
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 

 
 

91

Manuscript received July 5, 2010 
Manuscript revised July 20, 2010 

Enriching DataEnriching DataEnriching DataEnriching Data----Intensive DomainIntensive DomainIntensive DomainIntensive Domain----Ontologies for Useful Ontologies for Useful Ontologies for Useful Ontologies for Useful 

Transformation of Natural Language QueriesTransformation of Natural Language QueriesTransformation of Natural Language QueriesTransformation of Natural Language Queries    

S. M. Abdullah Al-Mamun
 †
 and  Mohammad Moinul Hoque

 †† 
 
 

Department of Computer Science and Engineering 
Ahsanullah University of Science and Technology, Dhaka, Bangladesh 

 

Abstract 
This paper presents a scheme for purposeful enhancement of 
domain knowledgebases which are supposed to be repositories of 
public information and also to be subject to frequent interaction 
by non-technical people through natural languages. In place of 
rigorous syntactic study of natural language queries, an 
acceptable alternative in the form of gradual simplification and 
recognition of useful semantic structures is proposed. 
Localization of matching procedures by isolating significant 
phrases and disambiguation of complicatedly ordered phrase 
components by heuristic rules are emphasized.  Use of finite state 
machines for recognition and generation of data structures is 
fruitfully accommodated. Besides, techniques of inexact string 
matching for mapping query elements to database details have 
been incorporated to justify the usability of the enhancements. 
Index Terms: 

Domain Ontology, Natural Language Query, Semantic Structure 

Recognition, Approximate String Matching. 

1. Introduction 

Making information easily accessible to wide mass in our 
era of internet is very much obvious. Achievements of 
human endevour in varieties of domains and in various 
corners of the Glob are being published every now and 
then. It is within the virtual vicinity of many, but not within 
the reach of all of them. Representational differences with 
respect to conceptualization and languages play a vital role 
here, in our consideration. Enumerable useful information 
repositories of scientific and business interest stay out of 
reach of or seem very complicated to a lot of people.  In 
this context age old efforts to share information and 
knowledge through automated natural language interfaces 
appear to remain in the fore front and open ended. Our 
basic assumptions regarding these issues are as follows: 

a. A database system or a domain knowledgebase is 
better to be treated as a domain ontology with 
most of the characteristics and consequences. 

b. General tools for enriching domain ontologies are 
to be sought after to provide easier 
implementation and access.   

c. Adoption of the natural language basis in development 
and querying common purpose information 
repositories has a proven record of success.  

d. Search for effective and efficient techniques for 
interpreting natural language queries is a real example 
of quest for accuracy, generality and simplicity.  

A domain ontology, at least in its content, resembles a 
database system. Their resemblance is very much apparent 
with various components they include: individuals, classes, 
attributes, relations, function terms, events, restrictions, 
etc., [11, 19, 20]. As far as the ultimate goal to develop 
those is concerned, we believe that it is the useful 
information people are always after. Moreover, ‘ontology’ 
in principle better suits the purpose in terms of sharing.  
On the other hand, general tools are essential to resolve 
linguistic and conceptual incompatibilities which 
inevitably arise as diverse groups are involved in sharing 
and translating varieties of information, [9, 11]. 
Accommodating advancements in formal languages, 
automata and text search seems very much in line with the 
need, [7, 22]. Research results in artificial intelligence and 
intelligent user interface, we think, also provide a good 
promise in this regard, [12, 21]. 
Further, developing natural language based shared 
terminology for effective interaction with information 
repositories is a quite old research trend, [29], that survives 
vigorously till our days, [3, 4]. Discovering and 
popularizing resources for overcoming language barriers 
can also be cited as great efforts here, [8]. Many works are 
just dedicated to make information more useful, [5, 14, 15].  
Our last assumption is regarding efforts for appropriate 
ways of processing natural language queries to information 
repositories. Methodologies based on exhaustive 
tokenization and rigorous syntactic analysis have a deep 
root in the field, [13]. Systems assuming customization of 
grammatical parsers, like Microsoft English Query, are 
also available. Alternatively, systems emphasizing 
semantic analysis enjoy not less a popularity in the 
community, [24, 27].  
We decided to stick more to pragmatic note of the problem 
exploring novel ways. Practically, it went down to 
applying useful semantic structures avoiding extreme 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 

 

92

 

syntactic analysis. We were inspired by a number of works 
in this respect, [10, 16, 23]. Some general references to 
relevant problems did also help us build up necessary 
confidence, [26, 28]. We also note that avoiding the 
potentially intractable problem of exhaustive string 
matching was very much in our mind. And we consulted 
general approaches, [18], as well as more specific ones, 
[17, 25], to be pragmatic through approximation. 
Moreover, we went for heuristics to help us. Some of the 
intermediate results of our efforts have been presented in 
international conferences recently, [1, 2]. 
Rest of this paper is organized in 8 sections followed by a 
list of references. Section 2 characterizes domain 
knowledgebases putting them before users interacting in 
natural languages. Section 3 has a detailed description of 
the significant phrases that we distinguish in a natural 
language query (NLQ), while section 4 illustrates how 
those phrases can be isolated in case of English queries. 
Section 5 is dedicated to the proposed enhancements of a 
database which are supposed to enable it to interpret NLQs. 
Section 6 sketches possible ways of mapping phrases 
isolated in NLQs to database details, and section 7 
describes the fundamental components of the required 
inference engine. Experimental verification of our 
propositions is presented in section 8. Section 9 is a 
discussion that elaborates our concluding remarks and 
possible future study in the field.  

2. Peculiarities of a Domain Knowledgebase 

and Natural Language Queries to it 

Common components of a domain knowledgebase are the 
database and the inference engine. Usually, the database is 
that part of the domain knowledgebase which contains 
descriptions of numerous similar entities of the domain and 
also the descriptions of the specified relationships among 
various entities. So, essentially, an NLQ to a database must 
contain explicit or implicit narratives of some entities 
and/or entity relationships. The inference engine, on the 
other hand, usually contains predefined procedures for 
delivering decisions or hypothesizing over the existing 
database. Those predefined procedures may be enlisted 
and made available to the users in a manageable fashion 
for the users. We here are interested in some additional 
generic procedures that may be incorporated to the 
inference engine for effective recognition of general 
purpose NLQs addressing mainly the database content. In 
case an NLQ maps onto the functionality addressed to by 
an existing procedure, it may also be recognized so that the 
procedure can just be invoked in time. We will restrict the 
predefined procedures to those that correspond to most 
common and general types, like ‘Show the total number of 
students.’ Or ‘How many courses are available?’, and thus 

avoid considering those types of NLQs. Here and hereafter 
we will use query examples from a simple database domain, 
‘Result Processing System’ (RPS), that assumes very 
common scenarios of course evaluation of undergrads.  
For simplicity, we bind our presentation with the 
terminology of relational databases. NLQs, to which we 
direct our investigation, are just restricted types of English 
Interrogative and Imperative sentences. Such a sentence 
thus necessarily has to be rich with phrases, identifying 
objects of the domain, their attributes and attribute values. 
And those are the significant phrases which can be isolated 
indeed, [2]. If we consider the queries, ‘What is the 
address of the student with id 050104019?’ or ‘Display the 
address of the student with id 050104019.’, we find that 
important are the phrases [address], [student] and [id 
050104019] only. And the order of the phrases found is 
also important. The header phrases here just fall short of 
having any importance in forming the answer expected by 
the user. The same fate awaits the punctuation marks at the 
end or the determiners used here and there. Potential 
delimiters and contents of some ‘significant phrases’ only 
remain for paying attention to. 

3. Significant Phrases in Natural Language 

Queries 

Discussion in the preceding section reveals that unlike 
common sentences, NLQs to databases are supposed to 
contain some phrases that are and only that are important 
for retrieval of information. We further postulate that 
instead of analyzing them, from the very beginning, in 
terms of grammatical phrases like noun phrases, verb 
phrases, adjective phrases, etc., it is more effective to 
analyze them in terms of phrases describing various 
aspects of objects, in database or ontological sense of the 
term. Our assumptions, in line with the ideas underlying 
formal query languages, also include the fact that there are 
a very few types of such phrases. We take it as a clear 
indication of an advantage over the methodologies taking 
into consideration the numerous grammatical phrases. 

3.1. Attribute Phrase (AP) 

The first and foremost of the phrases that are to be taken 
into account are the Attribute Phrases. An Attribute Phrase 
denotes an ‘attribute’ in a ‘relation’ or ‘table’. This type is 
most common, but obvious of the parameters used in a 
formal query language for information retrieval. ‘student 
ID number’ or ‘roll’ may simply denote the attribute ‘id’ in 
a possible ‘student’ relation. Attribute Phrases here 
represent those object attributes, values of which the user 
of the Natural Language Interface wants to see as the 
output of his or her query. 
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3.2. Attribute Value Phrase (AVP) 

Next come Attribute Value Phrases, which specify the 
values associated to some attributes for addressing specific 
objects. The attributes are very much likely to be provided 
within the query, although they may remain implicit in 
some cases. Natural language flexibility may also allow 
those values and the corresponding attributes to be in a 
heavily messed up form. This leads to the need for 
identification of phrases that denote objects through values 
of the attributes. We eventually come to the concept of 
Attribute Value Phrases.  Let us take the query, ‘What is 
the CGPA of the student bearing identification number 
050204003?’. The phrase ‘identification number 
050204003’ is a simple AVP, which contains both an 
attribute portion and its value. While ‘newly enrolled 
female’ in ‘Display the rolls and names of newly enrolled 
female students in the department of CSE.’ is an example 
of a compound and complicated AVP. Moreover, negation 
descriptors are also usually placed in the AVP portion.  So, 
the system needs to isolate the AVP portion including the 
negation descriptors which may have any of the forms like 
‘not’, ‘do not’, ‘have not’, ‘not in’, ‘was not’ etc. The 
process of isolating AVPs thus requires special attention.  

3.3. Object Identifying Phrase (OIP) 

The concept of Object Identifying Phrases is to be 
introduced for coping up with those nuances of NLQs that 
essentially include pointers to specific relations of the 
database in terms of typical descriptors, which are common 
to multiple relations. Distinguishing ‘male patient’ and 
male doctor’ in a Hospital Information System is a must. If 
an OIP is explicitly mentioned in the NLQ, it helps us to 
identify easily possible relations from where the data must 
be fetched. For example, in the NLQ, 'List the names of 
those students who are from CSE department', we see that 
'those students' is a simple OIP which seems to have no big 
effect. But, during analysis of the NLQ for generating a 
response, this can provide enough hints in favor of the fact 
that information be fetched from the 'student relation'. 
More simple use of OIPs can be demonstrated in the query 
‘List the students of third year 1st semester’. Here no AP is 
specified, but records of students are to be fetched, 
although it is unlikely that an ordinary Data Dictionary has 
an option for that. 

3.4. Aggregate Function Phrase (AFP) 

Aggregate Function Phrases are common in queries as well. 
There is no doubt that we are going to have phrases 
containing words like average, total, sum, highest, lowest, 
best, first, last, etc., and we refer to them as AFPs. It also 
comes out very interesting to isolate AFPs and recognize 

them in combination with APs, AVPs and OIPs present in 
a query. For example, in the NLQ ‘What is the average 
CGPA of the students of 3rd year 1st semester?’ the AFP 
marking word ‘average’ needs to be taken care of in 
association with the AP ‘CGPA’. But in the NLQ 'List the 
students who scored highest grade in CSE101.' we see that 
in ‘scored highest grade’ the AFP is mixed up with an 
AVP and it refers to the OIP ‘students’. So, we have all the 
reasons to consider seriously these phrases mentioned in 
various places of NLQs. 
For illustration of the various significant phrases described 
above let’s consider the query, ‘What are the names, 
resident addresses and CGPAs of the students bearing id 
numbers 050204001 and 050204009?’. The structure of 
this query can be presented as a syntactic rule like the one 
below. 
 

 Query → HW1 AP1 , AP2 and AP3 of OIP1 
oip_del1 AVP1 and AVP2 

HW1 (Head Word 1) here stands for ‘What’, AP1 for 
‘names’, AP2 for ‘resident addresses’, AP3 for ‘CGPAs’ 
OIP1 for ‘students’, oip_del1 (OIP delimiter 1) for 
‘bearing’ (a delimiter from a set of delimiters that may 
possibly appear after an OIP), AVP1 for ‘id numbers 
050204001’ and AVP2 for ‘050204009’. We further add 
that HW1 (Head Word 1) could take the value ‘List’, 
‘Display’, ‘Show’, etc. with no noteworthy change in 
semantics. 
Let’s have another illustrative example that contains an 
aggregate function phrase, ‘Show the average grade points 
of 1st year 1st semester CSE students in CSE103’. The 
corresponding rule will have the following form. 

 Query → HW2 AFP1 of AVP1 in AVP2 

AFP1 here stands for ‘average grade points’, and AVP1 for 
‘1st year 1st semester CSE students’, which is a compound 
and quite complicated attribute value phrase. 

4. Isolating Significant Phrases in NLQs 

The boundaries of useful phrases in NLQs that we are set 
to isolate need to be marked first. It means that we have to 
localize possible APs, AVPs, OIPs, etc. From our 
discussion above we reach to the point that there are some 
words or phrases in an NLQ that do not play an important 
role in  interpreting it and responding to it. Thus we come 
to the idea of preprocessing or normalizing an NLQ first, 
which enable us to have only a headword in a more general 
form, some words as delimiters of potential significant 
phrases that we refer to as ‘Non-Delimiter Phrases’ 
(NDPs) and the NDPs, of course. The normalized NLQ is 
then passed to an algorithm, [2], the output of which is a 
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phrase structure (PS). A PS is a sequence of pairs 
containing NDPs and NDP classes.  An important feature 
of the algorithm is that it uses a set of Finite Automata, 
referred to as DFAs, to recognize the delimiter sequence in 
the normalized NLQ. Another important feature is that a 
set of Moore Machines (MMs) is used to generate the PS 
consisting of the NDP-NDP class pairs.  
It happens that normalizing an NLQ for filtering out words 
that do not play any role in formation of an executable 
query simplifies the overall process to a great extent. It is 
in line with the idea of disregarding ‘words not 
semantically important’, [13]. We have marked them as 
‘insignificant’. The words ‘is’ and ‘the’ may be marked 
insignificant in the NLQ ‘What is the CGPA of the 3rd year 
student Abdul Karim?’. The sequence is supposed to 
undergo further refinement that frees it from words that 
may come into conflict with predefined phrase delimiters. 
While ‘of’ is a very important phrase delimiter in our 
objects of investigation, this very ‘of’ in the phrase 
‘department of CSE’ will be a misleading delimiter.  
The normalization process includes a number of steps, 
most important of which are head word modification, 
removal of semantically not important words, 
distinguishing and generalizing delimiters and 
standardization of mathematical and temporal expressions. 
A simple head word ‘display’ can replace ‘What’, ‘I would 
like to see’ or ‘Please tell me’, while expression ‘<=’ may 
replace any of ‘not over’, ‘not greater than’, ‘did not get 
over’, etc. Similarly, changing ‘current semester’ with 
‘semester spring 2010’ may help a lot. 
After the normalization process the query is ready for 
probation of its delimiter sequence using a DFA from the 
predefined DFA set. The query, ‘What are the names, 
resident addresses and CGPAs of the students bearing id 
numbers 050204001 and 050204009?’ is normalized to 
‘display names and resident addresses and cgpas of 
students with id numbers 050204001 and 050204009’. The 
delimiter sequence, ‘display and and of bearing and’ is 
accepted by the following DFA (Fig. 4.1). 
 

  

Fig. 4.1. DFA that recognizes delimiter sequence DS1  

We note here that the DFA shown in Fig. 4.1 can equally 
successfully recognize numerous instances of delimiter 
sequences of queries of different size and content. Once 
the delimiter sequence is accepted, a rule is generated to 
narrate the content of the given query highlighting the 
isolated significant phrases. Here it takes the following 
form: 

 Query → HW1 AP1 and AP2 and AP3 of OIP1 
oip_del1 AVP1 and AVP2 

The rule in its turn invokes an MM (Moore Machine) from 
the predefined set of MMs, and the MM has the transition 
diagram like the one in the following figure (Fig. 4.2). 

 

 

 

Fig. 4.2: Moore Machine that returns Phrase Structure PS1  

Some typical queries, including the one analyzed above, 
and their Phrase Structure Output (PSO) generated by 
MMs are shown in the Table 4.1.  

5. Database Enhancement for Recognition of 

Significant Phrases 

Capability of a domain ontology to respond properly to 
NLQs essentially requires additional information about the 
domain. This additional information is to encounter 
ambiguity & multiplicity of natural language elements. Our 
efforts here are directed to finding general forms of 
enhancement of the database embedded in the ontology. As 
we are supposed to have isolated phrases in the NLQs that 
are to be mapped to database contents, we concentrate on 
possible forms of a number of tables that have the potential 
to capture the representational diversity of those phrases. 
First of all, for every specific database domain, we need an 
AP Table that contains the attribute phrases in the 
justifiable spectrum of their possible synonyms associated 
to the attributes from different relations. The synonyms 
may appear interchangeably in the NLQs for the 
corresponding attributes under that domain. Values in the 
AP Table are domain specific. For example, the synonym 
‘id number’ referring to the attribute ‘StudentId’ in RPS 
may be related to a different attribute named ‘EmployeeId’ 
in a different database domain. Some entries of a possible 
AP Table for the RPS are shown in Table 5.1. 
In our Enhanced data dictionary we also need a Typical 
Value Table (TVT) as shown in Table 5.2. It contains 
typical values and their synonyms in association with the 
attributes and relations they refer to. This table is essential 
for that, some NLQ are very much likely to have sketched 
an AVP using only a commonly understood value of the 
relevant attribute, and not mentioning the attribute itself. 
The typical value ‘male’ always refers to the attribute that 
represents ‘Gender’ and the typical value ‘CSE’ or ‘EEE’ 
refers to an attribute that may be named as ‘DeptName’. 
When the system needs to recognize an AVP, the TVT is 

  S0   S3 
display of    with 

   S2   S1 

and 

and and 

of     with 
 APi, AP  OIPi, OIP  AVPi, AVP 
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consulted first. If a match is found in the TVT, partial 
matching of the possible AP portion of the AVP becomes 

redundant. 

 

Table 4.1 Examples of isolated significant phrases 

NLQ PSO 

What are the names, resident addresses and CGPAs of the 
students bearing id numbers 050204001 and 050204009? 

((names, AP), (resident addresses, AP), (cgpas, AP), (students, 
OIP), (id numbers 050204001, AVP), (050204009, AVP)) 

List the female students of CSE department who got A+ in 
CSE101. 

((students, OIP), (female, AVP), (cse department, AVP), (a+, 
AVP), (cse101, AVP)) 

Find the average marks of the 2nd year 1st semester students 
of the department. of EEE. 

((average marks, AFP), (students, OIP), (2nd year, AVP), (1st 
semester, AVP), (department eee , AVP)) 

Please show the names and ids of students whose names 
has ‘Hasan’ as a part. 

((names, AP), (ids, AP), (students, OIP), (names hasan, AVP)) 

Can you please display the total number of courses offered 
by the CSE department? 

((total number courses offered, AFP), (cse department, AVP)) 

 

TABLE 5.1.  Sample entries to an AP table for RPS 

Attribute Phrase Attribute Relation 

id number StudentId Student 

roll number StudentId Student 

course id CourseNo Course 

credit hour Credit Course 

course number CourseNo Course 

student number StudentId Student 

 

TABLE 5.2.  Sample entries to the Typical Value Table 
(TVT)   for RPS 

Typical Value Attribute Relation 

Male Gender Student 

female Gender Student 

cse DeptName Department 

eee DeptName Department 

computer DeptName Department 

 

To be sensible, we only consider those attributes for the 
TVT whose sets of possible values are of a very limited 
cardinality. There might be some other attributes of 
relations on which a user of the database system places 
queries containing AVPs without AP portion. For example, 
in the query, ‘What is the address of the student Abdul 
Karim?’, the AVP ‘Abdul Karim’ has no AP part 

mentioned. But the set of names of the students has a very 
high cardinality, and names thus cannot be stored as 
typical values in the TVT. Similar situation arises if there 
is just a student id number of the form ‘std2010s543’ in 
place of the name. To handle this sort of situations, we 
have used quite successfully a set of useful patterns, 
common instances and templates for only those attributes 
on which frequent NLQs may be thrown. In case of 
necessity, a partial match can turn out to be a very good 
support here. 
We also need an OIP Table to map possible OIPs to 
database relations. This, comparatively small, table 
contains possible synonyms of the identifiers of the objects 
that each of the relations contains. An example of such an 
OIP table is shown in Table 5.3.  
And to map AFPs we need an AFP Terms Table that 
contains possible synonyms of terms characteristic to 
phrases aggregating on different types of data. The terms 
are supposed to be accompanied by other phrases like APs 
or OIPs, which need to be recognized separately. We use 
here a kind of standardization by using replacement of the 
terms with generally interpretable keywords. A typical 
AFP Mapping table is shown in Table 5.4 
 

TABLE 5.3. A sample OIP table for RPS 

OIP Relation 

students Student 

persons Student 

courses Course 

subjects Course 
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6. Mapping Phrases to Database Details 

The useful transformation of an NLQ includes an obvious 
step, tracking down its important components to the 
domain knowledgebase. So, a Phrase Structure (PS) 
returned by the process of isolating significant phrases has 
got to be mapped to the concrete database details of the 
domain ontology. The extension of the databases described 
above is used for the purpose. The relevant algorithm, [1], 
is in fact an exhaustive matching procedure to associate 
database details to the previously marked phrases in the 
NLQ. It takes as input the PS, that is, the sequence of 
NDP-NDP class pairs, and returns the PS associated to the 
database object descriptors. The output has in it concrete 
references to object attributes, attribute values and generic 
functional terms in place of NDP class descriptors, and has 
been described above as PSO (Phrase Structure Output).  
The idea underlying the procedure is a very simple one, 
although the implementation requires a delicate treatment 
involving inexact matching, heuristics etc. We need to 
associate various NDPs classified as APs, AVPs, etc. with 
the database details. To confirm, for example, whether an 
NDP classified as AP matches with any relevant entry of 
the AP table sufficiently, we compare it to the entries of 
the AP table. The lengthiest string that is common in the 
NDP and each of the entries (attribute synonyms) of the 
AP table is derived.  If its length crosses a defined 
threshold value, the particular match is considered. The 
threshold value is set to a level that ensures maximum 
accuracy of the matching.  
In case of an NDP classified as AVP or AFP, things stand 
pretty difficult to map. There the order and range of the AP 
portion and value portion or the aggregation terms also 
become important. 
 

TABLE 5.4.  Typical entries to an AFP Term Table 
AFP Term Keyword 

highest max 

top most max 

lowest min 

total number count 

total sum 

 
Those parts may be heavily messed up in the phrase. This 
has a vital effect not only in efficiency, but also in 
effectiveness of the procedure trying to achieve the desired 
mapping. Studying the suffixes and prefixes in 
collaboration with the domain specific knowledge about 
linguistic, representational and stylistic peculiarities of 
expressions comes to the rescue in most of the times. The 
assumptions like  ‘usually the attribute portion in an AVP 
precedes the value portion’, ‘the attribute portion of an 

AVP may be implicitly referred to in the subsequent AVP’ 
or ‘the aggregation term usually prefixes an attribute 
portion in an AFP’ turns out to set things very much 
pragmatically as far as the disambiguation of AVPs and 
AFPs are concerned. 
 
For illustration we here show the transformation of two 
typical queries shown in Table 4.1. 
 

Query: What are the names, resident addresses and 
CGPAs of the students bearing id numbers 
050204001 and 050204009? 

PSO: ((names, AP), (resident addresses, AP), (cgpas, AP), 
(students, OIP), (id numbers 050204001, AVP), 
(050204009, AVP)) 

Recognized PSO: ((AP, Name, Student), (AP, Address, 
Student), (AP, CGPA, Student), (OIP, Student), 
(AVP, StudentId, =, “050204001”, Student ), 
(AVP, StudentId, =,  050204009,  Student)) 

Query: Can you please display the total number of courses 
offered by the CSE department? 

PSO: ((total number courses offered, AFP), (cse 
department, AVP)) 

Recognized PSO: ((AFP, count, CourseId, Course), (AVP, 
DeptName, CSE, Course)) 

7. Essentials of the Inference Engine 

Major stages of the intended transformation of NLQs and 
the inherent complexity of the steps to be performed 
necessitate the important components of the inference 
engine. Our approach assumes in a series the processes 
already mentioned as normalization, demarcation of phrase 
boundaries, recognition of delimiter sequence, 
classification of separated phrases and mapping classified 
phrases to the domain database. 
As we have already discussed, preprocessing or 
normalizing an NLQ prepare it to a great extent for 
effective demarcation of boundaries of phrases and 
efficient processing further. This frees the NLQ from 
unnecessary symbols and words, and reduces the size by 
replacing lengthy descriptions with short and more formal 
ones. The admissibility of the normalization is bound to 
possibility of matching words and word sequences to string 
entries of strictly small tables. Interactive input 
arrangement make things tolerable by allowing entry-time 
processing, including even spell checking. Anyway, fast 
string matching becomes a demand, [18, 25]. 
Maintenance of a set of DFAs for recognition of the 
delimiter sequences of the NLQs needs to be mentioned 
next. We have observed with appreciation that a few tens 
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of DFAs, not so complicated in nature, capture almost the 
whole spectrum of numerous NLQs that can be thought of 
about a general purpose domain. A DFA can be 
represented by its transition function, which obviously has 
a simple tabular form, [7]. So, the set of tables representing 
the set of DFAs becomes a charming addition to the 
domain knowledgebase. The set can be easily enhanced, 
and its elements can also be modified if there is a need.   
Next comes the set of Moore Machines for classifying the 
phrases in the structure curved out of the NLQs in the 
process of targeted transformation. As we know, Moore 
Machines are also finite state machines each state of one of 
which may be associated with a classifier. So, once again 
we have a set of tables representing transition functions of 
MMs. They resemble DFAs in number and maintenance, 
while complement them greatly towards the common goal 
of interpreting NLQs. 
After all, procedures for efficient string matching during 
various stages, especially the mapping of isolated phrases 
from the NLQs to database details, occupy the valuable 
core of the inference engine. Various approximation 
methods and useful heuristics need to be discovered and 
incorporated to this core.  We have found that 
implementation of some five simple heuristic rules, [1], 
help in disambiguation of messed up AVPs almost to 
completeness. In cases of disambiguation of AFPs and 
OIPs even smaller number of such heuristic rules is very 
much apparent. On the other hand, suitable inexact or 
approximate string matching procedures are in a high 
demand for the core of the engine, [17, 22]. The adoption 
of the method of Longest Common Subsequence along 
with the whole collection of candidate-limiting techniques 

enables us, [1], to make potentially intractable matching 
procedures very much competitive computationally.  
In addition to the above, supervised learning in various 
forms like upgrading enhanced data dictionary, sets of 
finite state machines etc. deserves special mentioning. The 
procedures are negligibly simple. Once the supervisor is 
convinced he is supposed to add or delete an entry in a 
particular table. Although, in case of a necessity a new 
finite state machine may be required to be designed, and it 
is a common song just from another opera. The process of 
introducing it to the system is again very simple. It is just 
including to the existing set a new table.  

8. Empirical Justification 

Experimental setup for justifying our ontology enrichment 
scheme was designed based on three easily comprehensible 
database systems, namely, RPS (Result Processing System 
for course evaluation of students of a university), ATIS 
(Air Travel Information System of a travel agency) and 
EIMS (Employee Information Management System of an 
organization). The quantitative outline of the data set we 
used is shown in Table 8.1. It has been noted that although 
we tried to be quite extensive  and exhaustive in finding 
possible relations, attributes and their synonyms in each of 
the systems, the number of entries in the TVT, OIP table 
and AFP terms table remained consistently and 
comprehensibly small. 
We were guided by the fact that our approach differed 
from other known approaches substantially, and thus we 
would concentrate on showing usefulness of the 
transformation we offer for NLQs and also demonstrating 
effectiveness and efficiency of the process. 

TABLE 8.1.   Experimental Data Sets Cardinalities 

System Relations Distinct 
Attributes 

Attribute 
Synonyms  

Typical 
Values 

Entries in 
OIP Table 

AFP Terms 

RPS 8 28 112 18 25 16 

ATIS 6 19 123 10 24 14 

EIMS 14 36 155 26 48 20 

 

As far as the usefulness of the transformation is concerned, 
the recognized Phrase Structure Output (PSO) that we 
ultimately get can be easily shown to have distinctive 
relationships with, for example, expressions in SQL 
(Structured Query Language) like query languages for 
information retrieval from a data repository. We here show 
the two typical examples of transformation cited in section 
6 with possible SQL expressions corresponding to them. 

Query: What are the names, resident addresses and 
CGPAs of the students bearing id numbers 
050204001 and 050204009? 

Recognized PSO: ((AP, Name, Student), (AP, Address, 
Student), (AP, CGPA, Student), (OIP, Student), 
(AVP, StudentId, =, “050204001”, Student ); 
(AVP, StudentId, =,  050204009,  Student)) 
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Possible SQL expression: select Name, Address, CGPA 
from Student where (StudentID = “050204001”) 
or (StudentID = “050204009”) 

Query: Can you please display the total number of courses 
offered by the CSE department? 

Recognized PSO: ((AFP, count, CourseId, Course), (AVP, 
DeptName, CSE, Course)) 

Possible SQL expression: Select count(CourseId) from 
Course where DeptName = “CSE”  

To check the effectiveness we used batches of sample 
NLQs for each of the three database systems keeping in 
mind diversity of linguistic terms and complexity of 
formulation. Available benchmark data sets were also 
consulted in this regard. Representative phrase detection 
with PSO recognition outcome for RPS is shown in Table 
8.2. Observations show that the failure cases are mostly 
related to very uncommon styles of query formulation. 
Effectiveness of the system is thus quite explicit. 

Success in detection of AVPs in EIMS, for example, using 
heuristic rules discussed earlier is shown in the Figure 8.1. 

 

 

Improvements done involving supervised learning 
(training) in average error reduction in ATIS, for example, 
is shown in Figure 8.2. 

 

 

For assessing efficiency we depended on average response 
time in returning recognized phrase structures. If the 
normalization is considered an interactive entry-time 
process, then the response time, even for a slow personal 
computer, is not at all noticeable; otherwise it is just a 
small fraction of a second. We show the result, taking 
normalized queries, some of them replicated, and 
executing in a 2.60 GHz personal computer, for all the 
three systems, in Table 8.3. 
We find that the time required for returning a recognized 
phrase structure is very small in comparison to time 
required for entering a query or formulating and executing 
an SQL like query. 
 

 

Table 8.2. Sample phrase detection and phrase structure recognition in RPS 
Query Number  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Actual APs 1 2 3 1 2 1 3 2 2 2 1 2 2 4 5 

Identified APs 1 2 3 1 2 1 3 2 1 2 1 2 2 4 5 

Actual AVPs 3 2 5 2 2 1 2 6 2 3 1 2 1 2 3 

Identified AVPs 3 2 4 2 2 1 2 6 2 3 1 1 1 2 3 

Recognized PSO  + + - + + + + + - + + - + + + 

Table 8.3. Average time required for returning recognized phrase structures in RPS 
System Total Number of 

NLQs 

Total Time for Phrase Structure 

Recognition 

Average Time Per 

Phrase Structure 

RPS 500 48.20 sec 0.0964 sec 
ATIS 400 34.24 sec 0.0856 sec 
EIMS 400 24.68 sec 0.0617 sec 

 

          Fig. 8.1. AVP detection in EIMS (before training cycles) 

Fig. 8.2. Error reduction and learning rates in ATIS 
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8. Discussion 

A methodology for enrichment of domain knowledgebases 
is the object taken for illustration in the paper. A domain 
knowledgebase has been supposed to resemble a database 
system that has all components of a domain ontology. As 
information repositories for common people are being 
considered, so retrieval techniques appropriate for 
commoners follow. A system in such an environment needs 
to be natural language oriented where domain knowledge 
is easy to interpret and share in bigger domains. This is 
how reference to domain knowledgebase and ontology 
came to the scene.  
Useful transformation of queries in English posed to a 
domain knowledgebase has been the objective of the 
investigation. It is evident that a relatively small number of 
basic structures involving significant phrases are there in 
natural language queries. This was the stimulation for 
going to search for some new solutions to an old problem.  
Further, we believe that extensive use of natural language 
grammars may be avoided. If it is so, then we need to 
handle less ambiguity. And portability across domains as 
well as natural languages seems more easily achievable by 
dealing with phrase structures in sentences avoiding 
grammatical nuances. Use of finite state machines for 
effectiveness and efficiency appears very appropriate for 
the purpose. 
It is also evident that we can avoid exhaustive token 
matching by isolating the significant phrases first. Token 
matching becomes intractable in wider range. 
Nontraditional techniques like partial matching, heuristics 
in the form of studying prefixes and suffixes, etc. help to a 
great extent in this regard. May it be the case of finding an 
attribute value phrase or mapping an aggregation term, 
heuristics regarding the structure, content and size of the 
target phrases play an important role in inexact matching. 
We also find that a kind of generality may be achieved by 
accommodating techniques that find phrase structures from 
the types of sentences other than those we investigated. 
Thus the methodology can be tried as a tool to shed an 
insight into understanding sentences in general.  We may 
consider the representation of the world to be a collection 
of semantic networks or domain ontology of various things. 
So, beside efficiently constructing intelligent interfaces to 
databases for mass use, we may think of pure linguistic 
research. 
The languages which allow deliberate separation of 
significant phrases are most suitable as targets. English and 
Universal Natural Language (UNL), [8], are alright in this 
respect. To this end, we think that many a common 
purpose databases may be designed as individual domain 
ontology in UNL, which is very much English like. In that 

case, all people in the community of languages associated 
with UNL can have the benefit.  
One of the most important observations is that such a 
system can be easily trained in the development phase to 
perform remarkably well. Failure cases can just be 
gathered and new entries for the tables of the extended 
database may be looked for. Finite state machines are 
really portable across domains. If necessary a new one can 
just be added. Still, it may not be possible to cover all 
possible variations of the sentence patterns. Additional 
measures have to be thought of.  
Our plan of future works in this field includes, beside other 
relevant matters, investigation of transportability of our 
phrase structure analysis techniques across various types of 
sentences, domains and languages. Moreover, speech 
recognition can also be added to the proposed one so that it 
can process Natural Language Queries by listening from 
the user. However, such systems are supposed to be of 
very complex nature, and some of the linguistic challenges 
will have to be addressed first. We are interested to carry 
on with our research and add efforts to developing natural 
language components for domain knowledgebases. 
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