
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

154

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

Semantic-Based Retrieving Model of Reuse Software Component

Dr. Nedhal A. Al Saiyd

Computer Science Department
Applied Science University

Faculty of Information Technology

Dr. Intisar A. Al Said

Computer Science Department
Al-Isra University

Faculty of Information Technology

Ahmed H. Al Takrori

Applied Science University
Faculty of Information Technology

Summary
As the demand of the software is increasing day by day, the
software can be developed either from scratch or from using
already developed software components. Component Based
Software Engineering (CBSE) is known as a practical solution to
the “Software Crisis”. It improves productivity and quality of the
developed software, but has extra time, effort and knowledge
about identifying and extracting the reusable components from
already developed and existing software systems
We investigate how ontology technologies can be utilized to
support and identified relevant software component retrieving
from open-access, different structured, very large and
exponentially growing repositories on WWW. The system
employs a natural language understanding for the user query to
find the conceptual intention, and as the ontology allows word
meaning to be queried, it is possible to formulate the unstructured
natural language user query into well-defined conceptual query.
The component ontology consists of knowledge about the reuse
component: functionality, structure, interfaces; requires and
provides interfaces, platform and the application domain from
which the component is extracted. The component ontology
comprises 33 categories of terms. A search engine that applies
concept matching technique; enables the user to search for one
or a combination of these tags within a component conceptual
specification, Ontologies provide controlled vocabulary for the
retrieving of reuse components. Our semantic-based approach
makes the component retrieval more efficient and precise. It
overcomes limitation of natural language’s imprecision and then
reduces the complexity of formal methods. We use description
logics, which underlie Semantic Web ontology languages, OWL,
to develop ontology for the matching components depending on
ontological components descriptions.
Key words
Component Retrieval, Ontology, Reuse Component, component-
based software engineering, Concept Matching Technique

1. Introduction

The demand for new software applications is currently
increasing at the exponential rate, as is the cost to develop
them. Component based software engineering (CBSE) is
one of software process models and it is accepted as a
powerful solution to the development of software.
Software professionals have recognized reuse as a
powerful means of potentially overcoming the software
crisis and it promises significant improvements in software
productivity and quality, and decrease the product

development life time and product cost. 65% of typical
software is made up of domain-specific class of software.
So the most savings is expected, if the domain specific
software is reused. It means one should concentrate on
evaluating the software in terms of its relevancy to a
particular domain [1].
A Software component is a unit of composition with well-
specified interfaces that show what these component
present to the world and explicit context dependencies
only. Software components are designed to be used as a
plug and playable. But in reality they are not able to
provide this functionality because not all components have
compatibility with each other. Components need a
platform on which they can stand and able to work
together [2,3]. The following figure shows the architecture
of software component.

Fig. 1 The architecture of software component

2. Motivation and Problem Statement

Component-based software engineering (CBSE) increases
the productivity, reliability and maintainability of software
through reuse. There is huge number of reusable
components that were individually developed, tested and
stored in different-structured repositories on a World Wide
Web. The major problems that are related to CBD is [4,5]:
1. The component-based developer needs to search for and

retrieve a relative software component(s) that is well-
matched with his required specification. The

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

155

components are stored on distributed, different
structured component repositories on Web. The

2. Select the most appropriate component out of many
founded.

3. Compose the most appropriate founded component with
other developed components after adaptation (if needed) to
construct new software application of specific domain.

Fig 2 The Component Identification Process

 The developer can retrieve a limited set of components
and do not consider semantic relationships between
components. Reasoning about component descriptions and
component matching is a critical activity in Web-based
component development.
Another problem is that not all features are important for
software applications. Some of the features may be
redundant or irrelevant. Some may even misguide the
searching result, especially when there are more irrelevant
features than relevant ones. In such case, selecting a subset
of original features often leads to better searching
performance. Feature selection not only reduces the high
dimensionality of the feature space, but also provides
better data understanding, which will improve the
searching result.

3. Solution Proposal

The solution is based on ontology-based component
repository and using formal axioms that represent more
information on concepts and their relationships as well as
restrictions related to properties and concept values.
Formal axioms capture richer semantics and can contribute
towards retrieving semantically interrelated software
components. The aim is to collect, represent the shared
conceptualization (semantics) of both the component-
based developer's queries and software components
specifications in the ontological searching and retrieving
of relevant software components that uses the semantic
similarity technique.
Ontology languages and theories of the Semantic Web can
be adopted. The Web ontology language (OWL) is
equivalent to very expressive description logic.
Description logics provide a range of class constructors to
describe concepts.

4. Ontology-Based Representation

Many references define ontology as: a formal
representation of the basic terms that comprise the
vocabulary of a specific domain, relations that form
association between terms, and the set of axioms; which
are the rules and constraints for combining terms and
relations to define extensions to the vocabulary. It is the
model of the concepts that is used to reason about the
properties of the knowledge domain. Hence, ontology is
used by people, databases, and applications that need to
share domain information [6,7,8].
For retrieving component-based reuse software
components, we have to reveal the semantics for the text
of component-based Developer's queries and components
specification as they are published on the Web. Normally,
there are several preprocessing steps for the representation
model and retrieval methods.

4.1 Defining and Extracting Software Component
Features

The selected feature set should contain sufficient and more
reliable information about the component data set. This
will be formulated into the problem of identifying the most
informative words within a set of documents that are
associated with software components. Feature selection
can improve the efficiency and accuracy of searching and
retrieving by removing redundant and irrelevant terms
from the corpus.
Features are relatively easy to specify, but they don’t fully
capture the semantics. Other nonfunctional semantics are
supported by letting the user sort the resultant software
components by code size, code complexity, or
performance.
The categories of the identified metadata that are
important in the context of component development and
deployment and that lending to adequate support for the
retrieval process, are:

a. Application domain ontological metadata [9]; describe

the Application family domain of the software under
development and the domain of software application
from which the reusable component is extracted.

b. Software development ontologies describe the software
development entities and processes, and.

c. Component model ontologies that defines core
properties of a software component [10]. It involves:
i. Syntactic Specification: specifies the syntax of using

component's services (technologies as COM or
JavaBeans), specifies the semantics of these services
(CBSE methodologies), and specifies properties
besides component's services.

- A component implements a set of named interfaces
and can require a set of interfaces implemented by

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

156

others. These are called Application (Horizontal)
Interfaces that represent requires and provides
interface. They show the ordering of operation
activations that a component user has to follow
meaningfully and consistently, as shown in fig.3.

- Platform (vertical) Interface represents the operating
system, hardware, communication system.

- An interface implements a set of named operations
- An operation has a set input and output parameters

with associated types, and data format.

Fig 3 Syntactic Specification

ii. Component Semantic Metadata Content Metadata); is

an extension of syntactic specification; where a state
model is associated with each interface and operations
have pre - and post-conditions (i.e. Abstract behavior)
and Intra-interface conditions for components, as
shown in fig 4. Semantic metadata contains
information extracted from the source code or from
component documentation [10].

iii. In addition, we extract other important features that
are related with reuse software components as: quality
factors; programming language; component size; code
complexity; software design model, license, its
developer; development year …etc.

Fig 4 Semantic Specification

4.2 Conceptual Graph to Map Ontologies

Ontology-based terms analysis make use of internal
structural. Ontology is a “specification of a
conceptualization”, whereby a conceptualization is a way
of thinking about this domain. Ontologies belong to the
knowledge representation approaches and they aim to
provide a shared understanding of a domain both for the
computers and for the humans [11]. Thereby, ontology
describes a domain of interest in such a formal way that it
can be processed by computers. A conceptualization;
which has a hierarchical order, is a collection of objects,
concepts, other entities and their associated relationships,
that are recognized to exist in domain of reusable software
components and their repositories. The conceptual graph
(CG) model and can be used to formalize the information
in the reuse component underlying domain. CG organizes
and converts an informally perceived view of a domain
into a semi-formal specification, using a set of graphical
notations that can be understood by domain experts and
ontology Developers. Fig.5 shows the conceptual graph of
component specification.
Any wrong choice in this process will set off cascade of
errors into the succeeding modules and probably prevent
them from making the right choice.

4.3 Construction of Feature Vector (FV)

The following steps are proposed to find the FV of the
different application domains using training software
components specification:
1. Extraction of Meta Information: Meta information is
collected from the sample of 50 software components in
form of identifiers/keywords and identifier-by software
matrix is created. The useless identifiers are removed and
normalization is performed.
2. Perform Similarity Analysis: Similarity analysis
between FV of the potential Reusable Component and the
FV of component extracted from different application
domains is performed and the similarity vector tells the
relevancy level with the specified software component
domains (i.e. comparison of items without reasoning)
Fig.6, and transformed the compound concepts through the
ontology into set of similar concepts.

Fig.6 the synonyms words representation and the relation represents ' is-a'

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

157

It is possible for our system to locate terms which do not
even appear in a component specification. Components
which are located in a similar part of the concept space
(i.e. which have a similar meaning) are retrieved, rather
than only matching keywords, as shown in fig.7. By using
a concept space, following problems can be solved.

a. Polysemy, or the problem that most words have more

than one meaning, and that meaning is obtained from the
word’s context.

b. Synonymy, or the problem that there are many ways of
describing the same object. The presence of synonyms
tends to decrease the Recall performance of Information
Retrieval systems.

Typically, a knowledge base consists of ontology, some
data and also an inference mechanism. The inference
mechanism would deploy rules in form of axioms,
restrictions, logical consequences and other various
methods based on the formal definition in the ontology
over the actual data to produce more information out of the
existing one.

5. Our System Architecture

The overall functionality of the system is divided into
modules with a well-defined interfaces and activities. For
this reason, the object-oriented design paradigm is used.
The object-oriented design has encapsulation property that
hides the inner details of the modules from other modules,
and the common interfaces define how to use the modules
and access their information. A module can depend on
other module thus forming the architectural design. The
modules are communicated using common interfaces.
Therefore, the overall architecture of our system has three
major phases, as it is shown in fig. 7; which are:

5.1 Query Evaluation

It processes the component-based developer’s query
asking about a required component. Our approach of
retrieval can be seen as an evolution of classic keyword-
based retrieval techniques, where the keyword-based index
is replaced by a semantic knowledge base. There is no
need to add weights automatically or manually by the user;
to indicate the relative interest of the user for each of the
tokens to be explicitly mentioned.
To reduce the gap between user intension and the system
interpretation of queries and component specification, a set
of similar concepts are used as ontological similarity
technique [12]. The idea is to map the information found
in the query and component specification into an ontology
and be closer to the meaning of information. It is done as a
part of the query evaluation in order to reduce the response
time of retrieving the intended components. The

interpretation of the given query is expanded with closely
related concepts in order to achieve match with a
conceptual description of an intended components rather
than specific words or concepts [13]. This will compensate
the ambiguous senses in natural language. Concepts are
closely related when they have high degree of similarity
and that are positioned closely together in the ontology
with respect to distance. Similarity is subjective criteria
and needed to be empirically. The query structure will be
represented as a set of set (list of words) structure:
Q= {D1,D2, …..,Dn}
 = {{d11,d12, ….,d1k1}, … , {dn1,dn2, …,dnkn}}
Where:
Di's are a set of descriptors dij, j=1, ….ki, and
 {di1,di2, ….,dik1} Є Di

Fig.8 Lexicalized concepts for the words and the associated meaning

Our system uses inference mechanism for implicit query
expansion based on class hierarchies and rules (e.g. Java
can satisfy a query for programming language). The query
is executed against the knowledge base, which returns a
list of features and their related semantic similarities that
satisfy the query.

5.2 An Ontology-Based Knowledge Base

As the volume of the available information is increasing
rapidly, it is in turn makes it difficult for human to browse
through or manipulate them. Apparently, the reason is that
information is currently represented in a semantically poor
format, which means it is easily understood by people but
not by machines. In contrast, semantic technology
empowers the computer systems by enabling them to
represent the information in semantically rich format,
which means easily understood by computers [14].
Utilizing semantic technology, machines will be able to
extract meaning from the information and to process them
in an automatic fashion, with less human involvement.
The ontological knowledge in retrieving process has two
different aspects. One deals with the ontology; as a goal of
the query evaluation to retrieve knowledge instead of
retrieve the components specifications and the other one
involve the use of the ontological knowledge structure to
reason, and to navigate the domain; which is covered by
the ontological knowledge base for components
specifications.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

158

RDF knowledge base is constructed for components
specification. Although XML is a suitable format for
exchanging data, it only represents the syntax of the
domain data but not the semantic of it. In contrast, the
Web Ontology Language (OWL) is capable of adding
semantic to data. Furthermore, using an appropriate
semantic web framework, knowledgebase with OWL [15]
format can be queried and reasoned over. These
capabilities are convincing reasons to nominate OWL to
propose Procedural Reasoning System PRS-style agent
architecture [16] that have to deal with ontological
knowledge base and semantic agent. Therefore,
consistency, adaptability and generality are three main
characteristics that using ontological approach to PRS.
The entire domain knowledge is represented semantically
using OWL ontology Fig. 9 shows a piece of ontological
knowledge base coded with OWL/RDF languages [16].

5.3 Component Searching using Semantic Matching

The main purpose of introducing ontologies is to move
from a query evaluation based on words to a query
evaluation based on semantic, thus moving from syntax to
semantics interpretation. The semantic matching [17] is
used to find the strongest semantic relation between
software component objects and queries; depending on a
semantic basis; to retrieve the relevant components. It
performs the actual comparison between description of
query and description of software components. It
computes the degree of similarity. It takes into
consideration if a concept is: part-of another concept,
consists-of another concept (generality), equivalent-of
another concept, or disjoints-with (mismatch) other
concept. All of these are done using semantic rules. The
semantic relations are identified in the rule mining process
that uses feature selection process. The feature selection
process is applied on each ontological component
specification. Finally, the software components that are
annotated with these features are retrieved, and presented
to the user.

6. Evaluation of Developed System

Recall and Precision have long been used to assess the
quality of searches [18]. It is tried to evaluate the system in
terms of these criteria. Let S be a set of all software
components contained in a repository. Precision is the
fraction of how well a retrieved set of components are
relevant to the CB developer's need. Its formula is:

Where:

and Recall is defined as:

Where:

Where CAactual(s) is a set of software component containing
software “s”, generated by our search engine and CIdeal(s)
is a set of technically relevant software component
containing software “s”, determined manually by the
domain experts. Using Precision and Recall values F-
value is calculated as a measure of performance evaluation

Where p is the Precision and r is the Recall of the system.

7. Conclusion

In the traditional methods, the search engines for the user's
query processing are based mainly on literal matching of
keywords to retrieve software components specification.
Their performance is limited because the conceptual
meaning of the keywords and their synonyms are not
applied. Therefore, an ontological-based model; which is
based on semantic matching, is used to overcome these
drawbacks, to improve their performance to retrieve the
relevant software components. The experimental results
demonstrate that ontology-based searches generate
significantly better results than traditional search methods.

1. It is used to bridge the gap between software

engineering (especially CBSE) and AI techniques
through the use of ontologies of knowledge sharing in
Knowledge-Based Applications KBA, and through the
use of UML class diagrams in the development of
ontologies.

2. The ontological knowledge base is designed and
constructed using ontological concepts, structure and
terminology of reuse component specification. Initially,
we extract the concepts from 50 software components.

3. Our research helps the researchers and scientists to
conceptualize the knowledge of reuse software
component in component-based development, in order
to develop a universal ontology, and try to avoid any
inconsistencies and ambiguities that are commonly
produce in defining and representing terms and
concepts.

(1)

(2)

 (3)

(4)

(5)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

159

4. Reduce terminological and conceptual mismatches, by
forcing to share understanding and communications
among different users during the ontological analysis.

5. The general architecture of our system is generated
using UML. UML is designed to build models by
human experts. Then the transformation of UML to
OWL/RDF file is generated. OWL is used at runtime by
intelligent processing methods.

6. Improving the retrieval process using semantic
matching and similarity measures. It helps avoiding the
retrieval of irrelevant components.

8. Future work

1. Automatically extracting reusable software
components information from the Web using
Text2Onto tool to store the extracted information in
the ontological knowledge base.

2. Measure performance of searching for a large number
of software components information stored in
ontological knowledge base, after adding new
specifications Collect and add more than 50
components to cover almost all software components.

3. Measure and compare our system with other systems.
Study the other related approaches and compare the
results obtained with results of other component
repository approaches.

4. Provide agent-based that uses ontological knowledge
representation to solve problems in other areas.

Acknowledgements
The authors are grateful to the Applied Science University
in Amman, Jordan for the partial financial support granted
to cover the publication fee of this research article.

References
[1] Parvinder Singh Sandhu, Janpreet Singh and Hardeep Singh,

Approaches for Categorization of Reusable Software
Components, Journal of Computer Science 3 (5): 266-273,
2007

[2] Councill , and Heineman G. T., Component-based software
engineering: putting the pieces together, Addison-Wesley
Longman Publishing Co, 2001.

[3] www.ceng.metu.edu.tr/~oguztuzn/publications/02f-siw-
co.pdf

[4] Heineman, G., Councill, W, Component-Based Software
Engineering, Addison Wesley, 2001.

[5] Pressman R., Software Engineering A Practitional's
Approach, Sixth Ed., McGraw Hill, 2005.

[6] Hans-Jörg Happel and Stefan Seedorf, Applications of
Ontologies in Software Engineering Lindeberg, T., Feature
detection with automatic scale selection. International
Journal of Computer Vision, 30: 77-116, 2004.

[7] Dragan Gaˇsevi´, Nima Kaviani, and Milan Milanovi,
Ontologies and Software Engineering,

nima.magic.ubc.ca/www/2publications/2008/.../PDF_Versio
n.pdf

[8] Collaborative Software engineering chapter 6: Application
of Ontology in Collaborative Software Development,
Springer-Verlag, 2010

[9] Su W., Wang J. and Lochovskyode F. H.: Ontology-
Assisted Data Extraction,

[10] Klein K., Defining Software Component Specifications: An
Open Approach, NDIA Systems Engineering Conference
October 22-26, 2007,
www.dtic.mil/ndia/2007systems/Wednesday/AM/.../5526_K
elin.pdf

[11] Cristiane A. Yaguinuma, Marilde T. P. Santos, and Marina
T. P. Vieira, Ontology-Based Meta-model for Storage and
Retrieval of Software Component,

[12] Liu, H. and L. Yu, Toward integrating feature selection
algorithms for classification and clustering. IEEE
Transaction on Knowledge and Data Engineering, 17: 491-
502, 2005.

[13] F.A. Grootjen and Th.P. van der Weide, Conceptual query
expansion, Data & Knowledge Engineering 56(2) (2006),
174–193.

[14] John F. Sowa, Conceptual Graphs For Representing
Conceptual Structures,
http://www.jfsowa.com/pubs/cg4cs.pdf.

[15] OWL Web Ontology Language Guide
http://www.w3.org/TR/2004/REC-owl-guide-20040210/

[16] Hadzic, M., P. Wongthongtham, T. Dillon and E. Chang,
2009. Ontology-Based Multi-Agent Systems. Studies in
Computational Intelligence. Vol. 219, Springer-Verlag
Berlin Heidelberg, ISBN: 978-3- 642-01903-6, pp: 3.

[17] F. Giunchiglia, P.Shvaiko, M. Yatskevich: S-Match: an
algorithm and an implementation of semantic matching. In
Proceedings of ESWS’04.

[18] http://trec.nist.gov/pubs/trec10/appendices/measures.pdf

Dr. Nedhal Al Saiyd. She got her
B.Sc. degree from University of
Mosul-Iraq in 1981, M.Sc. and
PhD degrees from University of
Technology, Baghdad-Iraq in
1989 and 2000 respectively. She is
an Assistant Prof. at Computer
Science Dept., Faculty of
Information Technology, in the

Applied Science University, Amman, Jordan. Her research
interests include Software Engineering, Ontology
Engineering, Intelligent Systems, User Authentication, and
Speech Processing.

Dr. Intisar Al Said. She got her B.Sc.
from University of Technology,
Baghdad-Iraq, in 1986, M.Sc. degree
from Al-Nahreen University,
Baghdad-Iraq, in 1993, and PhD from
University of Technology, Baghdad-
Iraq in 2000. She is an Associated
Prof. at Computer Science Dept.,
Faculty of Information Technology, in
Al-Isra University, Amman Jordan.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

160

Her research interests include Genetic Algorithms, Intelligent
Systems, Neural Networks, Ontology Engineering, Computer and
Control Systems.

Ahmed Al-Takrori is a student in
Department of Software Engineering
at Applied Science University,
Amman, Jordan. His research
interests are: Intelligent Systems,
Software Engineering, and Ontology
Engineering.

Fig 5 The Conceptual Graph for component specification

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

161

Fig.7 Ontology-based Component Retrieving

Fig. 9 a piece of the implemented ontological knowledge base coded with OWL/RDF languages

<owl:Class rdf:ID="analysis_and_design_approach">
 <rdfs:subClassOf rdf:resource="#speclized_domain"/>
 </owl:Class>
 <owl:Class rdf:ID="analysis_and_design_methodology">
 <rdfs:subClassOf rdf:resource="#speclized_domain"/>
 </owl:Class>
 <developer rdf:ID="apache_common"/>
 <owl:Class rdf:ID="application_family"/>
 <owl:Class rdf:ID="architecture_model">
 <rdfs:subClassOf rdf:resource="#speclized_domain"/>
 </owl:Class>
 <programming_language rdf:ID="asp.net">
 <used_for_developing rdf:resource="#x360_multiple_video_player"/>
 </programming_language>
 <speclized_domain rdf:ID="audio"/>
 <owl:InverseFunctionalProperty rdf:ID="avilable_in">
 <rdf:type rdf:resource="&owl;ObjectProperty"/>
 <rdfs:domain rdf:resource="#quality_factors"/>
 <rdfs:range rdf:resource="#component"/>
 </owl:InverseFunctionalProperty><component rdf:ID="avis_map"> <has_comment
rdf:datatype="&xsd;string"uct extends the Viewer by adding an extensive set of features for editing,
digitizing, merging, exporting, converting (between formats), building/correcting
map topology, etc. GIS shapefile map data.</has_comment>

