set of names of the students has a very
high cardinality, and names thus cannot be stored as
typical values in the TVT. Similar situation arises if there
is just a student id number of the form ‘std2010s543’ in
place of the name. To handle this sort of situations, we
have used quite successfully a set of useful patterns,
common instances and templates for only those attributes
on which frequent NLQs may be thrown. In case of
necessity, a partial match can turn out to be a very good
support here.
We also need an OIP Table to map possible OIPs to
database relations. This, comparatively small, table
contains possible synonyms of the identifiers of the objects
that each of the relations contains. An example of such an
OIP table is shown in Table 5.3.
And to map AFPs we need an AFP Terms Table that
contains possible synonyms of terms characteristic to
phrases aggregating on different types of data. The terms
are supposed to be accompanied by other phrases like APs
or OIPs, which need to be recognized separately. We use
here a kind of standardization by using replacement of the
terms with generally interpretable keywords. A typical
AFP Mapping table is shown in Table 5.4

TABLE 5.3. A sample OIP table for RPS

OIP Relation

students Student

persons Student

courses Course

subjects Course

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

96

6. Mapping Phrases to Database Details

The useful transformation of an NLQ includes an obvious
step, tracking down its important components to the
domain knowledgebase. So, a Phrase Structure (PS)
returned by the process of isolating significant phrases has
got to be mapped to the concrete database details of the
domain ontology. The extension of the databases described
above is used for the purpose. The relevant algorithm, [1],
is in fact an exhaustive matching procedure to associate
database details to the previously marked phrases in the
NLQ. It takes as input the PS, that is, the sequence of
NDP-NDP class pairs, and returns the PS associated to the
database object descriptors. The output has in it concrete
references to object attributes, attribute values and generic
functional terms in place of NDP class descriptors, and has
been described above as PSO (Phrase Structure Output).
The idea underlying the procedure is a very simple one,
although the implementation requires a delicate treatment
involving inexact matching, heuristics etc. We need to
associate various NDPs classified as APs, AVPs, etc. with
the database details. To confirm, for example, whether an
NDP classified as AP matches with any relevant entry of
the AP table sufficiently, we compare it to the entries of
the AP table. The lengthiest string that is common in the
NDP and each of the entries (attribute synonyms) of the
AP table is derived. If its length crosses a defined
threshold value, the particular match is considered. The
threshold value is set to a level that ensures maximum
accuracy of the matching.
In case of an NDP classified as AVP or AFP, things stand
pretty difficult to map. There the order and range of the AP
portion and value portion or the aggregation terms also
become important.

TABLE 5.4. Typical entries to an AFP Term Table
AFP Term Keyword

highest max

top most max

lowest min

total number count

total sum

Those parts may be heavily messed up in the phrase. This
has a vital effect not only in efficiency, but also in
effectiveness of the procedure trying to achieve the desired
mapping. Studying the suffixes and prefixes in
collaboration with the domain specific knowledge about
linguistic, representational and stylistic peculiarities of
expressions comes to the rescue in most of the times. The
assumptions like ‘usually the attribute portion in an AVP
precedes the value portion’, ‘the attribute portion of an

AVP may be implicitly referred to in the subsequent AVP’
or ‘the aggregation term usually prefixes an attribute
portion in an AFP’ turns out to set things very much
pragmatically as far as the disambiguation of AVPs and
AFPs are concerned.

For illustration we here show the transformation of two
typical queries shown in Table 4.1.

Query: What are the names, resident addresses and
CGPAs of the students bearing id numbers
050204001 and 050204009?

PSO: ((names, AP), (resident addresses, AP), (cgpas, AP),
(students, OIP), (id numbers 050204001, AVP),
(050204009, AVP))

Recognized PSO: ((AP, Name, Student), (AP, Address,
Student), (AP, CGPA, Student), (OIP, Student),
(AVP, StudentId, =, “050204001”, Student),
(AVP, StudentId, =, 050204009, Student))

Query: Can you please display the total number of courses
offered by the CSE department?

PSO: ((total number courses offered, AFP), (cse
department, AVP))

Recognized PSO: ((AFP, count, CourseId, Course), (AVP,
DeptName, CSE, Course))

7. Essentials of the Inference Engine

Major stages of the intended transformation of NLQs and
the inherent complexity of the steps to be performed
necessitate the important components of the inference
engine. Our approach assumes in a series the processes
already mentioned as normalization, demarcation of phrase
boundaries, recognition of delimiter sequence,
classification of separated phrases and mapping classified
phrases to the domain database.
As we have already discussed, preprocessing or
normalizing an NLQ prepare it to a great extent for
effective demarcation of boundaries of phrases and
efficient processing further. This frees the NLQ from
unnecessary symbols and words, and reduces the size by
replacing lengthy descriptions with short and more formal
ones. The admissibility of the normalization is bound to
possibility of matching words and word sequences to string
entries of strictly small tables. Interactive input
arrangement make things tolerable by allowing entry-time
processing, including even spell checking. Anyway, fast
string matching becomes a demand, [18, 25].
Maintenance of a set of DFAs for recognition of the
delimiter sequences of the NLQs needs to be mentioned
next. We have observed with appreciation that a few tens

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, November 2008

97

of DFAs, not so complicated in nature, capture almost the
whole spectrum of numerous NLQs that can be thought of
about a general purpose domain. A DFA can be
represented by its transition function, which obviously has
a simple tabular form, [7]. So, the set of tables representing
the set of DFAs becomes a charming addition to the
domain knowledgebase. The set can be easily enhanced,
and its elements can also be modified if there is a need.
Next comes the set of Moore Machines for classifying the
phrases in the structure curved out of the NLQs in the
process of targeted transformation. As we know, Moore
Machines are also finite state machines each state of one of
which may be associated with a classifier. So, once again
we have a set of tables representing transition functions of
MMs. They resemble DFAs in number and maintenance,
while complement them greatly towards the common goal
of interpreting NLQs.
After all, procedures for efficient string matching during
various stages, especially the mapping of isolated phrases
from the NLQs to database details, occupy the valuable
core of the inference engine. Various approximation
methods and useful heuristics need to be discovered and
incorporated to this core. We have found that
implementation of some five simple heuristic rules, [1],
help in disambiguation of messed up AVPs almost to
completeness. In cases of disambiguation of AFPs and
OIPs even smaller number of such heuristic rules is very
much apparent. On the other hand, suitable inexact or
approximate string matching procedures are in a high
demand for the core of the engine, [17, 22]. The adoption
of the method of Longest Common Subsequence along
with the whole collection of candidate-limiting techniques

enables us, [1], to make potentially intractable matching
procedures very much competitive computationally.
In addition to the above, supervised learning in various
forms like upgrading enhanced data dictionary, sets of
finite state machines etc. deserves special mentioning. The
procedures are negligibly simple. Once the supervisor is
convinced he is supposed to add or delete an entry in a
particular table. Although, in case of a necessity a new
finite state machine may be required to be designed, and it
is a common song just from another opera. The process of
introducing it to the system is again very simple. It is just
including to the existing set a new table.

8. Empirical Justification

Experimental setup for justifying our ontology enrichment
scheme was designed based on three easily comprehensible
database systems, namely, RPS (Result Processing System
for course evaluation of students of a university), ATIS
(Air Travel Information System of a travel agency) and
EIMS (Employee Information Management System of an
organization). The quantitative outline of the data set we
used is shown in Table 8.1. It has been noted that although
we tried to be quite extensive and exhaustive in finding
possible relations, attributes and their synonyms in each of
the systems, the number of entries in the TVT, OIP table
and AFP terms table remained consistently and
comprehensibly small.
We were guided by the fact that our approach differed
from other known approaches substantially, and thus we
would concentrate on showing usefulness of the
transformation we offer for NLQs and also demonstrating
effectiveness and efficiency of the process.

TABLE 8.1. Experimental Data Sets Cardinalities

System Relations Distinct
Attributes

Attribute
Synonyms

Typical
Values

Entries in
OIP Table

AFP Terms

RPS 8 28 112 18 25 16

ATIS 6 19 123 10 24 14

EIMS 14 36 155 26 48 20

As far as the usefulness of the transformation is concerned,
the recognized Phrase Structure Output (PSO) that we
ultimately get can be easily shown to have distinctive
relationships with, for example, expressions in SQL
(Structured Query Language) like query languages for
information retrieval from a data repository. We here show
the two typical examples of transformation cited in section
6 with possible SQL expressions corresponding to them.

Query: What are the names, resident addresses and
CGPAs of the students bearing id numbers
050204001 and 050204009?

Recognized PSO: ((AP, Name, Student), (AP, Address,
Student), (AP, CGPA, Student), (OIP, Student),
(AVP, StudentId, =, “050204001”, Student);
(AVP, StudentId, =, 050204009, Student))

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

98

Possible SQL expression: select Name, Address, CGPA
from Student where (StudentID = “050204001”)
or (StudentID = “050204009”)

Query: Can you please display the total number of courses
offered by the CSE department?

Recognized PSO: ((AFP, count, CourseId, Course), (AVP,
DeptName, CSE, Course))

Possible SQL expression: Select count(CourseId) from
Course where DeptName = “CSE”

To check the effectiveness we used batches of sample
NLQs for each of the three database systems keeping in
mind diversity of linguistic terms and complexity of
formulation. Available benchmark data sets were also
consulted in this regard. Representative phrase detection
with PSO recognition outcome for RPS is shown in Table
8.2. Observations show that the failure cases are mostly
related to very uncommon styles of query formulation.
Effectiveness of the system is thus quite explicit.

Success in detection of AVPs in EIMS, for example, using
heuristic rules discussed earlier is shown in the Figure 8.1.

Improvements done involving supervised learning
(training) in average error reduction in ATIS, for example,
is shown in Figure 8.2.

For assessing efficiency we depended on average response
time in returning recognized phrase structures. If the
normalization is considered an interactive entry-time
process, then the response time, even for a slow personal
computer, is not at all noticeable; otherwise it is just a
small fraction of a second. We show the result, taking
normalized queries, some of them replicated, and
executing in a 2.60 GHz personal computer, for all the
three systems, in Table 8.3.
We find that the time required for returning a recognized
phrase structure is very small in comparison to time
required for entering a query or formulating and executing
an SQL like query.

Table 8.2. Sample phrase detection and phrase structure recognition in RPS
Query Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Actual APs 1 2 3 1 2 1 3 2 2 2 1 2 2 4 5

Identified APs 1 2 3 1 2 1 3 2 1 2 1 2 2 4 5

Actual AVPs 3 2 5 2 2 1 2 6 2 3 1 2 1 2 3

Identified AVPs 3 2 4 2 2 1 2 6 2 3 1 1 1 2 3

Recognized PSO + + - + + + + + - + + - + + +

Table 8.3. Average time required for returning recognized phrase structures in RPS
System Total Number of

NLQs

Total Time for Phrase Structure

Recognition

Average Time Per

Phrase Structure

RPS 500 48.20 sec 0.0964 sec
ATIS 400 34.24 sec 0.0856 sec
EIMS 400 24.68 sec 0.0617 sec

 Fig. 8.1. AVP detection in EIMS (before training cycles)

Fig. 8.2. Error reduction and learning rates in ATIS

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, November 2008

99

8. Discussion

A methodology for enrichment of domain knowledgebases
is the object taken for illustration in the paper. A domain
knowledgebase has been supposed to resemble a database
system that has all components of a domain ontology. As
information repositories for common people are being
considered, so retrieval techniques appropriate for
commoners follow. A system in such an environment needs
to be natural language oriented where domain knowledge
is easy to interpret and share in bigger domains. This is
how reference to domain knowledgebase and ontology
came to the scene.
Useful transformation of queries in English posed to a
domain knowledgebase has been the objective of the
investigation. It is evident that a relatively small number of
basic structures involving significant phrases are there in
natural language queries. This was the stimulation for
going to search for some new solutions to an old problem.
Further, we believe that extensive use of natural language
grammars may be avoided. If it is so, then we need to
handle less ambiguity. And portability across domains as
well as natural languages seems more easily achievable by
dealing with phrase structures in sentences avoiding
grammatical nuances. Use of finite state machines for
effectiveness and efficiency appears very appropriate for
the purpose.
It is also evident that we can avoid exhaustive token
matching by isolating the significant phrases first. Token
matching becomes intractable in wider range.
Nontraditional techniques like partial matching, heuristics
in the form of studying prefixes and suffixes, etc. help to a
great extent in this regard. May it be the case of finding an
attribute value phrase or mapping an aggregation term,
heuristics regarding the structure, content and size of the
target phrases play an important role in inexact matching.
We also find that a kind of generality may be achieved by
accommodating techniques that find phrase structures from
the types of sentences other than those we investigated.
Thus the methodology can be tried as a tool to shed an
insight into understanding sentences in general. We may
consider the representation of the world to be a collection
of semantic networks or domain ontology of various things.
So, beside efficiently constructing intelligent interfaces to
databases for mass use, we may think of pure linguistic
research.
The languages which allow deliberate separation of
significant phrases are most suitable as targets. English and
Universal Natural Language (UNL), [8], are alright in this
respect. To this end, we think that many a common
purpose databases may be designed as individual domain
ontology in UNL, which is very much English like. In that

case, all people in the community of languages associated
with UNL can have the benefit.
One of the most important observations is that such a
system can be easily trained in the development phase to
perform remarkably well. Failure cases can just be
gathered and new entries for the tables of the extended
database may be looked for. Finite state machines are
really portable across domains. If necessary a new one can
just be added. Still, it may not be possible to cover all
possible variations of the sentence patterns. Additional
measures have to be thought of.
Our plan of future works in this field includes, beside other
relevant matters, investigation of transportability of our
phrase structure analysis techniques across various types of
sentences, domains and languages. Moreover, speech
recognition can also be added to the proposed one so that it
can process Natural Language Queries by listening from
the user. However, such systems are supposed to be of
very complex nature, and some of the linguistic challenges
will have to be addressed first. We are interested to carry
on with our research and add efforts to developing natural
language components for domain knowledgebases.

References
[1] M.M. Hoque, S.M.A. Al-Mamun. Recognition of Attribute

Value Phrases in Natural Language Queries to Databases.
Proceedings of 3rd International Conference on Data
Management (Innovations and Advances in Data
Management), pp. 1-14, Ghaziabad, India, March 2010.

[2] M.M. Hoque, M.S. Mahbub, S.M.A. Al-Mamun. Isolating
significant phrases in common natural language queries to
databases. Proceedings of 11th International Conference on
Computer and Information Technology, pp.554-559,
Khulna, Bangladesh, December 2008.

[3] P. Cimiano, P. Haase, J. Heizzmann. Porting Natural
Language Interfaces Between Domains: an experimental
user study with the ORAKEL system. Proceedings of 12th
International Conference on Intelligent User Interfaces,
pp.180-189, Honolulu, Hawaii, USA, 2007.

[4] Y. Li, I. Chaudhuri, H. Yang, S. Singh, H. V. Jagadish.
DaNaLIX: a domain-adaptive natural language interface for
querying XML. Proceedings of the 2007 ACM SIGMOD
international conference on management of data, Beijing,
China, pp. 1165-1168.

[5] O. Küçüktunç, U. Güdükbay, Ö. Ulusoy. A Natural
Language-Based Interface for Querying a Video Database.
IEEE Multimedia, Vol. 14, pp. 83-89, Jan-Mar 2007.

[6] E. Kaufmann, A. Bernstein, R. Zunstein. Querix: A Natural
Language Interface to Query Ontologies Based on
Clarification Dialogs. Proceedings of 5th International
Semantic Web Conference, pp.980—981, Springer,
November 2006.

[7] J.E. Hopcroft, R. Motwani, J.D. Ullmann. Introduction to
Automata Theory, Languages and Computation. Addison-
Wesley, 3rd edition, 2006.

[8] H. Uchida, M. Zhu, T.C.D. Senta. Universal Networking
Language, UNDL Foundation, 2nd edition, Geneva, 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

100

[9] A. Gomez-Perez, M. Fernandez-Lopez, O. Corcho.
Ontological Engineering: With Examples from the Areas of
Knowledge Management, E-Commerce and the Semantic
Web. Springer, 2004.

[10] N. Stratica, L. Kosseim, B.C. Desai. NLIDB Templates for
Semantic Parsing. Proceedings of 8th International
Conference on Applications of Natural Language to
Information Systems, pp. 235-241, Berg, Germany, June
2003.

[11] B. Smith. Ontology. Blackwell Guide to the Philosophy of
Computing and Information, pp. 155–166, Oxford:
Blackwell, 2003.

[12] S.J. Russell, P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2nd edition, 2003.

[13] A.M. Popescu, O. Etzioni, H. Kautz. Towards a Theory of
Natural Language Interfaces to Databases. Proceedings of
the 8th international conference on Intelligent user
interfaces, Miami, Florida, USA, pp. 149-157, 2003.

[14] M. Samsonova, A. Pisarev, M. Blagov. Processing of
natural language queries to a relational database.
Bioinformatics, Vol. 19, pp i241-i249, Oxford University
Press, January 2003.

[15] M. Dittenbach, D. Merkl, H. Berger. A Natural Language
Query Interface for Tourism Information. Proceedings of
10th International Conference on Information Technologies
in Tourism, pp.152-162, Helsinki, Finland, January 2003.

[16] H.H. Mengg, K.C. Siu. Semiautomatic Acquisition of
Semantic Structures for Understanding Domain-Specific
Natural Language Queries. IEEE Transactions on
Knowledge and Data Engineering, pp. 172-181, Jan–Feb
2002.

[17] G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, Volume 33, pp. 31–88, 2001.

[18] T.H. Cormen, C.E. Leiserson, R.L. Rivest, S. Clifford.
Introduction to Algorithms (Chapter 32: String Matching),
pp. 909-993, MIT Press and McGraw-Hill, 2nd edition, 2001.

[19] A. Silberschatz, H. F. Korth, S. Sudarshan. Database System
Concepts, McGraw-Hill, 3rd edition, 1997.

[20] M. Uschold, M. Gruninger. Ontologies: Principles, Methods
and Applications. Knowledge Engineering Review, Vol.11,
pp. 93—136, 1996.

[21] I. Androutsopoulos, G.D. Ritchey, P. Thanisch. Natural
Language Interface to Databases – An Introduction. Journal
of Natural Language Engineering, Vol. 1, pp. 29-81, 1995.

[22] R. Baeza-Yates, G. Gonnet. A new approach to text
searching. Comm. ACM, 35, pp. 74-82, 1992.

[23] H.W. Beck, S. Navathe. Integrating natural language, query
processing and semantic data models. Digest of Papers, 35th
IEEE Computer Society International Conference
(Compcon ’90), pp. 553-543, 1990.

[24] D.G. Shin. Semantics modeling issues for processing natural
language database queries. Proceedings of the 1990 ACM
annual conference on Cooperation, pp. 8-14, Washington
D.C., United States, 1990.

[25] G.M. Landau, U. Vishkin. Fast String Matching with k-
difference. Journal of Computer and System Sciences.
Volume 37, pp. 63-78, August 1988.

[26] H. Ishikawa, Y. Izumida, T. Yoshino, T. Hoshiai, A.
Makinouchi. KID: Designing a knowledge-based natural
language interface. IEEE Expert, Vol. 2, pp.57-71, 1987.

[27] J.M. Janas. The semantics-based natural language interface
to relational databases. Cooperative interfaces to
information systems. Springer-Verlag, New York, 1986.

[28] F.J. Damerau. Problems and some solutions in
customization of natural language database front ends.
ACM Transactions on Information Systems (TOIS), vol.3,
pp.165- 184, April 1985.

[29] S.J. Kaplan. Designing a Portable Natural Language
Database Query System. ACM Transactions on Database
Systems (TODS), vol.9, pp. 1-19, March 1984.

