
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

162

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

A Token Ring Minimum Process Checkpointing Algorithm for

Distributed Mobile Computing System

P. Kanmani†, Dr. R. Anitha††, and R. Ganesan†††

† Research Scholar, Mother Teresa Women’s University, kodaikanal, Tamil Nadu, India.
††Director, Department of MCA, K. S. Rangasamy college of Technology, Tiruchengode,Tamil Nadu, India.

††† Assistant Professor, Department of MCA, K. S. Rangasamy college of Technology, Tiruchengode,Tamil Nadu, India.

Abstract
Distributed computing poses new challenges in the mobile
environment. It has features like high mobility, frequent
disconnection and lack of resources such as memory and battery
power. Such features make applications running on mobile devices
become more susceptible to faults. Checkpointing is an attractive
approach for transparently adding fault tolerance to distributed
applications without requiring additional programmer efforts. This
paper proposes a new non-blocking checkpointing algorithm to
tolerate the faults in the mobile computing environment. It is a Min
process Token Ring based checkpointing algorithm that reduces the
much overheads of the previous non-blocking algorithms. The new
algorithm reduces the number of processes taking checkpoints and
also diminishes the dependency array passed during the
checkpointing process.

Key words:
Checkpointing, Fault Tolerance.

1. Introduction

A distributed system is a collection of processes that communicate
with each other by exchanging messages. A mobile computing
system is a distributed system where some processes are running
on mobile hosts (MHs) that can move. To communicate with MHs,
mobile support stations (MSSs) are added. An MSS communicates
with other MSSs by wired networks, but it communicates with
MHs by wireless networks.

A mobile wireless environment poses challenging problems in
designing fault-tolerant systems because of the dynamics of
mobility and limited bandwidth available on wireless links.
Traditional fault-tolerance schemes cannot be directly applied to
these systems. However, fault tolerance is much more important in
mobile computing systems since mobile computing systems are
more prone to failures. This is because wireless networks have
(i) high error rates and more frequent disconnections and (ii)
mobile devices are more prone to physical damage, or loss. These
problems can be addressed at two levels: the network level and
the operating system level. At the network level, the problem can
be solved by efficient fault-tolerant channel allocation algorithms
and fault-tolerant location management. At the operating system
level, the problem can be solved by using checkpointing.

In the Checkpointing Approach, the state of each process in the

system is periodically saved on stable storage, which is called
checkpoint of the process. To recover from a failure, the system
restarts its execution from a previous error-free, consistent global
state recorded by the checkpoints of all processes. More
specifically, the failed processes are restarted on any available
machine and their address spaces restored from their latest
checkpoints on stable storage. Other processes may have to
rollback to their checkpoints stable storage in order to restore the
entire system to consistent state.

Checkpointing Algorithms are classified into two categories
blocking [6] and non-blocking algorithms. In the blocking
algorithms, all relevant processes in the system are asked to block
their computations during checkpointing. Checkpointing includes
the time to trace the dependency tree and to save the states of
processes on stable storage, which may dramatically reduce the
performance of these systems.

Non-blocking algorithms [7] have received considerable attention.
In these algorithms, processes need not block during checkpointing
by using a checkpointing sequence number to identify inconsistent
messages. However, these algorithms assume that a distinguished
initiator decides when to take a checkpoint. Therefore, they suffer
from the disadvantages of centralized algorithms, such as poor
reliability, bottlenecks, etc. Moreover, these algorithms require all
processes in the system to take checkpoints during check pointing,
even though many of the checkpoints may not be necessary.

2. Related Works

Acharya and Badrinath [1] were the first to present a checkpointing
algorithm for mobile computing systems. In their uncoordinated
checkpointing algorithm, an MH takes local checkpoint whenever
a message reception is preceded by a message sent at that MH. If
the send and receive of messages are interleaved, the number of
local checkpoints will be equal to half of the number of
computation messages, which may degrade the system
performance.

Guohong Cao, Mukesh Singhal introduces [2] a new check point
approach called as mutable check point. A mutable checkpoint is
neither a tentative checkpoint nor a permanent checkpoint, but it
can be turned into a tentative checkpoint. When a process takes a
mutable checkpoint, it does not send checkpoint requests to other
processes and it does not need to save the checkpoint on the stable
storage. It can save the mutable checkpoint anywhere. Guohong

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

163

Cao and Mukesh Singhal‘s mutable checkpoint [2] finds the
solution for avalanche effect i.e. the processes in the system
recursively asks other process to take checkpoint. But in some
cases it will again lead to recursive request of checkpoint.

In [3] P. Kumar, L. Kumar, R.K.Chauhan and V.K.Gupta proposed
non-blocking coordinated checkpointing algorithm that require
only a minimum number of processes to take checkpoints at any
instant of time. They proposed five phase algorithm. In the third
and fourth phases the processes take tentative checkpoints and in
the fifth phase, the initiator sends a commit or abort message to all
the processes.

In [4] the authors have proposed a non-blocking coordinated
checkpointing algorithm where in the first phase an initiator sends
checkpointing request to all the processes in the system. In the
second phase, dependent processes take tentative checkpoint. In
the third phase imitator send the commit message to all the
processes, if it gets replay from all the processes within the
specified time interval and takes its own checkpoint otherwise it
sends the abort message.

In [5] the authors proposed a non-blocking algorithm without using
any temporary, tentative, or mutable checkpoint with minimum
number of processes. In this algorithm, a dependency vector DV is
used to store the process history. They are calculating the cost of
checkpointing process by using parameters for message passing
and broadcasting. The proposed algorithm adapts the method of
performance calculation illustrated in their work.

3. Problem Formation

Non-blocking algorithms are based on checkpointing sequence
number. But these algorithms are affected by avalanche effect
and storage of message history. And also these algorithms are using
temporary storage and needs two or more phases to complete the
checkpointing process.

The new proposed algorithm reduces these problems by
introducing the token ring methodology. In this approach, each and
every process involved in the current application has a priority
value according to their participations in the current application.
The process with the highest priority will be the initiator. After
taking its first checkpoint, it sends the checkpoint request as a
token to the next process. The process receives the checkpoint
requests, takes a checkpoint and passes it to the next lowest
priority process. As the proposed algorithm uses token ring, when
the token reached the last lowest priority process, it sends back to
the initiator. When the token reached back, the highest priority
process (i.e. initiator) restarts the next checkpointing process if
necessary.

To reduce the number of processes taking checkpoint, a
dependency vector is passed as the token in the token ring
methodology. The token contains the dependent process number in
sorted order. When the highest priority process takes the
checkpoint, it updates its flag value as one and creates a
dependency vector with the process number depend on it. And it
sends the dependency vector as a token to the next lower priority
process in the system.

When a token is received by the process, the process updates the
dependent vector by deleting its own information and adding only
the lower dependent priority processes information. It does not
include the information of highest priority process dependent on it.
After updating dependent vector, it passes the token to the next
lower priority process in the system. When there is no element in
the dependent vector the checkpointing process is over. When a
process found that there is no process in the dependent token, it
sends the finish signal to the initiator.

4. System Model

4.1 System Environment

The distributed computation consists of N processes denoted by P0,
P1, P2, _ _ _, PN. The processes communicate with each other by
means of message passing. The computation is asynchronous. Each
process progresses at its own speed and messages are exchanged
through reliable communication channels whose transmission
delays are finite but arbitrary. The messages generated by the
underlying distributed application, will be referred to as
computation messages. Every message in the system is
acknowledged. The checkpoint request message will be referred to
as token message.

4.2 Problems and Solutions

Initialize all processes in the system with zero flag. The token
starts moving from the highest priority process PH to the next and
to the next. The process PH initiates the checkpointing process by
creating and sending the token. After taking a checkpoint, it resets
the flag to 1 and continues the computation. When the process Pi,
the next priority process receives a checkpoint request from PH, it
takes a checkpoint and sends the token to the next process. The
problem may arise because of the two following cases: (i) After
taking a checkpoint, if a process receives a message from other
processes that has not taken any checkpoint (ii) A process that is
not yet participated in the checkpointing process receives a
message from other process that has taken a checkpoint already.
These problems can be solved by using the following
methodology.

When a process sending a message, each message should
piggyback with the current flag value i.e. if it has taken a
checkpoint, then it increments the flag value with 1 and sends
along with a message.

Token ring

P1

P2

P3

Fig.1 Token Ring in the Best Case

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

164

P1

P2

P3

P4

P5

When a process receives a message, it checks its flag value with
the incoming message flag value. If the values are same, it
processes the message (fig.1) otherwise, if its flag value is higher
than the message flag value (case i), it sends the checkpointing
trigger message to the sending process as in fig.2.

When the process receives the trigger message, it takes a
checkpoint, resets the flag value and resends the message with new
flag value. Otherwise, like case (ii) if the flag value is less than the
incoming message flag value then it takes the checkpoint first and
then processes the message as in fig.3.

When the actual token reaches, the process that takes a forced
checkpoint updates only the token up to the forced checkpoint and
passes the token to the next process.

Interdependency among the processes may lead to the avalanche
effect. One process may send a request to its dependent processes.
That process may depend on some other processes. So, it has to
send a request to that processes.
This chain never ends. In the proposed algorithm, this avalanche
effect is considerably avoided in the initial stage itself because the

process can accept the request only if the flag values are equal.
After completion of the checkpointing process, the coordinator
resets the flag value.

Fig.4 Reduce the number of processes taking checkpoint

5. The Token Ring Non-Blocking Algorithm
At the Coordinator process Pcor

 Step 1: Initiate the Checkpointing process
 Step 2: Creates a token by including the dependent process

Detail
 Pass the token as a checkpoint request to the

next process
 Step 3: When Fnpt signal is received broadcast a

message to the process i=1 to n to reset fpi =0

At the process Pi when receiving a token
When a request for checkpoint with token(Dp) is received

Step 1: Check for dependency
Step 2: If dependency exists

If fpi = = 0
(i) Take a checkpoint
(ii) Set fpi =1;
(ii) Update the token Dp by deleting its
 number and adding lower priority
 dependent details.

 Else If fpi = = 1
 Update the Dp as above up to
 forced checkpoint

 Else
 If dependency does not exist
 Set fpi = 1

Step 3: If Dp is empty

 (i) Stop the checkpointing process
 (ii) Send Fnpt to the initiator Pcor

 Else If Dp is not empty
 Send the token to the next lower priority process

At the process Pi when receiving a message with flag value

When a message received from any other process say
Pk with a flag value fk
 If fi = = fk
 Process the message; continue the

computation

Token ring

P2

P3

m1

Forced checkpoint

P1

Fig.3 Request with greater flag value (case ii)

m1

Token ring

Trigger
message

m1

Fig.2 Request with lesser flag value (case i)

Forced checkpoint

P2

P3

P1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

165

 If fi < fk

 Step 1: Take a forced checkpoint
 Step 2: Reset fi = 1;
 Step 3: Process the message

 If fi > fk
 Step 1: Discord the incoming message
 Step 2:Send a trigger message Trg to
 the process Pk;

At the process Pk when receiving Trg
 When receiving the trigger message from the process
 Pi as Trgi
 Step 1: Take a checkpoint;
 Step 2: Update the flag value fk = 1;
 Step 3: Resend the last message to the process Pi

6. Performance Evaluation and Comparison

The distributed system is simulated in Java. The experimental
system includes varies test cases and the following observations
are found out
(i) Frequency of forced checkpoints

When the higher priority process are more interacted with
lower priority process, the control message is forced,
checkpoints are increased

(ii) Blocking time
Proportional to the number of forced checkpoints

(iii) Communication pattern
The frequency of control message is directly proportional to
the priority difference between the two communicated
processes.

(iv) Length of dependency array passed
Diminished when the token passed from higher priority to
lower priority.

The performance of the proposed algorithm is evaluated by
calculating the cost needed to complete the checkpointing process.
And this cost is compared with the cost of the previous algorithms.
The cost of the above stated algorithm is much lower when
compared with the other algorithms. The comparison of
performance evaluation is presented in the table-1

For the performance calculation the assumed parameters are as
follows Consider a distributed system with n+1 process.

Let Cmsg is the cost of sending message from one process to other
process,
 Nmin minimum number of process need to take checkpoint
 n broad is the cost of broadcasting a message to all
 processes in the system.
 Tsys - Delay due to system message
 Tchk - Delay due to checkpoint storage
 N - Number of process involved in checkpointing
 (When the Time increases, N increases from 0 to

 Nmin)
In the proposed algorithm the cost in the best case is
reduced as Nmin * Ctok and the Blocking time is (Tsys
+ Tchk) * (Nmin – N). So Nmin is inversely proportional with
delay. The dependency vector is reduced to null.

Table.1 Performance Comparison

Koo- Toeg Elnozahy Mutable Gupta
algorithm Token Ring

No. of
check
points Nmin N Nmin Nmin Nmin

Cost 2* Nmin * Cmsg 2* N*
Cmsg

2* Nmin
* Cmsg

Nmin *
Cmsg

Nmin * Ctok

Blocki
ng
time

Nmin * Tch= in
*(Tmsg + Tdata +
T disk)

0 2* Tmsg 2* T msg (Tchk+ Tsys) *
(Nmin – N)

Nature
of

depend
ency
array

Increase with
dependency

 No
dependen
cy array

increased increased diminished

Tentati
ve

checkp
oints

No No yes no no

Non
blocki

ng yes yes yes yes yes

Distrib
uted yes no yes yes yes

The cost to complete the checkpointing process by using the
algorithm [2] is given as 2* N min *Cmsg + min(N min *C msg,
n broad) in the best case. In this algorithm first the initiator sends
control message to the minimum number of processes. The cost for
this is N min * Cmsg. With the acknowledgement message the cost
can be calculated as 2 *N min * C msg. For the commit message
at phase II the cost is calculated as min (N min * Cmsg , n broad).

In [3] the initiator broadcasts dependency vector request to all the
n processes and the cost of which is n broad.The initiator receives a
vector from the n processes, the cost of which is n * Cmsg. In this
way the cost of generating consistent checkpoint is equal to
n * Cair + 2 * N min * Cmsg + 2 * n broad.

In [4] the initiator broadcasts the checkpoint request to all the
processes. The cost of which is n broad. The initiator receives the
replay from the n processes the cost of which is n * Cmsg. Finally,
the initiator broadcast a commit message to all the processes to
convert their temporary checkpoints into permanent ones, the cost
of which is n * Cmsg + 2* n broad.

In [5] by using the dependency vector, the checkpoint request is
sent to minimum number of processes. So the cost is calculated as
N min *Cmsg.

From the Table-1, it is clearly shown that the cost of the proposed
algorithm is reduced and the blocking time is reduced than [2] [3]
[4] and [5].And also the dependency vector is reduced up to Null.
So, the cost of storage used and the cost of sending the dependency
vector are reduced as much as possible.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

166

7. Conclusion
This work introduces a new basic idea using token ring concept in
designing checkpointing algorithms. The Algorithm outperforms
other non-blocking algorithms in many aspects. The present work
emphasize on reducing the number of process taking checkpoints,
diminish the dependency vector passed during checkpointing
process and eliminating the overhead of taking temporary
checkpoints. It reduces the number of process taking checkpoints
and also the control messages. If the communication pattern is
predictable then the algorithm behaves very well with the different
priority settings. By giving the lower priority value to the less
interactive process the algorithm becomes more suitable and more
efficient for mobile environment.

References
[1]. A. Acharya and B.R. Badrinath, “Checkpointing Distributed

Applications on Mobil Computers,” Proc. Third Int'l Conf.
Parallel and Distributed Information Systems, Sept. 1994.

[2]. G. Cao and M. Singhal. “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing Systems”
IEEE Trans. Parallel and Distributed System, vol 12, issue 2
pp 157-172, feb 2001.

[3]. P. Kumar, L. Kumar, R.K. Chauhan and V.K. Gupta,
“Non–intrusive minimum process synchronous
checkpointing protocol for mobile distributed system”,
ICPWC 2005, IEEE international conference on personal
wireless communications pp 491-495, jan 2005, new Delhi.

[4]. S. Neogy, A, sinha, P.K Das “CCUML: a checkpointing
protocol for distributed system processes,” TENCON 2004,
2004 IEEE region 10 conference vol B, no 2, pp 553-556, nov
2004, Thailand.

[5]. Bidyut Gupta, Shahram rahimi and Ziping liu “A new high
performance checkpointing approach for mobile computing
system’IJCSNS International Journal Of Computer Science
And Network Security, VOL 6, N05B may 2006.

[6]. R. Koo, S. Toueg, Checkpointing and rollback-recovery for
distributed systems, IEEE Trans. Software Eng. 13 (1) (1987)
23–31.

[7]. E.N. Elnozahy, D.B. Johnson, W. Zwaenepoel, The
performance of consistent checkpointing, Proc. 11th Symp. on
Reliable Distributed Systems, IEEE Press, New York, 1992,
pp. 86–95

P. Kanmani M.C.A., M.Phil., she is
the Assistant Professor in the Deparment
of Computer Science, Thiruvalluvar
Government Arts college, Rasipuram, Salem
DtTamil Nadu. India.

Dr. R. Anitha M.C.A., Ph.D received her
Ph.D in Periyar University salem. .Currently
she is the Director of Department of MCA,
K. S. Rangasamy College of Technology,
Tiruchengode, Namakkal Dt, Tamil Nadu,
India

R. Ganesan M.C.A., M.Phil., He is the
Assistant Professor in the Department of MCA,
K. S. Rangasamy College of Technology,
Tiruchengode, Namakkal Dt, Tamil Nadu,
India.

