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Summery 
A fixed-packet optimal joint source channel coding scheme for 
transmission of progressive images over Rayleigh channels is 
proposed. A first order Markov model is used in rate allocation 
problem to concern channel temporal variations during image 
transmission. Also, introducing a modification on the used 
progressive coding scheme, the requirement for the immediate 
decoding termination upon the observation of an erroneous 
packet is relatively relaxed. A rate allocation mechanism for this 
modified version of progressive codes is also proposed. 
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1. Introduction 

Although independent optimizations of lossless source 
and channel coding operations in digital communication 
systems are globally optimal, it is shown that joint 
source/channel coding (JSCC) has better performance in 
the lossy image compression and transmission [1]. In 
JSCC , the compression ratio in the lossy source encoding 
and  the channel code rates of the resulting packets are 
chosen such that some cost function  is optimized under a 
constraint on either average transmission  rate (TR) in bits 
per pixel(bpp). This procedure is called rate allocation 
(RA). A well-known cost functions is mean distortion. 
Minimizing the mean distortion leads to distortion optimal 
(DRA) approach. If the transmitted packets have the same 
information component with various channel code words 
lengths, RA method is called variable-length packet 
coding (VLC). On the other hand, with a fixed channel 
code word length and variable information component, it 
is called fixed-length coding (FLC). Since fixed length 
packet is preferred in some applications such as the IP and 
ATM, our rate allocation approach is based on FLC 
configuration. 
  Progressive image coding that is used widely in JSCC, 
allows delay-free decoding of the received data and 
provides comfortable compression ratio adjustment. The 
quality of the reconstructed image improves as more data 
packets are received correctly. Nonetheless, if the 
decoding continues after an erroneous frame, the 
reconstructed image fidelity may deteriorate as more 
packets arrive. We assume that the channel decoder is 

able to detect all errors and discard the first erroneous and 
all subsequent packets to prevent error propagation and a 
possible synchronization loss.  
  Some methods have been proposed to reduce the 
computational complexity of the DRA problem for the 
FLC. Banister et al. [2] presented a suboptimal DRA that 
is based on the Viterbi algorithm with )( 2Nο  
complexity, where N is the number of the transmitted 
packets.  Hamzaoui et al. [3] proposed a suboptimal 
method on the basis of a local search in the neighborhood 
of a rate optimal solution of [4]. In [5], with a special 
trellis, an optimal method is presented with 
complexity )( 2Nο . Since the optimum trajectory on the 
trellis is found from the last packet back to the first one, it 
is called Back Trellis (BT) method. All the above works, 
indeed, are specialized to BSC channels. Pan et al. [7] 
proposed a suboptimal DRA in VLC under some 
restrictions for Rayleigh fading channels. They used a 
powerful rate-compatible LDPC code. They used average 
SNR, for computing packet decoding error probability 
(PDEP). One method for the consideration of the channel 
temporal variations is the Markov modeling [8-14]. 
Nosratinia et al. [15] have used a Gilbert-Elliot (2 state 
Markov model) for fading channels. They showed that if 
the encoder doesn’t know the actual state transition 
instants, the worst-case base RA leads to a better mean 
distortion. Proposing a first order Markov model for the 
channel, Liu et al. [10] presented a suboptimal distortion 
optimal solution for FLC in fading channels. Each state of 
their model is realized by a BSC with crossover 
probability equal the average bit error rate in that state. 
They have actually used the upper bounds of packet 
decoding error probability (PDEP). Their RA method is 
similar to the local search in [3]. 
    In this work, we propose an adjustable PDEP 
approximation in solving RA problem in Rayleigh fading 
channels. For this purpose, we assume the channel can be 
presented with Markov model, in which each state is 
represented by a BSC. We offer a suitable method for the 
states bit error rates assignment and the corresponding 
PDEPs. Also, with a modification on the progressive 
image encoding in SPIHT, we relax the requirement for 
the prompt decoding termination upon the observation of 
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the first erroneous packet. In Section 2, rate allocation 
problem is described. The first order model for Rayleigh 
fading channels to be used in our simulations is explained 
in Section 3. Then RA steps for Markov channels are 
described in Section 4. Modified SPIHT and the related 
RA are presented in Section 5. Sections 6  and 7 include 
simulation results and  conclusions, respectively. 

2. Problem Statement 

In this section, we consider DRA in progressive image 
transmission over Rayleigh fading channels. The 
distortion function of the progressive image encoder and 
the set of possible channel code 
rates, }r,....,r,r{ M21=ℜ , are assumed to be known. All 
channel code words have a fixed length L and different 
information block lengths. From the budget constraint, the 
maximum number of transmitted packets 
is ⎣ ⎦LSTRN /.=  for an image with total S pixels.  
 Consequently, the aim of a DRA algorithm is to find the 
optimal channel coding rates 1kr ,…., kNr  ℜ∈kir  for 

Ni ≤<1 , in order to minimize the  reconstructed image 
mean distortion  under the budget constraint.  
   The mean distortion of the reconstructed image is given 
by: 
                                                             (1)                                                         
 
 
 
where iD  is  the MSE distortion due to the first i  packets 

and 
kirP  is the ith packet PDEP with channel coding rate 

kir ( ℜ∈kir ) and D0 is the corresponding MSE distortion 
when any packets aren’t received correctly. For a constant 
channel, 

kirP  depends on the channel code rate 
ikr , but 

for a time varying channel, it also depends on the packet 
number i.  
   In RA for varying channels, the approximate values of 
PDEP for all packets are needed. The finite state Markov 
model assumption helps in this regard. In our simulations, 
we use the first order Markov model for Rayleigh fading 
channel [8] with a minor modification in the states BER 
assignment. These are described in the following sections. 

3. Finite State Markov Model  

A finite state Markov model for a Rayleigh channel 
(FSMC) is described in this section [8-12]. In these 
channels, the received signal envelope, r, has Rayleigh 

distribution and corresponding signal to noise ratio 
(SNR),γ , is exponentially distributed[16] : 
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where 0γ  is the average SNR . 
The SNR band is partitioned into K intervals, by the states 
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 corresponds to kth state of the 
Markov model. The steady-state probability of the kth 
state, kπ , is given by: 
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State thresholds may be derived from the following 
equations on the basis of equal average states occupancy 
duration, kτ , assumption [8]: 
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in which mf  is the maximum Doppler frequency shift. 

Suitable values for PC  are between 3 and 8 [8]. For 
example, if fm and TP equal 4.16 Hz and 8.276 ms, 
respectively, and PC  is set equal to 3, the model ends up 
in 11 states. Table 1 shows the normalized upper SNR 
thresholds for this model. 
 

Table 1: Normalized upper  SNR thresholds for Markov states with 
3=PC  and 03440.Tpfm =  

State k 1 2 3 4 5 
0γγ /u
 0.01 0.11 0.34 0.70 1.19

State k 6 7 8 9 10
0γγ /u
 1.82 2.50 3.53 4.64 5.95

 
In FSMC, it is assumed that the transition occurs only 
between adjacent states. Hence, )j,i(Ptrans  is zero 

for 1>− ji  and [12]: 
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where tR  is the packet transmission rate and is the 

reciprocal of pT  . 
Finally, using (6) an (7), the probability of remaining in 
the kth state becomes: 
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4. RA Procedure 

A finite state Markov model facilitates PDEP 
approximation required in RA. Assume that the channel 
model has K states with transition probability matrix Ptrans 
and steady state probability vector π. We, further, assume 
the channel remains unchanged during a packet 
transmission. Also, 0P , the initial state probability vector 
of the channel just before the beginning of the 
transmission is assumed to be known, or we set π=0P . 
On the basis of the above modeling and assumptions, RA 
consists of these steps: 
1) Each state is approximated by a fixed BSC with 
appropriate bit error rate (εk for kth state). 
2) State probability vector during the ith packet 
transmission is approximated. 
3) Approximate values of PDEPs are derived. 
4)  RA is performed by minimizing (1). 

4.1 States BER Assignment  

Each state of the Markov model is approximated by a 
BSC model. Bit error rate (BER) of the kth state BSC, kε , 
depends on the  state SNR interval  and the modulating 
scheme.  In [10], kε  is approximated by the mean BER 
of the kth state: 

∫
+Γ

Γ
= 11 k

k

d)(P)(p e
k

k γγγ
π

ε              (8)                                                                                                  

Where )(Pe γ  is the error probability as a function of the 
received SNR. For example, in 
BPSK , )(erfc)(Pe γγ = .   
The difference between the actual and approximate 
values of  kε  affects the performance efficiency of rate 
allocation. In [7] it is shown, through simulations, that 

the performance loss is more noticeable, when the actual 
channel condition is worse than the approximated one. 
On this basis, we use the worst case SNR for the states 
bit error assignment in the present work:  
 

)(P kek Γ=ε                                      (9) 
 

Our observations verify that the worst case 
approximation is preferable over the averaging method. 
However, it is worth looking for better assignment 
procedures. Fig. 1 shows the worst case BER of the 11-
state FMSC in Section 3 from (9) for some states. For 
each value of 0γ , the Markov states can be divided into 
“bad” (with high BER), “good” (with near zero BER) and 
“fair” groups. If we reduce the model states to these 3 
categories, the resultant model is simpler, but less fine 
than the 11-states counterpart.  
 

 
Fig. 1 Worst case BER of the equivalent BSCs of the Markov states. 

4.2 State Probability Vector   

Assume that the channel state remains unchanged during the 
transmission of each packet. If state transition obeys a Markov model 
with transition probability matrix Ptrans, then the state probability vector 
during the ith packet 

transmission, ))(),...,2(),1(( KPPPP iiii = , in which 

)k(Pi  is the probability of channel is in the kth state for the 

transmission period of packet number i., is: 

NiPPP transii ,....,11 == −                 (10) 
                                                                                                  

4.3 PDEP Approximation 

Let )( kri
P ε  denote the probability of erroneous decoding 

of ith transmitted packet with channel code rate ir  

( ℜ∈ir ) when the channel is in its kth state number and 
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bit error rate εk. Actual value of 
ir

P  may be one of 

)( 1εir
P , )( 2εir

P , …, )( Kri
P ε  with probabilities of 

)(),...,2(),1( KPPP iii , respectively . We propose the 
following average PDEP (AVP) as an approximation 
of

ir
P :  

∑
=

=
K

k
ikrr kPPP

ii
1

)()(ε               (11)                                                                                            

At this point, we can minimize (1) by optimal BT 
algorithm [5] or fast suboptimal local search algorithm [3], 
depending on the application.  
The above discussion can be applied in any finite state 
Markov channel with fixed average states occupancy 
duration. However, our simulations are on the basis of 
finite states Markov model in Section 3.   

5. Layered SPIHT (LSPIHT) 

SPIHT is a wavelet transform based image coding 
algorithm [17]. The underlying idea for the compression 
in SPIHT is the application of a significance function on 
each set of pixels. It is one if the maximum value of the 
pixels in a set is greater than some threshold, and zero 
otherwise.  The insignificant sets are encoded by fewer 
bits. In this algorithm, the image wavelet transform 
coefficients are partitioned using a hierarchical tree as in 
Fig. 2(a). The tree roots are the pixels in the highest level 
that are grouped in 2×2 adjacent pixels. Each pixel in a 
group, except one in the top left corner, has four 
descendants. Each of the pixels in other levels, except 
those in lowest one, has also four descendants. The 
compression procedure of SPIHT consists of two stages of 
sorting pass and refinement pass with the first being the 
main one. These passes are repeated from the most 
significant bit-plane of the coefficients toward the least 
significant one. Three lists are used in the encoding 
algorithm: List of insignificant pixels (LIP), List of 
insignificant sets (LIS) and List of significant pixels 
(LSP). LIS entries refer to their descendants and are 
indicated by type A or B, if they refer to all or merely 
indirect descendants, respectively.  
           

 

(a) Typical structure of  a SPIHT tree 
 

 
(b) Typical structure of  LSPIHT trees labeled by 1,2 and 

3 
 
Fig. 2 Comparison of typical trees structures  SPIHT and 

LSPIHT 
 
The sorting pass for each bit-plane checks LIP and LIS. 
Briefly, in this stage insignificant and significant entries 
of these Lists are searched. Insignificant sets are encoded 
by a few bits and significant ones are moved to LSP to be 
encoded in the refinement pass.  If the decoder duplicates 
the execution passes of the encoder, it can reconstruct the 
image. The quality of the reconstructed image increases as 
more bits are decoded, but the decoding must stop if an 
erroneous packet is detected. In LSPIHT, we have tried to 
relax this restriction.  LSPIHT can be viewed as a layered 
version of the SPIHT. Many of their features are similar 
and we emphasize on the differences. First, the tree in the 
original SPIHT is partitioned into three sub-trees. The 
root of each tree, as shown in Fig. 2(b), corresponds to 
one of the 2×2 adjacent pixels in Fig. 2(a), except the one 
with star. The starred pixel maybe referred to each of the 
trees. The algorithm compresses along each sub-tree with 
its own lists by SPIHT algorithm. So LSPIHT encodes 
image in three separate bitstreams or layers that can be 
decoded independently from each other. If the decoding 
stops due to an error in one layer, it continues in other 
layers. Clearly, each bitstream needs a label to identify its 
layer number for the decoder. The order number and the 
length of a layer, embedded in the header of the final 
bitstream, must be protected highly enough to ensure 
correct reception. The packets corresponding to these 
three layers may be interleaved, in the order of their 
effects in mean distortion reduction, to ensure the 
progressive nature of the final bitstream.  

5.1 Rate allocation in LSPIHT  

RA in LSPIHT is carried out in roughly three steps: Layer 
budget assignment, Layer rate allocation, Interleaving.   
In the first step, the simplest form of the budget 
assignment to layers is equal proportions. A better 
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approach is based on the data volume in each layer. None 
of these methods incorporates the importance of a layer. A 
budget allocation procedure is proposed with this 
consideration. It is comprised of these stages: In the first 
stage, all layers are partitioned into equal small size units. 
Then, the units in all layers are arranged in a queue, of 
length B, in the descending order of MSE distortion 
reduction. Finally, the number of the units from each layer 
in the queue determines its budget. Clearly, the units’ 
length  affects  the assignment quality. A smaller  size  
leads to a  more  accurate       assignment, but increases 
the processing time.  Although, this queue provides the 
pseudo-progressive code, but introduces greater 
redundancy needed to distinguish the units layers in the 
packets. After the budget assignment, in the second step 
rate allocation in each layer is performed separately. 
 For keeping the progressive property on the packet level, 
all packets are interleaved in the third step on the basis of 
their importance in MSE distortion reduction. 

6. Simulations  

In our simulations, a progressively coded bitstream is 
transmitted over a Rayleigh fading channel after the rate 
allocation. Images are compressed according to the coding 
procedures existing in SPIHT or the proposed LSPIHT. 
We use rate compatible punctured turbo codes (RCPT) of 
[18], [2]. All channel codewords are 4138 bits long, with 
7 possible rates 4/12, 5/12, 6/12, 7/12, 8/12, 9/12, 10/12, 
11/12. Each packet with rate r contains 16 bits for the 
CRC and an 8 bit header to specify r. Hence, the 
information content of a packet is )r( 244138 − bits. 
We use 512×512 8 bpp images in our simulations. For a 
target transmission rate of 0.252 bpp, the number of the 
transmitted packets for each image will be 16. 
The entire image transmission-reception system through a 
Rayleigh fading channel with the following specification 
is simulated by Matlab. The simulation parameters are as 
follows: Modulation scheme: BPSK, Carrier frequency: 
900 MHz, 
Max speed:5km/h( Hz.fm 164= ), Transmission rate: 
500Kb/s (TP: 8.276 ms).  
With these values of mf  and TP, the resulting FSMC 

consists of 11 states. Assuming 0γ  and the initial channel 
state (ICS) are known at the transmitter, following a 
PDEP approximation, the Back-Trellis algorithm of [5] is 
used for RA in each image. The image SPIHT bit stream 
is packetized and channel coded according to the allocated 
RCTP rates, modulated and sent over the Rayleigh 
channel. The iterative decoding of the received packets 
are performed 20 times. The packets CRCs are checked to 
detect possible decoding error. Decoding is stopped 

wherever an erroneous packet is detected. Finally, the 
image is reconstructed from the resultant decoded stream 
with inverse SPIHT coding scheme. The peak signal to 
noise ratio (PSNR) criterion is used to assess the quality 
of the reconstructed image. The PSNR of a reconstructed 
8 bits per pixel image with MSE distortion D is defined 
by [17]: 
 

)
D

(logPSNR
2

10
25510=                             (12) 

The performance evaluations are performed separately on 
“Lena”, “Barbara” and “Goldhill” images by averaging 
the PSNR of the reconstructed images from 1000 
repetitions of each simulation. Since the results are quite 
consistent, we present those of “Lena” only. 

A. AVP Performance Comparison 

We compare the proposed PDEP approximation method 
with two other works ([7],[10]) under similar conditions. 
In [7], the average SNR have used for RA but haven’t 
addressed SNR fluctuations in different packets for PDEP 
approximation in the solution of DRA problem. On the 
other hand, in [10] they have used the upper bounds of 
PDEP approximation.  Fig. 3 shows the results for two 
known ICS. The PSNR performance is improved when 

0γ  increases or ICS is better, as shown in Fig.3 (b). It 
also shows that the RA based on AVP outperforms the 
two other methods.  The PSNR difference is more obvious 
for lower values of 0γ . In these states, the equivalent 
BERs, as well as PDEPs, are high and the probability of 
packet failure is high, too. On the other hand, Fig. 3 
shows that for high values of 0γ , the qualities of the 
reconstructed image are similar. This happens because in 
these cases, almost all packets are decoded correctly.  

B. States BER Assignment  

In this step, we compare  the worst case and  averaged bit 
error rate schemes. The PSNR difference in these 
methods is less than  0.04 dB for the 11-  state Markov 
model. This  is   a   well-expected   result since for 
narrow SNR bands, the approximations are almost the 
same. For further clarity, we use a Markov channel with 
wider SNR bands (with corresponding wider BER 
ranges). This is done by merging each three adjacent 
states of the 11-state Markov model. Fig. 4 shows the 
PSNR performance results for this new 4-state Markov 
model. The ICS is two in Fig. 4(a) and four in Fig. 4(b). 
Merged ICS of two has a wider SNR band than ICS of 
four. The PSNR difference in Fig. 4(a) with ICS of two is 
more visible. In the Fig. 4(a) ICS of four is a good 
initializing state in which the BER values are low and the 
band is narrow leading to a negligible approximation 
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difference between two assignments. From this 
comparison, we conclude that the proposed approach 

manifests a better performance, especially for wide SNR 
bands. 

 
(a) ICS=4                                                 (b) ICS=6 

 
(a) ICS=2                                                 (b) ICS=4 

Fig. 4 PSNR comparison of “Lena” image for  two BER approximations in the 4-state Markov model 
 
C. Markov states reduction  

In order to observe the effect of states merging, we 
compare the PSNR performances for two ICSs in 11-
states Markov model with the same ICS in its merged 4-
states feature. Fig. 5 shows the results. The designated 
ICS values refer to the 11- and 4- states models, 
respectively. The ICS in the latter model is two which 
value corresponds to ICS values from four to six in the 
original 11-state version. The resultant rates only differ 
for the 11-state model, in Figs. 5(a) and 5(b). It is 
observed that merging states leads to PSNR loss which is 
greater in Fig. 5(b), because of a better ICS in the fine 
model. Hence, although the reduction of the number of 

states reduces the computations, the consequent PSNR 
loss is not negligible. 

D. Application of LSPIHT 

In this step, we compare the performances of our 
proposed LSPIHT and original SPIHT algorithms. 
LSPIHT requires an extra 10 bits overhead in which the 
two layer identifier bits are highly protected by five 
repetitions. Therefore, the actual information content of a 
packet is )r( 344138 − bits in this case. Fig. 6 shows 

the simulation results. We observe that when 0γ  is low 
and channel is in a bad condition (Fig. 2), LSPIHT 
achieves a large PSNR gain over SPIHT. This is because 
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in such cases, the packet error rates are high and the 
decoding ceases relatively soon with the first erroneous 
packet in SPIHT. On the contrary, in LSPIHT the 
decoding continues until an error occurs in all layers. As 

0γ  increases, the channel moves towards good states and 
the PSNR difference between LSPIHT and SPIHT 
vanishes. If 0γ  passes the threshold of Fig. 6, LSPIHT 

loses its advantage. Note that the PSNR losses in these 
cases are less than 0.5 dB. If a 0.5 dB PSNR loss is not 
important for an application, or if the channel is usually 
in bad states, LSPIHT is desirable. Intelligent switching 
between LSPIHT and SPIHT, on the basis of the channel 
condition, seems to be a valuable compromise.   
 

 

 
a) ICS=5(2)                                                     (b) ICS=6(2) 

Fig. 5 PSNR comparison of “Lena” image for 11- and 4-states Markov models. 
 
 

 
(a) ICS=4                                        (b) ICS=8 

Fig. 6  PSNR comparison of  “Lena”  image between SPIHT and LSPIHT. 
 
7. Conclusions   

We presented a method for rate allocation problem in 
progressive image transmission over Markov channels. 
We used the finite state Markov modeling of [8] for the 
time varying Rayleigh  fading channels in our 

simulations, but we used the  worst case  BER for each 
states to obtain performance improvement over the 
existing averaging scheme. Also, through simulations, 
we showed that the proposed AVP method for PDEP 
approximations, works well in rate allocation. Also we 
offered a modified layered version of SPIHT and 
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proposed a rate allocation procedure in this case. We 
observed that LSPIHT leads to a noticeably better 
performance in a noisy channel. Although a Rayleigh 
fading channel with first order Markov model is used in 
our discussions, the proposed rate allocation method can 
be extended to other varying channel with higher order 
Markov models.   
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