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Summary 
Frequent term based text clustering is a text clustering technique, 
which uses frequent term set and dramatically decreases the 
dimensionality of the document vector space, thus especially 
addressing: very high dimensionality of the data and very large 
size of the databases. Frequent Term based Clustering algorithm 
(FTC) has shown significant efficiency comparing to some well 
known text clustering methods, but the quality of clustering still 
needs further enhancement. In this paper, the morphological 
variant words, stopwords and grammatical words are identified 
and removed for further dimension reduction. Two effective 
dimension reduction algorithms, improved stemming and 
frequent term generation algorithms have been presented. An 
experiment on classical text documents as well as on web 
documents demonstrates that the developed algorithms yield 
good dimension reduction. 
Key words:  
Dimension reduction, Latent semantic, Information retrieval, 
Text representation, Text documents. 

1. Introduction 

Every day, people encounter a huge amount of information 
and store or represent it as data, for further analysis and 
management. As more text documents are stored in large 
database, it becomes a huge challenge to understand 
hidden patterns or relations in the data [3][5][11]. As text 
data is not in numerical format, it cannot be analysed with 
statistical methods [8].  

Text mining is the process of finding interesting 
patterns in text data and often involves datasets with large 
number of terms. Dimension reduction selects frequent 
terms in the dataset prior to perform Text mining and it is 
important for the accuracy of further analysis as well as for 
the performance. As the redundant and infrequent terms 
could mislead the analysis, it not only increases the 
complexity of the analysis, and also degrades the accuracy 
of the result [2][4][6]. For instance, clustering techniques, 
which partition entities into groups with a minimum level 
of homogeneity within a cluster, may produce inaccurate 
results. Dimension reduction improves the performance of 
clustering techniques by reducing dimensions so that text 
mining procedures process data with a reduced number of 
terms [10][14].  

The conventional dimension reduction techniques are 
not easily applied to text mining application directly (i.e., 
in a manner that enables automatic reduction) because they 
often require ‘a priori’ domain knowledge and/or arcane 
analysis methodologies that are not well understood by end 
users [4][7].To overcome these limitations an improved 
stemming with frequent term generation approach has been 
adopted in this paper. 
 
2. Review of Literature 
 
Fung B.C.M.  et al. (2003) addressed the problem of poor 
clustering accuracy due to the incorrect estimation of the 
number of clusters. Frequent Item set based Hierarchical 
Clustering (FIHC) algorithm has been proposed by Fung 
B.C.M. and it makes use of frequent item set and 
construction of a hierarchical topic tree from the clusters. 
A frequent item set is being used as preliminary step and 
the dimension of each document is drastically reduced, 
which in turn increases efficiency and scalability 
[6][8][15]. The author performed the experiment on a 
Pentium III 667 MHz PC with largest datasets (Reuters) 
and the presented algorithm is more scalable because the 
experiment with 10000 documents shows that FIHC 
algorithm completes its whole process within two minutes 
while Unweighted Pair Group Method with Arithmetic 
Mean (UPGMA) and Hierarchical Frequent Term based 
Clustering (HFTC) could not even produce a clustering 
solution [8][13]. 
 

Bi-secting k-means generates relatively deep 
hierarchies and hence not suitable for browsing [4][13]. 
The other frequent item set based algorithm HFTC [4] 
provides a relatively flat hierarchy but its different 
branches of hierarchy decrease the accuracy. FIHC uses 
sibling merging method and overcomes the problem and it 
gets higher accuracy in browsing [7]. 

 
3. Stemming  
3.1 Description 
Information Retrieval (IR) is essentially a matter of 
deciding which document in a collection should be 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 

 

 

102

retrieved to satisfy a user’s need for information [11]. The 
user’s information need is represented by a query or profile, 
and contains one or more search terms, plus perhaps some 
additional information. The words that appear in 
documents and in queries often have many morphological 
variants. Thus, pairs of terms such as “computing” and 
“computation” will not be recognised as equivalent 
without some form of Natural Language Processing 
(NLP) [9]. 

In most cases, morphological variants of words have 
similar semantic interpretations and can be considered as 
equivalent for the purpose of IR applications. For this 
reason, a number of so-called stemming algorithms or 
stemmers have been developed, which attempt to reduce a 
word to its stem or root form [12]. Stemmer is a program 

or algorithm which determines the morphological root of a 
given inflected word form, involves the suffix removal.  
An algorithm which attempts to convert a word to its 
linguistically correct root is sometimes called a lemmatizer.  

 
The ‘rules’ for removing a suffix will be given in the 

form 
(condition)  S1  →  S2 

where S1 denotes suffix string of a word before stemming 
and S2 denotes the replacement string of  word after 
stemming. The above rule implies that if a word ends with 
the suffix S1 and the stem before S1 satisfies the given 
condition, S1 is replaced by S2. 
 

 

 

         
 

 

                                     

 

 

 

 

 

 

 

 

  

 

  

Step 1                

Rule 1:  
If word ends with S and matches 
with suffix S1 (IES, SS,  S) 

Rule 2: 
If word ends with suffix S1 (EED, ED, 
ING) and stem before S1 contains 
consonants (*v*) 

Rule 3: 
If word ends with suffix S1 (AT, BL, 
IZ), stem before S1 ends with double 
consonants( *d) 

Matched : 
Remove ES and S 

Matched, Condition met:  
Remove ED and ING 

Matched, Condition met : 
Replace S1 by S2, replace 
with single character 

Step 2 
Word ends with suffix S1 (TIONAL, IZATION, IVENESS, etc., )and 
m > 0 then replace S1 by S2 

Step 3 
Word ends with suffix S1 (ICATE, ICAL, NESS, etc.,) and m > 0 
then replace S1 by S2 

Step 4 
Word ends with suffix S1 (ANCE, ABLE, EMENT, etc.,) and m > 1 
then replace S1 by S2 

Step 5 
Word ends with E and m ≥ 1 then replace S1 by S2   

word

Rule 4: 
If word ends with Y

Stem (S2)

 Matched: Replace with I 

 
Figure 1 Steps involved in stemming algorithm 
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*S1 – suffix string to be tested 

*S2 – replacement string after satisfying the condition 
A word is represented in the form of vowel (V) and 
consonant(C), a measure m denotes the number of times the 
vowel and consonant sequence (VC) is repeated in a word. 
The condition part may also contain the following: 
*S   - the stem ends with S (and similarly for the   
         other letters). 
*v* - the stem contain a vowel. 
*d   - the stem ends with a double consonant  
         (E.g.   –TT, -SS). 
*o   - the stem ends CVC, where the second c is    
         not W, X or Y (E. g. –WIO, -HOP). 
and the condition part may also contain expressions with 
\and\, \or\ and  \not\, so that 
  (m>1 and *S or *T) 
tests for a stem with m>1 ending in S or T, while  
 (*d and not *L or *S or *Z) 
tests for a stem ending with a double consonant other than 
L, S or Z.  

3.2 Algorithm 
The Porter Stemmer is a conflation stemmer developed by 
Martin Porter at the University of Cambridge in 1980. The  
stemmer is a linear step stemmer and it has five steps 
applying rules within each step [12]. Within each step, if a 
suffix rule matched a word, then the conditions attached to 
that rule are tested on what would be the resulting stem, if 
that suffix is removed, in the way defined by the rule. 

The first step of the algorithm is designed to deal with 
past participles and plurals. This step is the most complex 
and is separated into four parts in the original definition. 
The first part deals with plurals and removes ES and S in 
the word. The second part removes ED and ING. The third 
part continues only if ED or ING is removed and transforms 
the remaining stem to ensure that certain suffixes are 
recognised and if ends with double consonant then replace 
with single consonant. The fourth part simply transforms a 
terminal “y” to an “i” and this part is inserted as step 2 in 
the flowchart (figure 1). 

The remaining steps are relatively straightforward and 
contain rules to deal with different order classes of suffixes, 
initially transforming double suffixes to a single suffix and 
then removing suffixes, provided the relevant conditions are 
met. 

 
 
3.3 Assumptions 

In general, documents are clustered, based on context 
matching or similarity. Mostly, the contexts of documents 
are represented by nouns. Based on this, the following 
assumptions have been made in document dimension 
reduction:- 

 Elimination of words which possess less than 3 
characters  

 Elimination of general words (stopwords) 
 Elimination of adverbs and adjectives 
 Elimination of non-noun verbs  

Stopwords, words which are used frequently in the database 
and are not searchable. Most search engines do not consider 
common words in order to save disk space or to speed up 
the search result. These filtered words are known as 
stopwords. A list of 429 common words is eliminated as 
stopwords by using the improved stemming algorithm. The 
stopwords list is obtained from the following link  
http://www.lextek.com/manuals/onix/stopwords.html 
An adverb modifies a verb and it helps to tell “how”, 
“when”, or “where”, the action took place. A list of 8854 
words is eliminated as  
adverb by the improved stemming algorithm. The links to 
obtain adverb and verbs are  
http://www.esldesk.com/vocabulary/adverbs 
http://www.englishclub.com/vocabulary/regular-verbs-
list.htm 
An adjective is a word that describes or modifies a noun or 
pronoun. There are 1814 adjectives in the list. The link to 
obtain adjectives is  
http://www.esldesk.com/vocabulary/adjectives 
The following assumptions have been made to achieve 
frequent term generation: 

 For small document, each line is treated as a 
record 

 For large document, each paragraph is treated as a 
record. 

 
3.4 An Illustrative Sample 
 

Consider a small sample text document for illustration, 
which consists of 4 lines having 44 words. 

Source File Content: 
 
 
 
 
 
 
 
 
 
Total number of words: 44 
Number of Stopwords: 26 
Number of Adverb, Adjectives and Verbs: 18 
 

The stemmed and improved stemming algorithms have 
been tested for the following three test cases. 
 

The purpose of system study is to maximize 
our profit. Our profits are maximized by 
selling more products. In order to sell more 
products, the product prize must be less and 
reliable. The net profit is decided by the net 
sales over a period.  
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Stemming Output: 
Test Case 1: Stemming alone  
 

In this process the suffixes are alone removed to form 
root word (suffix stripping). The output of the execution of 
the improved stemming algorithm is as follows:- 
 
 
 
 
 
 
 
 
 
Total number of words: 44 
  

First the basic Porter’s algorithm is chosen, which was 
downloaded from  
http://tartarus.org/~martin/PorterStemmer/index-old.html. 
The corresponding stemmed output consists of 44 words 
with only suffixes are stripped off for the conflated words. 
 
Improved Stemming Output: 
Test Case 2: Stemming with Stopword 

Along with suffix stripping the word which are used 
frequently and carry no useful information about the 
context are removed as stopwords. The corresponding 
output is shown below. 
 
 
 
 
 
 
 
 
Total number of words: 18 
 

In the above output, the Porter’s algorithm has been 
modified to eliminate the stopwords like “I”, “am”, “will”, 
“do”, “you”, etc.,. The stemmed output is reduced to 18 

words from the original 44 words, giving 59.09% ((44-
18)/44*100) dimension reduction. 
 
Test Case 3: Stemming with Stopword,                         
                       Adverbs, Adjectives,Verbs  
                        

In this study, along with test cases 1 and 2, the 
grammatical words, adverbs, adjectives and verbs are 
removed. Then the output consists of the following   
 
 
 
 
 
Total number of Words: 5 
 

In addition, the algorithm is modified to eliminate 
stopwords as well as the grammatical words of verbs, 
adverbs and adjectives listed by the standard linguistic list 
(link shown in 3.3) and the number of stemmed words now 
becomes 5, giving a reduction of 88.64% ((44-5)/44*100). 

 
4. Intermediate Term Generation 
 

The aim of Intermediate Term Generation (ITG) is to 
generate index code for each stemmed document. The 
stemmed terms are arranged in the form of records or lines 
as in the given document are the seed for this procedure and 
are called Stemmed Record List. The procedure includes 
the following steps: 

 
 Preparation of term list – the terms are arranged in 

ascending order to assign an index number for 
every term. 

 Preparation of term index code – the terms in the 
record list are replaced by the corresponding index 
number for frequent term generation.   

 

 ITG Procedures  

The objective of the procedure GenerateTermList is to 
prepare TermList which are stored in ascending order to 
assign index value. In step 3, the stemmed terms are added 
from StemmedRecordList to a list called TermListArray, 
where the redundant terms are stored only once. In step 6, 
the terms are sorted in ascending order of terms. 

The  purpose  of  system  studi  is  to  maxim  
our  profit  our  profit  ar  maxim  by  sell  
more product  in  order  to  sell  more  product  
the  product  prize  must  be  less  and  reliabl  
the  net  profit  is  decid  by  the  net  sale  over  
a  period 

product     product    product     reliabl   
period 

Purpose     system     studi     profit     profit   
sell     product     order     sell     product   
product      prize         reliabl     net         profit   
decid     net        period 
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Input: StemmedRecordList  

Output: TermListArray 

GenerateTermList( ) 

1. Initialise no_of_terms = 0 

2. For each term in StemmedRecordList 

3.    Add term to TermListArray 

4.    Increment no_of_terms by 1 

5.  Next loop (term) 

6. Sort TermListArray in ascending order of terms 

7. return (TermListArray) 

 
 
Figure 2 Procedure for generation of TermList 
 

The main function of generation of term index 
procedure is to assign index value for each record term list. 
In step 3 and 4, for each term in the StemmedRecordList, 
the corresponding index value is obtained from 
TermListArray and stored in TermIndexrecord file in row 
major order. Each TermIndexrecord is sorted in index 
order in step 6. 
 

 
Input: TermListArray, StemmedRecordList 
Output : TermIndexrecord 
TermIndexGeneration( ) 
1.  For each record r in StemmedRecordList 
2.    For each term t in record 
3.       Get the index of the term in TermListArray 
4.        Write index into TermIndexrecord 
5.     Next loop (t) 
6.   Sort the TermIndexrecord based on index 
7.  Next loop (r) 
8. return (TermIndexrecord) 

 
     Figure 3 Procedure for generation of TermIndex 
  
An Illustration 
Stemmed File: 
purpos system studi profit profit sell product order sell 
product product prize reliabl net profit decid net period 
 
StemmedRecord List: 
1. purpos system studi profit 
2. profit sell product 

3. order sell product product prize reliabl 
4. net profit decid net period 
 
TermListArray: 
 
 
 
  
 
 
 
 
 
 
 
TermIndexrecord: 
 
6  7  10  11  
5  6   9  
2  4   5    8   9  
0  1   3    6  
 
5. Binary Code Conversion 
One-to-one Mapping Procedure 
 
A one-to-one mapping between Index value and binary 
code has been performed. It matches and replaces a binary 
value of either 1 or 0 (text present or absent) for every 
indexed term in the TermIndexrecord. The procedure 
insert a binary 1, where the occurrence of the term in the 
index code value position, otherwise a binary 0, and the 
previous index code values have been filled with binary 
zero. 
 
 Input: TermIndexrecord 

Output: Binary Code 
 

BinaryCodeGeneration( ) 

1.  For each record r in termIndex_file 

2.    Sort record r in ascending order. 

3.     Initialise prevIndex=0 

4.    For each Index in TermIndexrecord 

5.         Insert (Index-prevIndex-1) 0’s to binarycoded file 

6.         Insert 1’s to binarycode 

7.     Assign prevIndex=Index 

8.    Next loop (Index) 

9.  Next loop (r) 

  
  Figure 4 Procedure for Binary Code Conversion 

      0    1        2     3      4  
decid    net   order    period     prize 
 
     5        6       7           8            9    
product   profit   purpose   reliabl   sell    
  
    10        11 
studi     system  
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The index terms are stored in ascending order of index 
value in step 2. In step 5, binary zeros are inserted upto the 
previous index position of the current index. Then, a 
binary 1 is inserted in the current index position. 

An Illustration 

Consider the following term index code as input, arranged 
in the record forms. 
 
TermIndexrecord: 
6  7  10  11 
5  6   9  
2  4   5    8   9  
0  1   3    6  

 
The corresponding binary codes are mapped as 

follows: 

Binary Code: 
0 0 0 0 0 0 1 1 0 0 1 1  
0 0 0 0 0 1 1 0 0 1 0 0  
0 0 1 0 1 1 0 0 1 1 0 0  
1 1 0 1 0 0 1 0 0 0 0 0  
 
6. Frequent Term Set Generations 
     Descriptions 
 
Apriori is a seminal algorithm proposed by R. Agrawal 
and R. Srikant in 1994 for mining frequent item sets. 
Apriori employs an iterative approach known as level-wise 
search, where k-item sets are used to explore (k+1)-item 
sets. First, the set of frequent 1-item sets is found by 
scanning the database to accumulate the count for each 
item, and collecting those items that satisfy minimum 
support. The resulting set is denoted L1. Next, L1 is used to 
find L2, the set of frequent 2-itemsets, which is used to find 
L3, and so on, until no more frequent k-item sets, is found. 
The finding of each Lk requires one full scan of the 
database. 

To improve the efficiency of the level-wise generation 
of frequent item sets, an important property called the 
Apriori property, is used to reduce the search space [7]. 
Apriori Property: All non-empty subsets of a frequent item 
set must also be frequent. This property belongs to a 
special category of properties called antimonotone, in the 
sense that if a set cannot pass a test all of its supersets will 
fail the same test as well. A two step process is followed, 
consisting of join and prune actions. 

Algorithm for discovering large item sets make 
multiple passes over the data. In the first pass, it count the 
support of individual items and determine which of them 
are large, i.e., have minimum supports. Each subsequent 
pass starts with a seed set of item sets found to be 
large in the previous pass. This seed set is used for 

generating new potentially large item sets, called 
candidate item sets, and count the actual support for 
these candidate item sets during the pass over the 
data. At the end of the pass, it determines which of 
the candidate item sets are actually large, and they 
become the seed for the next pass. This process 
continues until no new large item sets are found. 

The Apriori algorithms [1][7] generate the candidate 
item sets to be counted in a pass by using only the item 
sets found large in the previous pass, without considering 
the documents in the database. The basic intuition is that 
any subset of a large item set must be large. Therefore, the 
candidate item sets having k items can be generated by 
joining large item sets having k-1 items, and deleting those 
that contain any subset that is not large. This procedure 
results in generation of a much smaller number of 
candidate item sets. 

An Illustration 
Consider the above binary coded file as input. The 

corresponding output of frequent term set generation 
algorithm for 20% and 60% minimum support is given 
below.  
Frequent Item Set (Minimum Support: 20%): 

[decid,  net,  order,  period,  prize,  product,  profit,  
purpos,  reliabl,  sell,  studi,  system] 

Frequent Item Set (Minimum Support: 60%): 

[product, profit, sell] 

When the minimum support is 20%, the number of 
terms is reduced from 18 to 12 and thus giving 33.33% 
((18-12)/18*100) reduction. When the minimum support is 
60%, the number of terms are reduced to 3 and gives a 
reduction of 83.33% ((18-3)18*100). 

7. Results and Discussions 
Table 1 represents the memory reduction in terms of 

size of stemming algorithm. The corpus data samples S1 to 
S4 of size 250 KB to 20000 KB are used to test the 
developed stemming algorithm for the test cases 1 to 3. 
The size reduction of case 3 outperforms actual size and 
other cases.  Case 1 represents stemming (suffix stripping), 
case 2 represents Stemming with general and stopwords 
and case 3 represents Stemming with general and grammar 
words. It is observed that case 3, stemming with general 
and grammar words, would perform better than other cases. 
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Table 1 Memory reduction for different data sets 

 
S1- Reuters Transcribed Subset - 200 files- 249 KB 
S2- PDF-54 files-2999 KB 
S3- Mini-News group-2000 files- 4567 KB 
S4- Reuters-21578-22 files- 20275 KB 

 
The reduction chart Figure 5 shows that case 3 algorithm 
performs better than case1 and case 2. 
 

 

Figure 5 Size reduction chart of improved stemming algorithm 

 

 

Figure 6 Size reduction chart of frequent term set generation algorithm 
 

The test cases 11, 21 and 31 with a uniform minimum 
support of 10% are applied to stemmed output of case 1, 2 
and 3 respectively of the original samples S1 to S4. Case 
11 represents frequent term set for case 1, case 21 
represents frequent term set for case 2 and case 31 
represents frequent term set for case 3.The reduction chart 
in Figure 6 shows that case 31 performs better than case 11 
and 21. Similarly, Table 2 represents the words reduction 
of stemming algorithm. The words reduction of case 3 
outperforms actual size and other cases. 

 

Figure 7 Words reduction chart of improved stemming algorithm 
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S1 249 186 135 78 107 81 41

S2 2999 2110 1527 819 64.6 47 24.4

S3 4567 3287 2416 1666 1303 793 570

S4 20275 14851 11300 7081 141 1418 1161
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Table 2 Word Reduction for different data sets 

 

The words reduction chart of three cases is shown in 
Figure 7. The reduction chart shows that case 3 algorithm 
performs better than case 1 and case 2. The words 
reduction chart of three cases is shown in   Figure 8. The 
reduction chart shows that case 31 performs better than 
case 11 and 21. 

 
Figure 8 Words reduction chart of frequent term set generation algorithm 
 
8. Conclusions 

Dimension reduction improves the performance of 
text mining techniques to process the data with a reduced 
number of terms. In this work, two improved dimension 
reduction algorithms namely stemming and frequent term 

generations are developed and tested. The morphological 
variant in the given document, stopping words and 
grammatical words are identified and removed by 
stemming algorithms. The algorithms have been tested for 
three test cases and the improved stemming algorithm 
yields good results. The procedure TermList and 
TermIndexGeneration are used to generate sorted term list 
and its index value, which are used to generate the binary 
code value for the reduced terms. The frequent term set 
generation algorithm when applied on the output generated 
by the modified stemming algorithm yields good results. 
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