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Summary 
Determining protein function on a proteomic scale is a major 
challenge in the post-genomic era. Right now only less than half 
of the actual functional annotations are available for a typical 
proteome. The recent high-throughput bio-techniques have 
provided us large-scale protein– protein interaction (PPI) data, 
and many studies have shown that function prediction from PPI 
data is a promising way as proteins are likely to collaborate for a 
common purpose. However, the protein interaction data is very 
noisy, which makes the task very challenging. 
In this paper, a Parzen Window classifier is proposed to predict 
protein functions using IntAct protein interaction dataset. We 
present a probabilistic framework for predicting functions of 
unknown proteins based on incorporating Parzen Windows in the 
Bayesian formula. We use the leave-one-out cross validation to 
compare the performance. The experimental results demonstrate 
that our algorithm performs better than other competing methods 
in terms of prediction accuracy 
Keywords: 
Parzen Windows, protein function, protein-protein interactions, 
Bayesian classifier 

1. Introduction 

Since the completion of sequencing the human genome [1], 
discovering the underlying principles of interactions and 
the functional roles of proteins has been in the spotlight in 
the post-genomic era. The functional characterization of 
newly determined proteins has become one of the most 
crucial challenges. The classical way to predict protein 
functions is to find homologies between a non-annotated 
protein and other proteins using sequence similarity 
algorithms, such as FASTA [2] and PSI-BLAST [3]. The 
function of the non-annotated protein can then be assigned 
according to the annotated proteins with similar sequences. 
In addition, several computational approaches are 
proposed based on correlated evolution mechanisms of 
genes. For example, the domain fusion analysis infers that 
a pair of proteins interacts with each other and thus 
performs related functions [4]. In recent years, the data 
generated by high-throughput techniques have facilitated 
the functional classification. For example, microarrays 
monitor the expression levels of thousands of genes, and 
the correlated expression profiles of the genes can be 
interpreted as their functional relatedness [5]. 

Protein-protein interaction data, enriched by 
high-throughput experiments including yeast two-hybrid 
systems [6] and mass spectrometry [7], have provided the 
important clues of functional associations between 
proteins. The integrated protein interaction networks have 
been built from the heterogeneous interaction data sources. 
Accordingly, numerous computational methods have been 
supplemented for uncovering the functional information of 
uncharacterized proteins in the networks. 
There are several approaches proposed to predict protein 
functions with protein interaction networks. The neighbor 
counting method [8] uses the majority-rule to label a 
protein with the functions that occur most frequently in its 
interaction partners. Some caveats of this approach are that 
it can only predict up to three functions and it doesn’t take 
into account any significance value and the full topology 
of the network. To solve the above problem, Hishigaki et 
al. [9] use a chi-square statistics to calculate the 
significance of the functions of neighbor proteins. In detail, 
they examine the n-neighborhood of a protein. For a 
protein p, each function f is assigned a score. Those 
functions with higher score than a threshold will be kept as 
predicted functions for protein p. A shortcoming of this 
approach is that within the n-neighborhood, proteins at 
different distances from p are treated in the same way. 
Chua et al. [10] try to tackle the problem by investigating 
the relation between network distance and functional 
similarity. They focus on the 1- and 2-neighbourhoods of a 
protein, and devise a functional similarity score that gives 
different weights to proteins according to their distances 
from the target protein. In addition, these methods can 
only predict the proteins which have at least one 
interaction partner. This means lots of unknown proteins 
cannot be predicted by these methods. Moreover, the 
predicted annotations for an unknown protein are limited 
by the annotations of its interacting partners. 
To avoid those limitations, several other approaches are 
proposed to use the global topology of protein interaction 
networks. Vazquez et al. [11] assign a function f to each 
non-annotated protein p so as to maximize the number of 
edges that connect proteins assigned with the same 
function. This optimization problem, which generalizes the 
computationally hard problem of minimum multi-way cut, 
is heuristically solved using simulated annealing. Karaoz 
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et al. [12] use a similar approach but handle one function 
at a time. They apply a local search procedure in which for 
every vertex in turn (until convergence), the state of the 
vertex is changed according to the majority of the states of 
its neighbors. This procedure guarantees a solution with 
value at least half of the optimum. Nabieva et al. [13] 
apply the concept of functional flow which is propagated 
from an annotated protein to non-annotated proteins. After 
simulating the spread over time of this functional flow 
through the network, each non-annotated protein is 
assigned a score for having the function based on the 
amount of flow it received during the simulation. Relying 
on a Markovian assumption that the function of a protein 
is independent of all other proteins given the functions of 
its immediate neighbors, Deng et al. [14] adopt the 
Markov random field (MRF) model to simulate the protein 
interaction network with functional annotations, which fit 
the network and got good result. Letovsky and Kasif [15] 
also use an MRF model but with an assumption that the 
number of neighbors of a protein that are annotated with a 
given term is binomially distributed, where that 
distribution’s parameter depends on whether the protein 
has that function or not. Lee et al. [16] develop a kernel 
logistic regression (KLR) method, which uses diffusion 
kernels and incorporated all indirect neighbors in the 
networks. While these approaches demonstrated that using 
machine learning and statistical methods can improve 
prediction performance, they bank on the same functional 
concept that the interaction partners of a protein are likely 
to share similar functions with it [10].  
In our previous study [18] we used a method, which is 
based on Gaussian Mixture Model to predict protein 
function from protein-protein interaction data. In the this 
method a global information are taken into account by 
representing a protein using all the functional annotations 
of all proteins assigned with that term and have a shortest  
path with target protein in the all protein interaction 
network. 
The current work attempts to provide a more robust 
probabilistic solution utilizing the fact that the form of the 
PDF of feature vectors is unknown.  We will estimate the 
distributions with a method known as Parzen Windows. 
The proposed method uses global information on the 
whole network. For each function we used a Bayesian 
approach to compute the posterior probability that the 
protein posses this function. 
The remainder of the paper is organized as follows. In 
Section 2, we present feature selection stage. In Section 3, 
we present our Parzen window - based prediction model. 
Extensive experimental results and comparison with other 
methods are reported in Section 4. Discussion of the 
proposed work is introduced in section 5. The paper is 
concluded in Sections 6. 
 
 

2. Feature Selection 
 
Typically one protein can have multiple functions, so we 
transfer function prediction problem into a typical multi 
label problem with functions as labels and proteins as 
instances or items. Recently, the issue of learning from 
multi-label data has attracted significant attention from a 
lot of researchers in the area of machine learning and 
pattern recognition. 
We construct the protein-protein physical interaction 
network using the protein interaction dataset  
IntAct[19]. In this method, a network is represented by a 
undirected graph , i.e. vertex set including 
each protein as a vertex , and the edge 
set  there is an interaction between protein 

 ,  is a finite alphabet of (annotation) terms 
(from a function vocabulary, e.g., Gene Ontology( GO) 
www. geneontology.org). 
The problem we then want to solve is to derive the 
marginal probability of a given protein taking a particular 
functional label given all the putative functional 
assignments to the other proteins in the graph. It is based 
on the Bayesian formula and using Parzen window to 
estimate the likelihood rate. 
 
2.1 Feature Extraction 
 
We computed a shortest-path vector for each protein using 
Dijkstra's algorithm from protein interaction network. 
Each node  is then identified by an n-dimensional 
feature vector where  is the number of terms. The ith 
component of the vector is a function of the lengths of the 
shortest paths in the graph between  and all nodes 
labeled with the ith term. Let  denote the indicator 
function of a set  that determines whether t belongs to 

. i.e. 

 
 
Let  and  denote the set of terms assigned to 
proteins  respectively. In this research, we adopt a 
form of feature vector driven from the global information 
of the underlying network. The form exploits the 
observation that the degree of similarity in a certain 
function between any two proteins in the network depends 
on the distance between them in the network. The feature 
vector of a protein  is described as: 

 
With 

 
where  is the shortest path length  between 
protein .Note that the contribution of a protein  
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to feature element   increases with the decrease in the 
length of the shortest path between q and p provided that q 
is annotated with  on the other hand, has no effect on 

 if it is not annotated with . This emphasizes the 
usefulness of using the above equation.   
 
2.2 Feature Reduction 
 
In biological data, feature vector is large, so feature 
reduction is essential. We applied the principle component 
analysis PCA for the purpose of dimensionality reduction 
[20].  
A principal component analysis is concerned with 
explaining the variance-covariance structure of a set of 
variables through a few linear combinations of these 
variables. Its    general objectives are: A) data reduction 
and B) interpretation. 
Algebraically, principal components are particular linear 
combinations of the  random variables 

 Geometrically these linear combinations 
represent the selection of a new coordinate system 
obtained by rotating the original system, with 

as the coordinate axes. The new axes 
represent the directions with maximum variability and 
provide a simpler and more parsimonious description of 
the covariance structure. 
As we shall see, principal components depend solely on 
the covariance matrix  (or the correlation matrix p) of 

 
Let the random vector  have the 
covariance matrix  with 
eigenvalues  
Consider the linear combinations 

 
 
 (3) 

Then, we obtain 
 

 
 

The principal components are those uncorrelated linear 
combinations whose variances in (4) are as 
large as possible. 
The first principal component is the linear combination 
with maximum variance. That is, it maximizes 

 It is clear that  
can be increased by multiplying any  by some constant. 
To eliminate this indeterminacy, it is convenient to restrict 
attention to coefficient vectors of unit length. We therefore 
define 
First principal component = linear combination  that 
maximizes  subject to  

3 The Proposed Method 
 
Our approach predicts multiple functions (terms) for each 
protein, which is functionally uncharacterized. 
First, we define a scoring function  for every 
term . Terms are then sorted in descending order 
according to . The topmost terms are supposed to 
have high chance of being considered associating . We 
define the score function as being the ratio between the 
posterior probability that  given the feature vector 
of the protein  and posterior probability that  
given the feature vector of the protein . This is 
mathematically described as follows 

 
We adopted a Bayesian approach to estimate  
and  and utilize the whole structure 
information of the network for this purpose as follows: 

 

 
Notice that it is the product of the likelihood and the prior 
probability that is most  important in determining the 
posterior probability; the evidence factor,  can be 
viewed as merely a scale factor that  guarantees that the 
posterior probabilities sum to one, as all good probabilities 
must.  
The prior probability  could be estimated using 
a given protein interaction network as: 

 
Here  is the number of proteins that t annotates and  
is the number of all proteins in a given protein interaction 
network. The prior probability , is estimated as: 

 
 
We propose Parzen Windows Model (PW) for the 
likelihood probabilities  and . 
We randomly select a set of i.i.d. samples of features of 
proteins annotated with term t as a training data for PW 
model and another set not annotated with 
term  as training data for PW model to build models for 
the term . 
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3.1 Parzen Windows Classifier 
 
The Parzen window classifier is a kind of suboptimal 
Bayes classifier. It classifies an input vector 

 according to the Bayes decision rule. When an 
input vector  is given,  will be classified to class  

 by comparing  
 

where  and are the a priori probability 
and the likelihood of class  , respectively. The 
classification result  is obtained from the following 
decision rule: 
 

 
The   is estimated by the Parzen window 
method. When the training pattern set   
of class  is given, its functional form is represented by 
the mean of the kernels centered at each training vector. 

 
where  is the Parzen window or kernel function, and 

 is the window-width or smoothing parameter. To ensure 
  the kernel function needs to be 

non-negative, and  should be finite. 
Determining  is important issue in this method because 
it directly affects the quality of estimation. 
If we set  as the ratio of the number of samples in 
class to the whole training set, 

 
 where  is the total number of samples in the training 
set. By substituting (13), (14), the decision rule (12) 
becomes[21] 

    
 
4. Experimental Results 
 
To build a protein interaction network for our experiments, 
we have used organism Yeast, Fly, and Human specific 
interaction datasets from IntAct dataset. Figure 1 show the 
dataset details 
 

 
Fig. 1. IntAct Dataset details 
 

To evaluate the effectiveness of our method, we used the 
function annotations in the Gene ontology(GO).A GO 
definition file was obtained from the Gene Ontology 
consortium web site [24]. It includes 19094 GO terms, 
including 9856 biological process terms, 7559 molecular 
function terms, and 1679 cellular component terms.  
Among the 4729   proteins in Yeast; 3610 are annotated 
with 1084 biological process terms, 3610 are annotated 
with 1468 molecular function terms, and 4292 are 
annotated with 610 cellular component terms.  Also 
Among the 6666 proteins in Fly; 4125 are annotated with 
1090 biological process terms, 6069 are annotated with 
1139 molecular function terms, and 1805 are annotated 
with 478cellular component terms. In Human organism,   
there are 5074 proteins, 4574 annotated   with 1659 
molecular function, 4500 proteins annotated with 1125, 
and 3252 proteins annotated with 626 terms.  
Since it is hard to evaluate the prediction performance 
directly on the non annotated proteins, we adopted the 
leave one-out cross-validation method to estimate the 
performance. That is, for each protein  in a given set of 
annotated proteins , we assumed the functions of  
were unknown and used   to predict the 
functions of . We then compared the predicted functions 
with the true annotation. Since we make experiments on 
already annotated proteins, we can measure the precision 
and recall values of the annotation predictions.  Let R be 
the set of (known) annotations of protein P and  be the 
set of annotation predictions. Then, we define precision 
and recall as: 

 
 

 
 
To achieve high accuracy in a prediction, the technique 
should have high precision and recall values. Usually there 
is a tradeoff between having high precision and high recall. 
Thus, to evaluate predictions of different techniques, we 
use the F-value of the prediction instead of its precision  
and recall. F-value is defined [22] as the harmonic mean of  
 precision and recall of a prediction set: 

 
After running our technique on a dataset, we obtain scores 
for all GO terms (or other annotation types). We can then 
obtain a prediction set by either picking the GO terms with 
scores above a given threshold or picking top k GO terms 
(with top scores). We use the following method for 
selecting the value of k for top k cutoff in an experiment: 
For each protein, we find the k value that produces the 
maximum F-value for the top- k predictions of the protein. 

IntAct/Organism #proteins #interactions 
YEAST 4729 35275 

FLY 6666 19565 
HUMAN 5074 15537 
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We name this value as ‘‘Maximum F-value with Local 
Cutoff’’ (MLC). Then, we average all the MLCs 
(i.e.,avgMLC) corresponding to all proteins in order to 
indicate the accuracy of a technique. 
In this experiment, we compare protein annotation 
prediction performances of three techniques, namely, 
correlation mining (CM)[23], neighbor counting (NC)[8], 
and our technique Parzen Windows (PW). For each 
technique, we compute  avgMLCs over all proteins . In 
tables 2,3 we list the avgMLC values of NC, CM, and PW 
techniques on three methods employing the molecular 
functionality GO annotations of proteins. Table 2 shows 
that the PW technique produces better avgMLC values 
than CM and NC techniques respectively over all proteins 
in Yeast . In table 2 our  method PW performs better than 
NC and CM, in precision. On the other hand recall values 
are very close to each other, best prediction accuracy is 
obtained by the CM method. Table 3 display the avgMLC 
in Fly Organism for three techniques. Our method (PW) 
outperform high percentage than NC and CM respectively. 
Our approach also has higher precision than NC and 
CM.In the FLY dataset, although Recall values are very 
close to each other, best prediction accuracy is obtained by 
the CM method. 

 
 
Table 2 Comparison of techniques by avgMLCs over all 
proteins in Yeast organism 
 

 
Table 3 Comparison of techniques by avgMLCs over 
 all proteins in Fly organism 

 
 
We computed the F-value for each k value in top-k 
prediction tests. To sum up the prediction results, for each 
individual protein, we picked the k value that produces the 
highest F-value for that protein. Therefore F-values of 
techniques represent the highest possible accuracy of the 
technique, rather than the accuracy specific to the value of 
k.Next, we test the accuracy of PW, NC, and CM 
techniques on FLY,YEAST and HUMAN datasets for 
Biological Process (BP), Molecular Function (MF), and 
Cellular Component (CC) sub-ontologies of GO. Table 4 
(a-c) displays F-values  of this experiment. We find that 
all three techniques produce best results on the CC 

ontology. We explain this observation as follows. Physical 
protein interactions occur in the same cellular location; 
therefore protein interaction partners are usually annotated 
by the same CC annotations. 
 
 
Table 4(a-c) Ontology comparison of F-values on (a) FLY, 
(b) YEAST, and (c) HUMAN. 
 
(a) 

 
 
 
 
 
 

(b) 
 

 
 
 
 
 
 

(c ) 
 

Human BP MF CC 
PW 80.2% 79.6% 84.0% 
CM 60.1% 65.8% 76.1% 
NC 44.2% 41.3% 64.7% 

 
 
 
5 Discussion 
 
We developed probabilistic model Parzen windows to 
predict protein functions. We estimated the posterior 
probability that the protein has the function of interest 
given all of the available information. The posterior 
probability indicates how confident we are about assigning 
the function to the protein. Our method is a global 
approach taking into consideration the entire interaction 
network and the functions of known proteins. We applied 
our approach to predict functions of yeast, Fly, and Human 
proteins based upon Gene Ontology (GO) classifications 
and upon the interaction networks based on IntAct dataset. 
We have been studied the precision, recall, and average 
Maximum F-value with Local Cutoff (MLC) which called 
avgMLC by the leave-one-out approach. 
Our method treats each function independently and 
separately, generally, that fact that a protein has one 
function does not prevent it from having other functions. 
Therefore, our model determines each function for each 
protein without a bias.Comparing the avgMLCs, the PW 

Technique avgMLC Prec. Rec. 
PW 84.6% 90.7% 86.6% 
CM 68.7% 69.2% 87.4% 
NC 54.4% 66.6% 85.5% 

Technique avgMLC Prec. Rec. 
PW 86.2% 94.7% 88.6% 
CM 78.7% 69.2% 92.4% 
NC 68.4% 70.6% 91.5% 

FLY BP MF CC 
PW 79.1% 84.6% 68.2% 
CM 50.2% 54.2% 58.6% 
NC 41.5% 39.6% 46.2% 

Yeast BP MF CC 
PW 82.6% 86.2% 84.1% 
CM 67.6% 72.3% 81.6% 
NC 80.7% 76.0% 82.1% 
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technique gives the best results, and produces better 
predictions than the CM and NC techniques, respectively. 
Since we obtained the highest avgMLC values with IntAct 
dataset. The precision/recall values in Table 2,3 are 
obtained by using the given k values and picking the top k 
GO terms with highest scores.  
 
6 Conclusions 
 
In this paper, we derived a model of probability density 
function that uses the Parzen-window approach combined 
with Bayesian formula to predict the functions of proteins 
in a protein-protein interaction networks. One of the 
attractive advantages of the proposed method was that it 
considers the effect global information on the protein 
function prediction. Experimental results showed that the 
proposed method is highly promising and outperforms 
other methods. 
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