Self-Repairable Reconfigurable Circuit using Embedded Autonomously Restructuring Cores

Ms.Irala.Suneetha Research Scholar

Dr.T.Venkateswarlu Professor of ECE

Abstract

Field Programmable Gate Arrays (FPGA) are widely used to implement complex systems. It can be reprogrammed in a system and allows a system using reconfigurable hardware to adapt to changes in external environment. They are used to extend initial capabilities by implementing new functions on the same hardware platform. A FPGA typically consists of a number of configurable logic blocks (CLBs) arranged in rows and columns. Based on the application, some CLBs are activated and other CLBs are kept as spare resources. When any activated CLB becomes faulty, it is possible to repair permanent internal faults in FPGA by using back up circuits. However, this approach becomes complex when the size of the FPGA increases and optimal algorithms need to coexist to make it suitable for online use. In this work, an autonomous restructuring circuit is designed with an objective to reduce the latency, (i.e.) the speed with which the faulty CLBs can be identified and replaced is to be reduced. Also, when any fault occurs in the active CLB, the fault is rectified using the spare CLB in an autonomous way

Keywords:

Autonomous Recover(AR), Configuration Bits(CFB), Configuration Logic Block(CLB), Field Programmable Gate Array(FPGA), Look Up Table(LUT).

1. Introduction

The conventional repair strategies for repairing a FPGA includes Hierarchical model, Optimal model, Coarse redundancy model and Tile-based model. The major drawbacks of conventional methods are increased latency and the time between fault detection and repair is more [1]. For large circuits the test vectors to be generated by the Linear feedback shift register (LFSR) block is high and this imposes a serious limitation for on-line use. In this work, the above disadvantages are overcome by proposing a novel autonomous restructuring algorithm for an FPGA based filter application. The circuit considered has 217 configuration bits for a FPGA with 25 CLBs, 25 bits from the fault identification module and another 25 bits from decode evolved architecture [2]. These bits identify the next state and produce an architecture corresponding to the modified set of bits. Autonomous restructuring circuit is able to map the faulty CLB onto a spare CLB.

2. Conventional Repair Strategies

2.1 Hierarchical Model

The Hierarchical model consists of two levels. At lower level, each tile consists of spare CLBs. At higher level, faulty tiles are replaced by spare tiles [3]. A main disadvantage of this method is that heterogeneous tiles must be joint or disjoint to form homogeneous tiles (increases latency [4]). This is shown in Fig. 1.

S: Spare U: Used F: Faulty

Fig. 1. Hierarchical model

2.2 Optimal Model

The optimal model represents the best possible case. The problems associated with rerouting are not taken into account. However, the drawback is in terms of both time to repair and size of precompiled bit stream. It is a time consuming method and most of the application cannot be done on-line. It must be executed at compile time and a more suitable method must be developed to reduce the size of precompiled bit stream.

2.3 Coarse Redundancy

In coarse redundancy model when a fault is detected in a column [5], the whole column is marked as faulty and it is replaced by a spare. But, in this approach, even the fault free CLB in the columns are marked as faulty. Hence, there is low resource utilization [6].

Manuscript received July 5, 2010 Manuscript revised July 20, 2010

2.4 Tile based Model

In tile based model each tile has a spare that can repair only a single fault in a tile. Diagnosis must locate the faulty resource with a granularity better than the dimension of a tile such that the faulty resources can be replaced with the spares in the tile [7].

3. Autonomous Restructuring Model

The following steps are involved in autonomous restructuring model:

(i) Decoding the Configuration BITS

This involves both function decoding, input and output decoding (i.e. structural identification).

(ii) Spare CLB Selection

This involves selecting a spare CLB to replace the faulty one.

(iii) Updating Configuration bits

To achieve the above, four cores are used in this work. This is shown in Fig. 2. The cores are Decoding Core (DC), Fault Identification Core (FIC), Spare Selection Core (SSC) and Autonomous Restructuring Core (ARC).

Fig. 2. Cores Redundancy types

The complete Autonomous restructuring model is illustrated in Fig. 3.

Fig. 3. Fault rectification using ARC

4. Reliability Metrics

4.1 Problem of Scaling

The major problem in the evolutionary design is the problem of scaling. As the search size becomes larger, the number of gates increases and the time to test the fitness of the circuit also grows non-linearly with the truth table.

4.2 Latency

The speed with which faulty CLBs are identified and replaced with spares must be high so as to reduce the latency.

4.3 Fault Coverage

A FPGA must have maximum fault coverage percentage. This refers to the number of active CLBs that can be replaced by spares. This ideal condition (100% fault coverage) is highly difficult to achieve.

5. Proposed work

In this work, when any fault occurs in the active CLB, the fault is replaced by the spare CLB in an autonomous way by using the architecture in Fig. 4. Accordingly the configuration bits are modified. Thus, it is enough for different architectures, just to alter the configuration bits stored in the SRAM. In this work, algorithms to monitor the status of the internal elements of the evolved circuit, and if found faulty, to restructure them with spare CLBs both functionally and structurally are presented.

5.1 Objective

The main objectives of this research work are:

- To provide a repair model for FPGA if any fault is detected. Here, both the permanent and transient faults are detected by using different testing techniques [8] and the faulty CLBs are fixed by reprogramming.
- To develop high speed reliable circuits.
- To identify the evolved FPGA architecture, (i.e.) structural identification [9].
- To make use of spare resources to repair a fault.

6. Methodology

The inputs to the autonomous restructuring circuit are (i) the original configuration bits, (ii) the output of the virtual reconfiguration circuit (VRC) architecture decoder and (iii) the output of the fault identification module. The VRC architecture decoder identifies the spare and the active CLBs. The fault identification module uses a power monitoring circuit to identify the faulty CLB [10]. The fault decision core decides whether the configuration bits must be altered or not. When any fault is identified the configuration bits are altered autonomously. Otherwise, the existing configuration word is retained. The proposed model is given in Fig. 5. A sample application corresponding to a noise filter realized on an evolved circuit is considered. The application uses 217 bits as the configuration word for a FPGA and has 25 configurable logic blocks (CLBs) [11]. The VRC decoder gives a 25 bit word as input to represent the active and spare CLBs among the 25 CLBS in the VRC.

Fig. 5. VRC architecture decoder

7. Implementation of the Autonomous Self **Repair Configurable Processor**

A reconfigurable processor can be viewed as taking its inspiration from the paging mechanism in operating systems with the concept extended to hardware logic circuits. However, in the paging concept the code being swapped between RAM and disk usually represents a single thread of control, whereas in the hardware context the logic can be concurrent. Similarly, in software paging placing the code into RAM does not necessarily imply immediate execution, whilst hardware will potentially run immediately if it is loaded into the FPGA. This also requires that the new hardware page brought into the FPGA must be sure that its inputs are stable before its computation. To perform these hardware page swaps in and out of the FPGA the reconfigurable logic is extensively used [12]. The proposed implementation of the autonomous restructuring and self repair dynamic programming module of the reconfigurable processor is given in this section. It consists of the following modules: (1) spare CLB identification (2) functional identification (3) input decoding (4) structural identification (5) existing CLB identification and (6) modifying the configuration bits. These are described in the following sections:

7.1 Pseudo Code for Spare CLB identification

P=Existing CLB column head Do If (p not active) Allocate p as spare break; Else

Increment p

} while (p<next column head)

7.2 Pseudo Code for Autonomous Restructuring Circuit

X= CLB number // Copy the existing CLB configuration bits and paste in spare CLB configuration bits Read 'x' //whose input is the output of CLB TO BE INCLUDED while // (till configuration word is formed)

Get the starting position of 'x' //This represents the CLB TO BE INCLUDED output.

Replace it with spare CLB output.

Get the next CLB number x whose input is the output of CLB TO BE INCLUDED

If (x)

}

Retain the other bits in their respective positions.

}

7.3 Steps Involved in Autonomous Restructuring

7.3.1 Functional Identification

This module identifies the function performed by each and every CLB in the FPGA. The different functions are represented by 'm' bits and hence total number of functions performed by each CLB is 2^{m} .when m=3, each of the CLB can be configured to operate with any of the 8 functions provided in LUT shown in Table I.

_ . . .

Table I										
Function	Function	Function								
Number	Code	Type								
F ₀	000	x&y								
F_1	001	x¦y								
F_2	010	x^y								
F ₃	011	x+y								
F_4	100	(x+y)+1								
F ₅	101	(x+y)>>1								
F ₆	110	X&0x0f								
F ₇	111	X&0xf0								

7.3.2 Input-Output Decoding

This module identifies the input given to each and every CLB. This module also identifies the inputs to other stage CLBs.

7.3.3 Structural Identification

This module identifies the outputs of CLBs that are given as inputs to the succeeding CLBs. This structural identification helps in describing the entire architecture of the FPGA.

7.3.4 Existing CLB Identification

The existing CLB identification module is an 'n' bit register and loads a value of '0' corresponding to those CLBs that are already involved in the circuit creation. For the circuit evolved, the output of n=25 bit register is given in Fig. 6.where a bit '0' represents faultless CLB and a bit '1' represents spare CLB. These 25 bits are given as input to the autonomous restructuring unit for evolving the new circuit.

0000100001100010000100010

Fig. 6. Output of CLB identification register

7.3.5 Spare Selection

In Fig.7 there are certain spare resources (CLBs) which can be included along with the existing ones. Each spare CLB is represented by bit 0 and the active ones are represented by bit 1. For example in Fig. 7 the CLBs 3, 5, 10, 12, 18, 20, 23 whose outputs are not given as inputs to any succeeding columns of CLBs represent spare resources.

7.3.6 Modifying the Configuration Bits

The autonomous restructuring unit recovers the system from its faults by replacing the configuration bits of SRAM in the FPGA and introduces a new circuit. For example when CLB 10 needs to be introduced for a faulty CLB 9 to recover the system performance, the inputs and functions already evolved are mapped into CLB 10. The configuration bits are accordingly reconfigured autonomously.

8. Implementation Results

The result obtained by implementing the above autonomous restructuring algorithm is presented in this section. The results have been presented for both single CLB fault recovery and multiple CLB fault recovery.

Case (i): Single CLB fault recovery

The results obtained by applying the algorithms discussed in section 7 for single CLB fault is presented in this section. The CLB number 13 is assumed to be faulty and accordingly the nearest spare CLB is autonomously identified and the faultless VRC is evolved. Fig. 8 shows the output of the decoding logic in which the VRC architecture is decoded by using the 217 bits as input. This figure also shows the active and spare CLBs along with their connectivity and function performed. This module performs the functional decoding. In Fig.9 the structural decoded architecture output is shown. In Fig.10 the Fault Identification Register (FIR) gives an output of 13 which indicates that CLB13 is faulty. Accordingly the nearest spare CLB (i.e. CLB12) is autonomously restructured and the VRC is made self-repairable. This is illustrated in Fig. 10.

Case (ii): Multiple CLB fault recovery

In this case more than one active CLB is assumed to be at fault simultaneously and the proposed algorithms are tested for its effectiveness in evolving the new faultless VRC autonomously. The Fault Identification Register (FIR) gives multiple outputs 9 and 13 which indicate that both CLB9 and CLB13 are faulty. Accordingly the nearest two spare CLBs(i.e CLB10 and CLB12

respectively) are autonomously restructured and the VRC is made self-repairable. This is illustrated in Fig. 11.

1110101111010111110101101 Fig. 7. Evolved FPGA architecture

₩ F:\C\	TC.EXE								- 🗆 X	
			Original	Configu	ration Bi	its				
980198001190011190018191119118018001801801900119118118011901119111118081808										
			VRC Arc	hitecture						
CLB4 CLB14	a CLB6 CLB16	b CLB1 CLB13	Input1 c CLB8 CLB16	of all Cl c CLB7 CLB19	LBS CLBØ CLB9 CLB21	CLB1 CLB6	CLB2 CLB8	CLBØ CLB13	CLB4 CLB14	
CLB6 CLB9	b CLB7 CLB17	c CLB7 CLB17	Input2 a CLB9 CLB14	of all CI C CLB9 CLB19	a CLB11 CLB22	b CLB11	CLB1 CLB13	CLB2 CLB11	CLB2 CLB15	
x&y x¦y	x&y x¦y x^y	x¦y x^y (x+y)	Functio x^y (x+y) (x+y)+1	n of all (x+y) (x+y)+1 (x+y)>>1	CLBs (x+y)+1 (x+y)>>1 L	(x+y))) x&0x0f	x&ØxØf x&ØxfØ	x&ØxØf x&ØxfØ x&y	x&Øxf0 x&y	
		active 1110101	CLB=1 an 11101011	d spare (111010116	CLB=0 01_					

Fig. 8. Decoding logic output

C FACATO, EXE
CLB9>input1 of CLB4 input1 of CLB7 CLB1>input1 of CLB5 input2 of CLB6 input1 of CLB11
CLB2>input1 of CLB6 input2 of CLB7 input2 of CLB8 CLB3>HIL
CLB4>inputi of CLB8 inputi of CLB9 CLB5>NL CLD5>input2 of CLD9 input1 of CLD10 input1 of CLD10
CLB9
CLB9>input2 of CLB12 input2 of CLB13 input1 of CLB14 input2 of CLB19 CLB10>WIL
CLB11>input2 of CLB14 input2 of CLB15 input2 of CLB17 CLB12>NIL
CLB13>input2 of CLB16 input1 of CLB17 input1 of CLB21 CLB14>input1 of CLB18 input1 of CLB19 input2 of CLB22
CLB13)input2 of CLB20 input1 of CLB22 CLB15)input2 of CLB20 input2 of CLB22
CLB19>input1 of CLB23 input2 of CLB23
CLB20>NIL CLB21>input1 of CLB24
CLB22>input2 of CLB24 CLB23>NIL CLB24>NIL
Fig. 9. Structural decoded architecture
🔤 FACATO. EXE 💶 🗖 🗙
Original Configuration Bits
86818080118861118881181811811811811888188189189189189
FIK Output 13
URC Decoded Output
input of CLB13: CLB9 function merformed by CLB13: (xtu)>>1
output of CLB13 goes to>input2 of CLB16 input1 of CLB17
input1 of CLB21
ARC CLB swapped i.e, spare CLB= CLB12
Modified Configuration Bits
0601.000011000011000101010101010100000001001
010110011100111100101011011011011011011
Fig. 10. SSC and ARC output
Original Configuration Bits
9661606611686111686191611611611601661666160681181161166116611
URC Decoded Output
input2 of CLB9: CLB6
function performed by CLB9: x:y output of CLB9 goes to>input2 of CLB12
input2 of CLB13 input1 of CLB14
input2 of CLB19
CLB swappedi.e, spare CLB=CLB10
Modified Configuration Bits no.0 300100001100011110001010110110110001000
311180110810811118111881181808111181811118111118818111118881818081818081818011801118111 3191189188111881811888811811898811811898181181
FIR Output 13
input1 of CLB13: CLB7
input2 of CLB13: CLB10 function performed by CLB13: (x+y)>>1
output of CLB13 goes to>input2 of CLB16 input1 of CLB17
input1 of CLB21
CLB swappedie, spare CLB=CLB12
Modified Configuration Bits no.1 900:0000110001110001011011011010001000011011011010

Fig. 11 Autonomously reconfigured VRC for multiple fault CLB scenario

146

9. Conclusion

In this work, the drawbacks of the conventional repair strategies in a FPGA are studied and an alternate autonomous restructuring model is proposed. This model reconfigures the FPGA when affected with any permanent or transient faults. In this work, decoding of configuration word and an evolved architecture, fault identification module and autonomous restructuring module are discussed. The proposed autonomous restructuring enables functional recovery for the devices after the occurrence of unavoidable damages and makes the circuit suitable for online. The work has been presented to take care of both single CLB fault and multiple CLB fault.

References

- Nathan R. Shnidman, William H. Mangione-Smith, and Miodrag Potkonjak, "On-Line Fault Detection for Bus-Based Field Programmable Gate Arrays", in IEEE Transactions on very large scale integration (VLSI) systems, vol. 6, no. 4, Dec. 1998.
- [2] Stephen Brown, and Jonathan Rose, "FPGA and CPLD Architecture: A tutorial", in IEEE Design and Test of Computers, pp. 42-57, in 1996.
- [3] S. J. Wang and T.-M. Tsai, "Test and diagnosis of faulty logic blocks in FPGAs", in IEE Proc.-Comput. Digit. Tech. Vol. 146, No. 2, March 1999.
- [4] Jim Torresen, "An Evolvable Hard-ware Tutorial".
- [5] Wei-Je Huang and Edward J.Mc Cluskey, "Column Based Precompiled Config--uration Techniques for FPGA Fault Tolerance", Proceedings of the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, in 2001.
- [6] S.Pontarelli, M.Ottavi, V.Vankamamidi, A.Salsano, F. Lombardi, "Reliability Evaluation of Repairable / Reconfigur-able FPGAs", Proceedings of the 21st IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, in 2006.
- [7] Anna Antola, Vincenzo Piuri, Mariagiov--anna Sami, "Online Diagnosis and [8] Wei configuration of FPGA Systems" Proceedings of the First IEEE International Workshop on Electronic Design, in –July, 02.
- [8] Kang Huang, Fred J. Meyer, Xiao-Tao Chen and Fabrizio Lombardi, "Testing Configurable LUT-Based FPGA's", in IEEE Transactions on very large scale integration (VLSI) systems, vol. 6, no.2, June 1998.
- [9] Jonathan Rose, Abbas El Gamal and Alberto, "Architecture of Field-Programmable Gate Arrays" Proceedings of the IEEE vol. 81. No 7. July 1993.
- [10] S. Pontarelli, G.C. Cardarilli, A. Malvoni, M. Ottavi, M. Re, A. Salsano, "System-on-Chip Oriented Fault-Tolerant Sequential Systems Implementation Methodology", Proceedings of the 2001 IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, in 2001.
- [11] Miron Abramovici, Charles E. Stroud, and John M. Emmert, "Online BIST and BIST-Based Diagnosis of FPGA Logic Blocks", in IEEE Transactions on very large scale integration (VLSI) systems, vol. 12, no. 12, Dec. 2004.

[12] John Lach, William H. Mangione-Smith, and Miodrag Potkonjak, "Enhanced FPGA Reliability Through Efficient Run-Time Fault Reconfiguration", in IEEE Transactions on reliability, vol. 49, no. 3, Sept. 2000.

Ms. I Suneetha received the B.Tech and M.Tech Degrees in E.C.E from S.V. University College of Engineering (SVUCE) Tirupati, India in 2000 and 2003 respectively. She is currently is pursuing Ph.D., Degree at SVUCE, Tirupati and working with E.C.E department, Annamacharya Institute

of Technology and Sciences (AITS), Tirupati. Her research area includes 1D & 2D signal processing and FPGA.

Dr. T.Venkateswarlu received the B.Tech and M.Tech Degrees in E.C.E from S.V. University College of Engineering (SVUCE) Tirupati, India in 1979 and 1981 respectively.. He received the Ph.D degree in Electrical Engineering from Indian Institute of Technology (IIT), Madras in 1990. After working a short period at KSRM College of Engineering,

KADAPA, he joined and currently working with the department of E.C.E, SVUCE, Tirupati. During 1986-89 he was a QIP research Scholar at the department of Electrical Engineering, Indian Institute of Technology (IIT), Madras. His teaching and research interest are in the areas of digital systems, communications and multidimensional digital filters.

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	O	riginal	CFB
a	00	CLB0	a	b	F ₀	00	01	000
		CLB1	b	с	\mathbf{F}_1	01	10	001
b	01	CLB2	с	a	F ₂	11	00	010
с	1X	CLB3	с	с	F ₃	10	11	011

Appendix-I
Input Output Decoding and Structure Identification

Inputs to CLBs	Binary Code	CLB No. Input-1 Input-2 Fur		Function	Original CFB			
а	000	CLB4	CLB0 o/p	a	F_4	011	000	100
h	001							
с	010	CLB5	CLB1 o/p	b	F ₅	100	001	101
CLB0_0/n	011							
CLD0 0/P	011							
CLB1 o/p	100	CLB6	CLB2 o/p	CLB1 o/p	F_6	101	100	110
CLD2 a/a	101							
CLBZ 0/p	101							
CLB3 o/p	11X	CLB7	CLB0 o/p	CLB2 o/p	\mathbf{F}_7	011	101	111

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Original CFB		FB
CLB0 o/p	000							
CLB1 o/p	001	CLB8	CLB4 o/p	CLB2 o/p	F.	100	010	000
CLB2 o/p	010				1.0			
CLB3 o/p	011	CLB9	CLB4 o/p	CLB6 o/p	F1	100	110	001
CLB4 o/p	100				-1			
CLB5 o/p	101	CLB10	CLB6 o/p	CLB7 o/p	F_2	110	111	010
CLB6 o/p	110	CI D11	CI D1 o/p	CI D7 a/p		0.01	111	011
CLB7 o/p	111	CLDII	СЕБІ б/р	ств/ о/р	F_3	0.01	111	011

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Original CFB
CLB4 o/p	000					
CLB5 o/p	001	CLB12	CLB8 o/p	CLB9 o/p	E4	100 101 100
CLB6 o/p	010					
CLB7 o/p	011	CLB13	CLB7 o/p	CLB9 o/p	F5	011 101 101
CLB8 o/p	100	CLD14	CI DO ala	CI D11-b	-	101 111 110
CLB9 o/p	101	CLB14	СГВА 0/р	CLB110/p	F ₆	
CLB10 o/p	110	CLB15	CLB6 o/p	CLB7110/p	_	01.0 111 111
CLB11 o/p	111				\mathbf{F}_7	

Inputs toCLBs	Binary code	CLB No.	Input-1	Input-2	Function	Original CFB		FB
CLB8 o/p	000							
CLB9 o/p	001	CI B16	CIBS of	CI B13 o/n	F.	000	101	000
CLB10 o/p	010	CLBIU	ства о,р	одыго огр	10		101	000
CLB11 o/p	011	CLB17	CLB13_0/n	CLB11 o/n	F.	101	011	001
CLB12 o/p	100	CLBIT	CLBIS 0.p	CLBII 0,p	*1	101		
CLB13 o/p	101	CLB18	CLB14 o/p	CLB15 o/p	F ₂	110	111	010
CLB14 o/p	110			1	-			
CLB15 o/p	111	CLB19	CLB14 o/p	CLB9 o/p	F ₃	110	001	011

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Or	iginal C	FB
CLB12 o/p	000	CLB20	CLB16 o/p	CLB17 o/p	F ₄	100	101	100
CLB13 o/p	001							
CLB14 o/p	010	CLB21	CLB13 o/p	CLB17 o/p	F ₅	001	101	101
CLB15 o/p	011				- 2			
CLB16 o/p	100	CLB22	CLB16 o/p	CLB14 o/n	F ₆	100	010	110
CLB17 o/p	101	02222	CLDIC C/P	CLDIT OF		100	010	
CLB18 o/p	110	CLB23	CLB19 o/n	CLB19 o/p	\mathbf{F}_7	111	111	111
CLB19 o/p	111	CLB25	СЕБТУ 0/р					

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Original CFB
CLB16 o/p	000					
CLB17 o/p	001					
CLB18 o/p	010					
CLB19 o/p	011					
CLB20 o/p	100	CLB24	CLB21 o/p	CLB22 o/p	F ₀	101 110 000
CLB21 o/p	101					
CLB22 o/p	110					
CLB23 o/p	111					

Apendix-2 Single CLB fault recovery

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Modified CFB		CFB
a	00	CLB0	a	b	F ₀	00	01	000
b	01	CLB1	b	с	F ₁	01	10	001
	11	CLB2	с	a	F ₂	11	00	010
с	1A	CLB3	с	с	F ₃	10	11	011

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Mo	dified C	FB
a	000							
b	001	CLB4	CLB0 o/p	а	E.	011	000	100
с	010				* 4			
CLB0 o/p	011	CLB5	CLB1 o/p	ь	F_5	100	001	101
CLB1 o/p	100	CLB6	CLB2 o/p	CLB1 o/p	F	101	100	110
CLB2 o/p	101		F	F	I'6			
CLB3 o/p	11X	CLB7	CLB0 o/p	CLB2 o/p	\mathbf{F}_7	011	101	111

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Мо	dified C	CFB
CLB0 o/p	000	CI DO			Б	100	010	000
CLB1 o/p	001	CLB8	CLB4 0/p	CLB2 0/p	r ₀	100	010	000
CLB2 o/p	010				_			
CLB3 o/p	011	CLB9	CLB4 o/p	CLB6 o/p	F ₁	100	110	001
CLB4 o/p	100							
CLB5 o/p	101	CLB10	CLB6 o/p	CLB7 o/p	F ₂	110	111	010
CLB6 o/p	110							
CLB7 o/p	111	CLB11	CLB1 o/p	CLB7 o/p	F_3	0 01	111	011

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Modified CFB
		CLB12	CLB7 o/p	CLB9 o/p	F ₅	011 101 101
CLB4 o/p	000		_	_		
CLB5 o/p	001					
CLB6 o/p	010	CLB13		Faulty Config	uration Logic b	lock
CLB7 o/p	011				-	
CLB8 o/p	100	CLB14	CLB9 o/p	CLB110/p	_	101 111 110
CLB9 o/p	101		-	-	F ₆	
CLB10 o/p	110	CLB15	CLB6 o/p	CLB7110/p	_	010 111 111
CLB11 o/p	111			CP	\mathbf{F}_7	

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Mo	dified (CFB
CLB8 o/p	000	OT DAG	GT 700 /		-		100	
CLB9 o/p	001	CLB16	CLB8 o/p	CLB12 o/p	F ₀	000	100	000
CLB10 o/p	010				_			
CLB11 o/p	011	CLB17	CLB12 o/p	CLB11 o/p	F_1	100	011	001
CLB12 o/p	100							
CLB13 o/p	101	CLB18	CLB14 o/p	CLB15 o/p	F ₂	110	111	010
CLB14 o/p	110							
CLB15 o/p	111	CLB19	CLB14 o/p	CLB9 o/p	F ₃	110	001	011

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Мо	dified (CFB
CLB12 o/p	000	CLB20	CLB16 o/p	CLB17 o/p	F ₄	100	101	100
CLBI3 0/p	001							
CLB14 o/p	010	CLB21	CLB12 o/n	CLB17 o/n	F.	000	101	101
CLB15 o/p	011	02221	CLD12 0.P	CLDI/ C/P	- 5			
CLB16 o/p	100	CT DOO	CI DI C	CI DI L		100		
CLB17 o/p	101	CLB22	CLB16 o/p	CLB14 o/p	F ₆	100	010	110
CLB18 o/p	110	CL D22	CI D10 e/m	CI D10 e/m	Б	111	111	111
CLB19 o/p	111	ULB23	СЕВТ90/р	СГР1А 0/b	r ₇	111	111	111

Inputs to a set of(CLBs)	Binary code	CLB No.	nput-1	Input-2	Function	Modified CFB
CLB16 o/p	000		_	_		
CLB17 o/p	001					
CLB18 o/p	010					
CLB19 o/p	011					
CLB20 o/p	100	CLB24	CLB21 o/p	CLB22 o/p	F ₀	101 110 000
CLB21 o/p	101		_	-		
CLB22 o/p	110					
CLB23 o/p	111					

Apendix-3 Multiple CLB fault recovery

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Mo	odified	CFB
a	00	CLB0	a	Ъ	\mathbf{F}_{0}	00	01	000
b	01	CLB1	b	с	F ₁	01	10	001
		CLB2	с	a	F ₂	11	00	010
с	1X	CLB3	с	с	F ₃	10	11	011

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Moo	lified (CFB
a	000							
b	001	CLB4	CLB0 o/p	a	E.	011	000	100
с	010				- 4			
CLB0 o/p	011	CLB5	CLB1 o/p	b	\mathbf{F}_5	100	001	101
CLB1 o/p	100	CLB6	CLB2 o/p	CLB1 o/p	E	101	100	110
CLB2 o/p	101				r ₆			
CLB3 o/p	11X	CLB7	CLB0 o/p	CLB2 o/p	\mathbf{F}_7	011	101	111

- -

Inputs to CLBs	Binary code	CLB No.	Input-1	Input-2	Function	Mo	dified (CFB
CLB0 o/p	000	CLB8	CLB4 o/p	CLB2 o/p	F ₀	100	010	000
CLB1 o/p	001		-	-	-			
OT DO L	010							
CLB2 0/p	010	CLB9	Fa	aulty Configu	iration Logi	ic bloc	k	
CLB2 0/p CLB3 0/p	010	CLB9	F	aulty Configu	iration Logi	ic bloc	k	
CLB2 0/p CLB3 0/p CLB4 0/p	010 011 100	CLB9 CLB10	Fa CLB4 o/p	aulty Configu	F ₁	ic bloc	k 110	001
CLB2 0/p CLB3 0/p CLB4 0/p CLB5 0/p	010 011 100 101	CLB9 CLB10	Fa CLB4 o/p	aulty Configu CLB6 o/p	F ₁	ic bloc	k 110	001
CLB2 0/p CLB3 0/p CLB4 0/p CLB5 0/p CLB6 0/p	010 011 100 101 110	CLB9 CLB10 CLB11	Factor CLB4 o/p	aulty Configu CLB6 o/p CLB7 o/p	F ₁ F ₃	ic bloc 100 0 01	k 110 111	001

_ _

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Mod	ified	CFB
CLB4 o/p	000	CLB12	CLB7 o/p	CLB10 o/p	F 5	011	101	101
CLB5 o/p	001							
CLB6 o/p	010							
CLB7 o/p	011	CLB13]]	Faulty Config	uration Logic b	lock		
CLB8 o/p	100							
CLB9 o/p	101	CLB14	CLB10 o/p	CLB110/p	Fe	110	111	110
CLB10 o/p	110		CT D ()	67 D 244	- 0			
CLB11 o/p	111	CLB15	CLB6 o/p	CLB/110/p	\mathbf{F}_7	010	111	111

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Мо	dified C	FB
CLB8 o/p	000	CT D1C	CT D0	CT DIA	F	000	100	000
CLB9 o/p	001	CLB10	CLB8 0/p	CLB12 0/p	F ₀	000	100	000
CLB10 o/p	010							
CLB11 o/p	011	CLB17	CLB12 o/p	CLB11 o/p	F_1	100	011	001
CLB12 o/p	100							
CLB13 o/p	101	CLB18	CLB14 o/p	CLB15 o/p	F ₂	110	111	010
CLB14 o/p	110							
CLB15 o/p	111	CLB19	CLB14 o/p	CLB10 o/p	F3	110	010	011

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Mo	dified C	ΈB
CLB12 o/p	000	CLB20	CLB16 o/n	CLB17_0/n	F.	100	101	100
CLB13 o/p	001	CLB20	CLDIC C/P	CLDI/ 0/p	- 4	100	101	100
CLB14 o/p	010	CT P01	CI Pl2 o/n	CI D17 o/m	F	000	101	101
CLB15 o/p	011	CLD21	СГР17 0/р	CLD1/ 0/p	r5	000	101	101
CLB16 o/p	100	CT 722	CT DIA I	07.D11	-	100		
CLB17 o/p	101	CLB22	CLB10 0/p	CLB14 o/p	F ₆	100	010	110
CLB18 o/p	110	CT P22	CI P10 o/p	CI P10 o/p	F.	111	111	111
CLB19 o/p	111	CLD25	CLB19 0/p	СЕВТУ 0/р	17	111	111	111

Inputs to a set of(CLBs)	Binary code	CLB No.	Input-1	Input-2	Function	Modified CFB		
CLB16 o/p	000		_	_				
CLB17 o/p	001							
CLB18 o/p	010							
CLB19 o/p	011	CLB24	CLB21 o/p	CLB22 o/p	F ₀	101	110	000
CLB20 o/p	100							
CLB21 o/p	101		_	-				
CLB22 o/p	110							
CLB23 o/p	111							