
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

101

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

Effective Dimension Reduction Techniques for
Text Documents

P. Ponmuthuramalingam1 and T. Devi2

1Department of Computer Science, Government Arts College, Coimbatore, India
2School of Computer Science and Engineering, Bharathiar University, Coimbatore, India

Summary
Frequent term based text clustering is a text clustering technique,
which uses frequent term set and dramatically decreases the
dimensionality of the document vector space, thus especially
addressing: very high dimensionality of the data and very large
size of the databases. Frequent Term based Clustering algorithm
(FTC) has shown significant efficiency comparing to some well
known text clustering methods, but the quality of clustering still
needs further enhancement. In this paper, the morphological
variant words, stopwords and grammatical words are identified
and removed for further dimension reduction. Two effective
dimension reduction algorithms, improved stemming and
frequent term generation algorithms have been presented. An
experiment on classical text documents as well as on web
documents demonstrates that the developed algorithms yield
good dimension reduction.
Key words:
Dimension reduction, Latent semantic, Information retrieval,
Text representation, Text documents.

1. Introduction

Every day, people encounter a huge amount of information
and store or represent it as data, for further analysis and
management. As more text documents are stored in large
database, it becomes a huge challenge to understand
hidden patterns or relations in the data [3][5][11]. As text
data is not in numerical format, it cannot be analysed with
statistical methods [8].

Text mining is the process of finding interesting
patterns in text data and often involves datasets with large
number of terms. Dimension reduction selects frequent
terms in the dataset prior to perform Text mining and it is
important for the accuracy of further analysis as well as for
the performance. As the redundant and infrequent terms
could mislead the analysis, it not only increases the
complexity of the analysis, and also degrades the accuracy
of the result [2][4][6]. For instance, clustering techniques,
which partition entities into groups with a minimum level
of homogeneity within a cluster, may produce inaccurate
results. Dimension reduction improves the performance of
clustering techniques by reducing dimensions so that text
mining procedures process data with a reduced number of
terms [10][14].

The conventional dimension reduction techniques are
not easily applied to text mining application directly (i.e.,
in a manner that enables automatic reduction) because they
often require ‘a priori’ domain knowledge and/or arcane
analysis methodologies that are not well understood by end
users [4][7].To overcome these limitations an improved
stemming with frequent term generation approach has been
adopted in this paper.

2. Review of Literature

Fung B.C.M. et al. (2003) addressed the problem of poor
clustering accuracy due to the incorrect estimation of the
number of clusters. Frequent Item set based Hierarchical
Clustering (FIHC) algorithm has been proposed by Fung
B.C.M. and it makes use of frequent item set and
construction of a hierarchical topic tree from the clusters.
A frequent item set is being used as preliminary step and
the dimension of each document is drastically reduced,
which in turn increases efficiency and scalability
[6][8][15]. The author performed the experiment on a
Pentium III 667 MHz PC with largest datasets (Reuters)
and the presented algorithm is more scalable because the
experiment with 10000 documents shows that FIHC
algorithm completes its whole process within two minutes
while Unweighted Pair Group Method with Arithmetic
Mean (UPGMA) and Hierarchical Frequent Term based
Clustering (HFTC) could not even produce a clustering
solution [8][13].

Bi-secting k-means generates relatively deep
hierarchies and hence not suitable for browsing [4][13].
The other frequent item set based algorithm HFTC [4]
provides a relatively flat hierarchy but its different
branches of hierarchy decrease the accuracy. FIHC uses
sibling merging method and overcomes the problem and it
gets higher accuracy in browsing [7].

3. Stemming
3.1 Description
Information Retrieval (IR) is essentially a matter of
deciding which document in a collection should be

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

102

retrieved to satisfy a user’s need for information [11]. The
user’s information need is represented by a query or profile,
and contains one or more search terms, plus perhaps some
additional information. The words that appear in
documents and in queries often have many morphological
variants. Thus, pairs of terms such as “computing” and
“computation” will not be recognised as equivalent
without some form of Natural Language Processing
(NLP) [9].

In most cases, morphological variants of words have
similar semantic interpretations and can be considered as
equivalent for the purpose of IR applications. For this
reason, a number of so-called stemming algorithms or
stemmers have been developed, which attempt to reduce a
word to its stem or root form [12]. Stemmer is a program

or algorithm which determines the morphological root of a
given inflected word form, involves the suffix removal.
An algorithm which attempts to convert a word to its
linguistically correct root is sometimes called a lemmatizer.

The ‘rules’ for removing a suffix will be given in the

form
(condition) S1 → S2

where S1 denotes suffix string of a word before stemming
and S2 denotes the replacement string of word after
stemming. The above rule implies that if a word ends with
the suffix S1 and the stem before S1 satisfies the given
condition, S1 is replaced by S2.

Step 1

Rule 1:
If word ends with S and matches
with suffix S1 (IES, SS, S)

Rule 2:
If word ends with suffix S1 (EED, ED,
ING) and stem before S1 contains
consonants (*v*)

Rule 3:
If word ends with suffix S1 (AT, BL,
IZ), stem before S1 ends with double
consonants(*d)

Matched :
Remove ES and S

Matched, Condition met:
Remove ED and ING

Matched, Condition met :
Replace S1 by S2, replace
with single character

Step 2
Word ends with suffix S1 (TIONAL, IZATION, IVENESS, etc.,)and
m > 0 then replace S1 by S2

Step 3
Word ends with suffix S1 (ICATE, ICAL, NESS, etc.,) and m > 0
then replace S1 by S2

Step 4
Word ends with suffix S1 (ANCE, ABLE, EMENT, etc.,) and m > 1
then replace S1 by S2

Step 5
Word ends with E and m ≥ 1 then replace S1 by S2

word

Rule 4:
If word ends with Y

Stem (S2)

 Matched: Replace with I

Figure 1 Steps involved in stemming algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

103

*S1 – suffix string to be tested

*S2 – replacement string after satisfying the condition
A word is represented in the form of vowel (V) and
consonant(C), a measure m denotes the number of times the
vowel and consonant sequence (VC) is repeated in a word.
The condition part may also contain the following:
*S - the stem ends with S (and similarly for the
 other letters).
v - the stem contain a vowel.
*d - the stem ends with a double consonant
 (E.g. –TT, -SS).
*o - the stem ends CVC, where the second c is
 not W, X or Y (E. g. –WIO, -HOP).
and the condition part may also contain expressions with
\and\, \or\ and \not\, so that
 (m>1 and *S or *T)
tests for a stem with m>1 ending in S or T, while
 (*d and not *L or *S or *Z)
tests for a stem ending with a double consonant other than
L, S or Z.

3.2 Algorithm
The Porter Stemmer is a conflation stemmer developed by
Martin Porter at the University of Cambridge in 1980. The
stemmer is a linear step stemmer and it has five steps
applying rules within each step [12]. Within each step, if a
suffix rule matched a word, then the conditions attached to
that rule are tested on what would be the resulting stem, if
that suffix is removed, in the way defined by the rule.

The first step of the algorithm is designed to deal with
past participles and plurals. This step is the most complex
and is separated into four parts in the original definition.
The first part deals with plurals and removes ES and S in
the word. The second part removes ED and ING. The third
part continues only if ED or ING is removed and transforms
the remaining stem to ensure that certain suffixes are
recognised and if ends with double consonant then replace
with single consonant. The fourth part simply transforms a
terminal “y” to an “i” and this part is inserted as step 2 in
the flowchart (figure 1).

The remaining steps are relatively straightforward and
contain rules to deal with different order classes of suffixes,
initially transforming double suffixes to a single suffix and
then removing suffixes, provided the relevant conditions are
met.

3.3 Assumptions

In general, documents are clustered, based on context
matching or similarity. Mostly, the contexts of documents
are represented by nouns. Based on this, the following
assumptions have been made in document dimension
reduction:-

 Elimination of words which possess less than 3
characters

 Elimination of general words (stopwords)
 Elimination of adverbs and adjectives
 Elimination of non-noun verbs

Stopwords, words which are used frequently in the database
and are not searchable. Most search engines do not consider
common words in order to save disk space or to speed up
the search result. These filtered words are known as
stopwords. A list of 429 common words is eliminated as
stopwords by using the improved stemming algorithm. The
stopwords list is obtained from the following link
http://www.lextek.com/manuals/onix/stopwords.html
An adverb modifies a verb and it helps to tell “how”,
“when”, or “where”, the action took place. A list of 8854
words is eliminated as
adverb by the improved stemming algorithm. The links to
obtain adverb and verbs are
http://www.esldesk.com/vocabulary/adverbs
http://www.englishclub.com/vocabulary/regular-verbs-
list.htm
An adjective is a word that describes or modifies a noun or
pronoun. There are 1814 adjectives in the list. The link to
obtain adjectives is
http://www.esldesk.com/vocabulary/adjectives
The following assumptions have been made to achieve
frequent term generation:

 For small document, each line is treated as a
record

 For large document, each paragraph is treated as a
record.

3.4 An Illustrative Sample

Consider a small sample text document for illustration,
which consists of 4 lines having 44 words.

Source File Content:

Total number of words: 44
Number of Stopwords: 26
Number of Adverb, Adjectives and Verbs: 18

The stemmed and improved stemming algorithms have
been tested for the following three test cases.

The purpose of system study is to maximize
our profit. Our profits are maximized by
selling more products. In order to sell more
products, the product prize must be less and
reliable. The net profit is decided by the net
sales over a period.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

104

Stemming Output:
Test Case 1: Stemming alone

In this process the suffixes are alone removed to form
root word (suffix stripping). The output of the execution of
the improved stemming algorithm is as follows:-

Total number of words: 44

First the basic Porter’s algorithm is chosen, which was
downloaded from
http://tartarus.org/~martin/PorterStemmer/index-old.html.
The corresponding stemmed output consists of 44 words
with only suffixes are stripped off for the conflated words.

Improved Stemming Output:
Test Case 2: Stemming with Stopword

Along with suffix stripping the word which are used
frequently and carry no useful information about the
context are removed as stopwords. The corresponding
output is shown below.

Total number of words: 18

In the above output, the Porter’s algorithm has been
modified to eliminate the stopwords like “I”, “am”, “will”,
“do”, “you”, etc.,. The stemmed output is reduced to 18

words from the original 44 words, giving 59.09% ((44-
18)/44*100) dimension reduction.

Test Case 3: Stemming with Stopword,
 Adverbs, Adjectives,Verbs

In this study, along with test cases 1 and 2, the
grammatical words, adverbs, adjectives and verbs are
removed. Then the output consists of the following

Total number of Words: 5

In addition, the algorithm is modified to eliminate
stopwords as well as the grammatical words of verbs,
adverbs and adjectives listed by the standard linguistic list
(link shown in 3.3) and the number of stemmed words now
becomes 5, giving a reduction of 88.64% ((44-5)/44*100).

4. Intermediate Term Generation

The aim of Intermediate Term Generation (ITG) is to
generate index code for each stemmed document. The
stemmed terms are arranged in the form of records or lines
as in the given document are the seed for this procedure and
are called Stemmed Record List. The procedure includes
the following steps:

 Preparation of term list – the terms are arranged in

ascending order to assign an index number for
every term.

 Preparation of term index code – the terms in the
record list are replaced by the corresponding index
number for frequent term generation.

 ITG Procedures

The objective of the procedure GenerateTermList is to
prepare TermList which are stored in ascending order to
assign index value. In step 3, the stemmed terms are added
from StemmedRecordList to a list called TermListArray,
where the redundant terms are stored only once. In step 6,
the terms are sorted in ascending order of terms.

The purpose of system studi is to maxim
our profit our profit ar maxim by sell
more product in order to sell more product
the product prize must be less and reliabl
the net profit is decid by the net sale over
a period

product product product reliabl
period

Purpose system studi profit profit
sell product order sell product
product prize reliabl net profit
decid net period

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

105

Input: StemmedRecordList

Output: TermListArray

GenerateTermList()

1. Initialise no_of_terms = 0

2. For each term in StemmedRecordList

3. Add term to TermListArray

4. Increment no_of_terms by 1

5. Next loop (term)

6. Sort TermListArray in ascending order of terms

7. return (TermListArray)

Figure 2 Procedure for generation of TermList

The main function of generation of term index
procedure is to assign index value for each record term list.
In step 3 and 4, for each term in the StemmedRecordList,
the corresponding index value is obtained from
TermListArray and stored in TermIndexrecord file in row
major order. Each TermIndexrecord is sorted in index
order in step 6.

Input: TermListArray, StemmedRecordList
Output : TermIndexrecord
TermIndexGeneration()
1. For each record r in StemmedRecordList
2. For each term t in record
3. Get the index of the term in TermListArray
4. Write index into TermIndexrecord
5. Next loop (t)
6. Sort the TermIndexrecord based on index
7. Next loop (r)
8. return (TermIndexrecord)

 Figure 3 Procedure for generation of TermIndex

An Illustration
Stemmed File:
purpos system studi profit profit sell product order sell
product product prize reliabl net profit decid net period

StemmedRecord List:
1. purpos system studi profit
2. profit sell product

3. order sell product product prize reliabl
4. net profit decid net period

TermListArray:

TermIndexrecord:

6 7 10 11
5 6 9
2 4 5 8 9
0 1 3 6

5. Binary Code Conversion
One-to-one Mapping Procedure

A one-to-one mapping between Index value and binary
code has been performed. It matches and replaces a binary
value of either 1 or 0 (text present or absent) for every
indexed term in the TermIndexrecord. The procedure
insert a binary 1, where the occurrence of the term in the
index code value position, otherwise a binary 0, and the
previous index code values have been filled with binary
zero.

 Input: TermIndexrecord

Output: Binary Code

BinaryCodeGeneration()

1. For each record r in termIndex_file

2. Sort record r in ascending order.

3. Initialise prevIndex=0

4. For each Index in TermIndexrecord

5. Insert (Index-prevIndex-1) 0’s to binarycoded file

6. Insert 1’s to binarycode

7. Assign prevIndex=Index

8. Next loop (Index)

9. Next loop (r)

 Figure 4 Procedure for Binary Code Conversion

 0 1 2 3 4
decid net order period prize

 5 6 7 8 9
product profit purpose reliabl sell

 10 11
studi system

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

106

The index terms are stored in ascending order of index
value in step 2. In step 5, binary zeros are inserted upto the
previous index position of the current index. Then, a
binary 1 is inserted in the current index position.

An Illustration

Consider the following term index code as input, arranged
in the record forms.

TermIndexrecord:
6 7 10 11
5 6 9
2 4 5 8 9
0 1 3 6

The corresponding binary codes are mapped as

follows:

Binary Code:
0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 0 0 1 0 0
0 0 1 0 1 1 0 0 1 1 0 0
1 1 0 1 0 0 1 0 0 0 0 0

6. Frequent Term Set Generations
 Descriptions

Apriori is a seminal algorithm proposed by R. Agrawal
and R. Srikant in 1994 for mining frequent item sets.
Apriori employs an iterative approach known as level-wise
search, where k-item sets are used to explore (k+1)-item
sets. First, the set of frequent 1-item sets is found by
scanning the database to accumulate the count for each
item, and collecting those items that satisfy minimum
support. The resulting set is denoted L1. Next, L1 is used to
find L2, the set of frequent 2-itemsets, which is used to find
L3, and so on, until no more frequent k-item sets, is found.
The finding of each Lk requires one full scan of the
database.

To improve the efficiency of the level-wise generation
of frequent item sets, an important property called the
Apriori property, is used to reduce the search space [7].
Apriori Property: All non-empty subsets of a frequent item
set must also be frequent. This property belongs to a
special category of properties called antimonotone, in the
sense that if a set cannot pass a test all of its supersets will
fail the same test as well. A two step process is followed,
consisting of join and prune actions.

Algorithm for discovering large item sets make
multiple passes over the data. In the first pass, it count the
support of individual items and determine which of them
are large, i.e., have minimum supports. Each subsequent
pass starts with a seed set of item sets found to be
large in the previous pass. This seed set is used for

generating new potentially large item sets, called
candidate item sets, and count the actual support for
these candidate item sets during the pass over the
data. At the end of the pass, it determines which of
the candidate item sets are actually large, and they
become the seed for the next pass. This process
continues until no new large item sets are found.

The Apriori algorithms [1][7] generate the candidate
item sets to be counted in a pass by using only the item
sets found large in the previous pass, without considering
the documents in the database. The basic intuition is that
any subset of a large item set must be large. Therefore, the
candidate item sets having k items can be generated by
joining large item sets having k-1 items, and deleting those
that contain any subset that is not large. This procedure
results in generation of a much smaller number of
candidate item sets.

An Illustration
Consider the above binary coded file as input. The

corresponding output of frequent term set generation
algorithm for 20% and 60% minimum support is given
below.
Frequent Item Set (Minimum Support: 20%):

[decid, net, order, period, prize, product, profit,
purpos, reliabl, sell, studi, system]

Frequent Item Set (Minimum Support: 60%):

[product, profit, sell]

When the minimum support is 20%, the number of
terms is reduced from 18 to 12 and thus giving 33.33%
((18-12)/18*100) reduction. When the minimum support is
60%, the number of terms are reduced to 3 and gives a
reduction of 83.33% ((18-3)18*100).

7. Results and Discussions
Table 1 represents the memory reduction in terms of

size of stemming algorithm. The corpus data samples S1 to
S4 of size 250 KB to 20000 KB are used to test the
developed stemming algorithm for the test cases 1 to 3.
The size reduction of case 3 outperforms actual size and
other cases. Case 1 represents stemming (suffix stripping),
case 2 represents Stemming with general and stopwords
and case 3 represents Stemming with general and grammar
words. It is observed that case 3, stemming with general
and grammar words, would perform better than other cases.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

107

Table 1 Memory reduction for different data sets

S1- Reuters Transcribed Subset - 200 files- 249 KB
S2- PDF-54 files-2999 KB
S3- Mini-News group-2000 files- 4567 KB
S4- Reuters-21578-22 files- 20275 KB

The reduction chart Figure 5 shows that case 3 algorithm
performs better than case1 and case 2.

Figure 5 Size reduction chart of improved stemming algorithm

Figure 6 Size reduction chart of frequent term set generation algorithm

The test cases 11, 21 and 31 with a uniform minimum
support of 10% are applied to stemmed output of case 1, 2
and 3 respectively of the original samples S1 to S4. Case
11 represents frequent term set for case 1, case 21
represents frequent term set for case 2 and case 31
represents frequent term set for case 3.The reduction chart
in Figure 6 shows that case 31 performs better than case 11
and 21. Similarly, Table 2 represents the words reduction
of stemming algorithm. The words reduction of case 3
outperforms actual size and other cases.

Figure 7 Words reduction chart of improved stemming algorithm

D
at

a
Se

ts

A
ct

ua
l S

iz
e

(K
B

) After Stemming Frequent term sets

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
11

C
as

e
21

C
as

e
31

S1 249 186 135 78 107 81 41

S2 2999 2110 1527 819 64.6 47 24.4

S3 4567 3287 2416 1666 1303 793 570

S4 20275 14851 11300 7081 141 1418 1161

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

108

Table 2 Word Reduction for different data sets

The words reduction chart of three cases is shown in
Figure 7. The reduction chart shows that case 3 algorithm
performs better than case 1 and case 2. The words
reduction chart of three cases is shown in Figure 8. The
reduction chart shows that case 31 performs better than
case 11 and 21.

Figure 8 Words reduction chart of frequent term set generation algorithm

8. Conclusions

Dimension reduction improves the performance of
text mining techniques to process the data with a reduced
number of terms. In this work, two improved dimension
reduction algorithms namely stemming and frequent term

generations are developed and tested. The morphological
variant in the given document, stopping words and
grammatical words are identified and removed by
stemming algorithms. The algorithms have been tested for
three test cases and the improved stemming algorithm
yields good results. The procedure TermList and
TermIndexGeneration are used to generate sorted term list
and its index value, which are used to generate the binary
code value for the reduced terms. The frequent term set
generation algorithm when applied on the output generated
by the modified stemming algorithm yields good results.

References

[1]Agrawal R., and Srikant R., Fast algorithm for mining
association rules, Proceedings of 20th International
Conference on Very Large Data Bases, VLDB 94,
Santiago de Chile, Chile, 1994, pp. 487-499.

[2]Ahonen-Myka H., Mining all Maximal Frequent Word
Sequences in a Set of Sentences, Proceedings of the
14th ACM International Conference on Information and
Knowledge Management, 2005, pp. 255-256.

[3]Allan J., HARD Track Overview in TREC High
Accuracy Retrieval from Documents, Proceedings of
the 12th Text Retrieval Conference, 2003, pp. 24-37.

[4]Beil F., Ester M. and Xu X., Frequent Term-based Text
Clustering, Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2002, pp. 436-442.

[5]Frakes B. and Baeza-Yates R., Information Retrieval:
Data Structures and Algorithms. Englewood Cliffs,
N.J.: Prentice Hall, 1992.

[6]Fung B. C. M., Wang K. and Ester M., Hierarchical
Document Clustering using Frequent Item sets,
Proceedings of SIAM International Conference on Data
Mining, 2003, pp. 59-70.

[7]Han J., Kamber M., Data Mining: Concepts and
Techniques, Morgan Kaufmann (Elsevier), 2006.

[8]Han J., Pei J. and Yin Y., Mining frequent patterns
without candidate generation, Proceedings of the ACM
SIGMOD International Conference on Management of
Data (SIGMOD’00), Dallas, Texa, USA, May 2000.

[9]Lin D. and Pantel P., Discovering Word Senses from
Text , Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2002, pp. 615-619.

[10]Liu X. and He P., A study on text clustering algorithms
based on frequent term sets, Proceedings of the first
international conference on advanced data mining and
applications, 2005, pp.347-354.

[11]Manning C.D., Raghavan P. and Schutze H.,
Introduction to Information Retrieval, Cambridge
University Press, Cambridge, UK, 2008.

[12]Porter M.F., An Algorithm for Suffix Stripping,
Program, Vol. 14, no. 3, pp. 130-137, 1980.

[13]Steinbach M., Karypsis G. and Kumar V., A
Comparison of Document Clustering Techniques,
KDD-2000 Workshop on Text Mining, 2000, pp. 203-
215.

D
at

a
Se

ts

A
ct

ua
l N

um
be

r
of

 W
or

ds

After Stemming Frequent term
sets

C
as

e
1

C
as

e
2

C
as

e
3

C
as

e
11

C
as

e
21

C
as

e
31

S1 40
48

9

32
07

6

21
67

2

12
36

7

14
88

8

10
52

0

50
42

S2

44
84

89

32
06

61

20
50

98

97
64

8

77
75

51
96

24
70

S3

62
05

46

46
31

83

28
39

60

16
02

09

13
78

72

18
92

41
79

3

S4

31
33

19
3

24
27

76
5

17
03

67
0

10
18

80
7

14
44

32

12
31

58

10
87

70

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

109

[14]Thammi Reddy K., Shashi M. and Pratap Reddy L.,
Hybrid Clustering Approach for Concept Generation,
International Journal of Computer Science and
Network Security (IJCSNS), VOL. 7 NO.4, April 2007.

[15]Yanjun Li, Congnan Luo, Soon M. Chung, Text
clustering with feature selection by using Statistical
Data, IEEE Transactions on Knowledge and Data
Engineering, 2008. Vol.20, pp. 641-652.

P.Ponmuthuramalingam received his
Masters Degree in Computer Science
from Alagappa University,Karaikudi in
1988 and the M.Phil in Computer Science
from Bharathidasan University,
Tiruchirapalli. He is working as Associate
Professor in Computer Science,
Government Arts College, Coimbatore
since 1989. His research interest includes

Text mining, Semantic Web, Network Security and Parallel
Algorithms .

T.Devi received the Master of Computer
Applications from P.S.G. College of
Technology, Coimbatore in 1987 and
Ph.D from the University of Warwick,
United Kingdom in 1998. She is presently
heading Department of Computer
Application, School of Computer Science
and Engineering, Bharathiar University,
Coimbatore. Prior to joining Bharathiar

University, she was an Associate Professor in Indian Institute of
Foreign Trade, New Delhi. Her current research centered on the
Software Engineering, Product Introduction, Technical Process
Management and Concurrent Engineering. She has contributed
more than 60 papers in various National / International /
conference/ Seminars /Symposia.

