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Summary 
Clustering is a process of discovering groups of objects such that 
the objects of the same group are similar, and objects belonging 
to different groups are dissimilar. A number of clustering 
algorithms exist that can solve the problem of clustering, but most 
of them are very sensitive to their input parameters.  Therefore it 
is very important to evaluate the result of them. The minimum 
spanning tree clustering algorithm is capable of detecting clusters 
with irregular boundaries. In this paper we propose a constraint-
free minimum spanning tree based clustering algorithm. The 
algorithm constructs hierarchy from top to bottom. At each 
hierarchical level, it optimizes the number of cluster, from which 
the proper hierarchical structure of underlying dataset can be 
found. The algorithm uses a new cluster validation criterion based 
on the geometric property of data partition of the data set in order 
to find the proper number of clusters at each level. The radius and 
diameter of the clusters are computed to find the tightness of the 
individual clusters. The variance of the clusters is also computed 
to find the compactness of the individual clusters.  In this paper 
we compute tightness and compactness of clusters, which reflects 
good measure of the efficacy of clustering. The algorithm works 
in two phases. The first phase of the algorithm produces subtrees. 
The second phase converts the subtrees into dendrogram. The key 
feature of the algorithm is it uses both divisive and agglomerative 
approaches to find optimal Dual similarity clusters.    
Key Words: 
Euclidean minimum spanning tree, Clustering, Eccentricity, 
Center, Hierarchical clustering, Dendrogram, Subtree, Cluster 
validity, Cluster Separation.  

1. Introduction 

The problem of determining the correct number of clusters 
in a data set is perhaps the most difficult and ambiguous 
part of cluster analysis. The “true” number of clusters 
depends on the “level” on is viewing the data. Another 
problem is due to the methods that may yield the “correct” 
number of clusters for a “bad” classification [10]. 
Furthermore, it has been emphasized that mechanical 
methods for determining the optimal number of clusters 
should not ignore that the fact that the overall clustering 
process has an unsupervised nature and its fundamental 
objective is to uncover the unknown structure of a data set, 
not to impose one. For these reasons, one should be well 

aware about the explicit and implicit assumptions 
underlying the actual clustering procedure before the 
number of clusters can be reliably estimated or, 
otherwise the initial objective of the process may be lost. 
As a solution for this, Hardy [10] recommends that the 
determination of optimal number of clusters should be 
made by using several different clustering methods that 
together produce more information about the data. By 
forcing a structure to a data set, the important and 
surprising facts about the data will likely remain 
uncovered.    
In some applications the number of clusters is not a 
problem, because it is predetermined by the context [11]. 
Then the goal is to obtain a mechanical partition for a 
particular data using a fixed number of clusters. Such a 
process is not intended for inspecting new and 
unexpected facts arising from the data. Hence, splitting 
up a homogeneous data set in a “fair” way is much more 
straightforward problem when compared to the analysis 
of hidden structures from heterogeneous data set. The 
clustering algorithms [15, 21] partitioning the data set in 
to k clusters without knowing the homogeneity of groups. 
Hence the principal goal of these clustering problems is 
not to uncover novel or interesting facts about data. 
Numerical methods can usually provide only guidance 
about the true number of clusters and the final decision is 
often an ad hoc decision that is based on prior 
assumptions and domain knowledge. Therefore, the 
choice between the different numbers of clusters is often 
made by comparing several alternatives, and the final 
decision is a subjective problem that can be solved in 
practice only by humans. Nevertheless, a number of 
methods for objective assessment of cluster validity have 
been developed and proposed. Because the recognition of 
cluster structures is difficult especially in high-
dimensional spaces, various visualization technique can 
also be of valuable help to the cluster analyst. 
Given a connected, undirected graph G = ( V, E ) , where 
V is the set of nodes, E is the set of edges between pairs 
of nodes, and a weight w (u , v) specifying weight of the 
edge (u, v) for each edge (u, v) ∈ E. A spanning tree is an 
acyclic subgraph of a graph G, which contains all 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 
 

 

254

vertices from G. The Minimum Spanning Tree (MST) of a 
weighted graph is minimum weight spanning tree of that 
graph. Several well established MST algorithms exist to 
solve minimum spanning tree problem [24, 19, 20]. The 
cost of constructing a minimum spanning tree is O (m log 
n), where m is the number of edges in the graph and n is 
the number of vertices. More efficient algorithm for 
constructing MSTs have also been extensively researched 
[18, 5, 13]. These algorithms promise close to linear time 
complexity under different assumptions. A Euclidean 
minimum spanning tree (EMST) is a spanning tree of a set 
of n points in a metric space (En), where the length of an 
edge is the Euclidean distance between a pair of points in 
the point set. 
The hierarchical clustering approaches are related to graph 
theoretic clustering. Clustering algorithms using minimal 
spanning tree takes the advantage of MST. The MST 
ignores many possible connections between the data 
patterns, so the cost of clustering can be decreased. The 
MST based clustering algorithm is known to be capable of 
detecting clusters with various shapes and size [34]. Unlike 
traditional clustering algorithms, the MST clustering 
algorithm does not assume a spherical shapes structure of 
the underlying data. The EMST clustering algorithm [23, 
24] uses the Euclidean minimum spanning tree of a graph 
to produce the structure of point clusters in the n-
dimensional Euclidean space. Clusters are detected to 
achieve some measures of optimality, such as minimum 
intra-cluster distance or maximum inter-cluster distance [2]. 
The EMST algorithm has been widely used in practice.  
Clustering by minimal spanning tree can be viewed as a 
hierarchical clustering algorithm which follows a divisive 
approach. Using this method firstly MST is constructed for 
a given input. There are different methods to produce 
group of clusters.  If the number of clusters k is given in 
advance, the simplest way to obtain k clusters is to sort the 
edges of minimum spanning tree in descending order of 
their weights and remove edges with first k-1 heaviest 
weights [2, 33].  
Geometric notion of centrality are closely linked to facility 
location problem. The distance matrix D can computed 
rather efficiently using Dijkstra’s algorithm with time 
complexity O( | V| 2 ln | V | ) [29]. 
 

The eccentricity of a vertex x in G and radius ρ (G), 
respectively are defined as 
e(x) = max d(x , y)    and      ρ(G)  = min e(x) 
               y∈V                                      x∈V 
The center of G is the set  
        C (G) = {x ∈V | e(x) = ρ (G)} 
 
C (G) is the center to the “emergency facility location 
problem” which is always contain single block of G. 
The length of the longest path in the graph is called 

diameter of the graph G. we can define diameter D 
(G) as 
                     D (G) = max e(x) 
                                    x∈V 
The diameter set of G is 
            Dia (G) = {x∈V | e(x) = D (G)} 

 
All existing clustering Algorithm require a number of 
parameters as their inputs and these parameters can 
significantly affect the cluster quality. Our algorithm 
does not require a predefined cluster number. In this 
paper we want to avoid experimental methods and 
advocate the idea of need-specific as opposed to care-
specific because users always know the needs of their 
applications. We believe it is a good idea to allow users 
to define their desired similarity within a cluster and 
allow them to have some flexibility to adjust the 
similarity if the adjustment is needed. Our Algorithm 
produces clusters of n-dimensional points with a 
naturally approximate intra-cluster distance. 
Hierarchical clustering is a sequence of partitions in 
which each partition is nested into the next in sequence. 
An Agglomerative algorithm for hierarchical clustering 
starts with disjoint clustering, which places each of the n 
objects in an individual cluster [1]. The hierarchical 
clustering algorithm being employed dictates how the 
proximity matrix or proximity graph should be 
interpreted to merge two or more of these trivial clusters, 
thus nesting the trivial clusters into second partition. The 
process is repeated to form a sequence of nested 
clustering in which the number of clusters decreases as a 
sequence progress until single cluster containing all n 
objects, called the conjoint clustering, remains[1].  
Nearly all hierarchical clustering techniques that include 
the tree structure have two short comings: (1) they do not 
properly represent hierarchical relationship and (2) once 
the data are assigned improperly to a given cluster it 
cannot later reevaluate and placed in another cluster. 
In this paper, we propose a new clustering algorithm: 
Dynamically Growing Euclidean Minimum Spanning 
Tree (DGEMST) algorithm, which can overcome these 
shortcomings. The DGEMST algorithm optimizes the 
number of clusters at each hierarchical level with the 
cluster validation criteria during the minimum spanning 
tree construction process. Then the hierarchy constructed 
by the algorithm can properly represent the hierarchical 
structure of the underlying dataset, which improves the 
accuracy of the final clustering result. 
Our DGEMST clustering algorithm addresses the issues 
of undesired clustering structure and unnecessary large 
number of clusters. Our algorithm does not require a 
predefined cluster number. The algorithm constructs an 
EMST of a point set and removes the inconsistent edges 
that satisfy the inconsistence measure. The process is 
repeated to create a hierarchy of clusters until optimal 
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numbers of clusters (regions) are obtained. Hence the title! 
In section 2 we review some of the existing works on 
cluster validity and graph based clustering algorithms. In 
Section 3 we propose DGEMST algorithm which produces 
optimal number of clusters with Dendrogram. Hence we 
named this new cluster as Optimal Dual similarity clusters. 
Finally in conclusion we summarize the strength of our 
methods and possible improvements.   

2. Related Work 

Determining the true number of clusters, also known as the 
cluster validation problem, is a fundamental problem in 
cluster analysis. Many approaches to this problem have 
been proposed [25, 32, 10]. Two kinds of indexes have 
been used to validate the clustering [6, 7]: one based on 
relative criteria and other based on external and internal 
criteria. The first approach is to choose the best result from 
set of clustering result according to a prespecified criterion. 
Although the computational cost of the approach is light, 
human intervention is required to find the best number of 
clusters. The DGEMST algorithm tries to find the proper 
number of clusters automatically which makes the first 
approach unsuitable for clustering validation in the 
DGEMST algorithm.    
The second approach is based on statistical tests and 
involves computations of both inter-cluster and intra-
cluster quality to determine the proper best number of 
clusters. The evaluation of the criteria can be completed 
automatically. However the computational cost of this type 
of cluster validation is very high. The second type of this 
kind of approach is also not suitable for DGEMST 
algorithm when it is used to cluster a large dataset. A 
successful and practical cluster validation criteria used in 
the DGEMST algorithm for large dataset must have 
modest computational cost and can be easily evaluated 
automatically.  
Clustering by minimal spanning tree can be viewed as a 
hierarchical clustering algorithm which follows the 
divisive approach. Clustering Algorithm based on 
minimum and maximum spanning tree were extensively 
studied. In the mid of 80’s, Avis [3] found an O (n2 log2 n) 
algorithm for the min-max diameter-2 clustering problem. 
Asano, Bhattacharya, Keil and Yao [2] later gave   optimal  
O (n log n) algorithm using maximum spanning trees for 
minimizing the maximum diameter of a bipartition. The 
problem becomes NP-complete when the number of 
partitions is beyond two [17]. Asano, Bhattacharya, Keil 
and Yao also considered the clustering problem in which 
the goal to maximize the minimum inter-cluster distance. 
They gave a k-partition of point set removing the k-1 
longest edges from the minimum spanning tree constructed 
from that point set [2]. The identification of inconsistent 
edges causes problem in the MST clustering algorithm. 

There exist numerous ways to divide clusters 
successively, but there is not a suitable choice for all 
cases.   
Zahn [34] proposes to construct MST of point set and 
delete inconsistent edges – the edges, whose weights are 
significantly larger than the average weight of the nearby 
edges in the tree. Zahn’s inconsistent measure is defined 
as follows. Let e denote an edge in the MST of the point 
set, v1 and v2 be the end nodes of e, w be the weight of e. 
A depth neighborhood N of an end node v of an edge e 
defined as a set of all edges that belong to all the path of 
length d originating from v, excluding the path that 
include the edge e. Let N1 and N2 be the depth d 
neighborhood of the node v1 and v2. Let ŴN1 be the 
average weight of edges in N1 and σN1 be its standard 
deviation. Similarly, let ŴN2 be the average weight of 
edges in N2 and σN2 be its standard deviation. The 
inconsistency measure requires one of the three 
conditions hold:  
 
1. w > ŴN1 + c x σN1 or  w > ŴN2 + c x σN2 
   
2. w > max(ŴN1 + c x σN1 , ŴN2 + c x σN2) 
       
3.     w    > f 
        max (c x σN1 , c x σN2)  
 
where c and f are preset constants. All the edges of a tree 
that satisfy the inconsistency measure are considered 
inconsistent and are removed from the tree. This result in 
set of disjoint subtrees each represents a separate cluster. 
Paivinen [22] proposed a Scale Free Minimum Spanning 
Tree (SFMST) clustering algorithm which constructs 
scale free networks and outputs clusters containing 
highly connected vertices and those connected to them.  
The MST clustering algorithm has been widely used in 
practice. Xu (Ying), Olman and Xu (Dong) [33] use 
MST as multidimensional gene expression data. They 
point out that MST- based clustering algorithm does not 
assume that data points are grouped around centers or 
separated by regular geometric curve. Thus the shape of 
the cluster boundary has little impact on the performance 
of the algorithm. They described three objective 
functions and the corresponding cluster algorithm for 
computing k-partition of spanning tree for predefined k > 
0. The algorithm simply removes k-1 longest edges so 
that the weight of the subtrees is minimized. The second 
objective function is defined to minimize the total 
distance between the center and each data point in the 
cluster. The algorithm removes first k-1 edges from the 
tree, which creates a k-partitions.  
Hierarchical clustering algorithm proposed by 
S.C.Johnson [16] uses proximity matrix as input data. 
The algorithm is an agglomerative scheme that erases 
rows and columns in the proximity matrix as old clusters 
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are merged into new ones. The algorithm is simplified by 
assuming no ties in the proximity matrix.  Graph based 
Hierarchical Algorithm was proposed by Hubert [12] using 
single link and complete link methods. He used threshold 
graph for formation of hierarchical clustering. An 
algorithm for single-link hierarchical clustering begins 
with the minimum spanning tree (MST) for G (∞), which is 
a proximity graph containing n(n-1)/2 edge was proposed 
by Gower and Ross [8]. Later Hansen and DeLattre [9] 
proposed another hierarchical algorithm from graph 
coloring.    
The procedure of evaluating the results of a clustering 
algorithm is known under the term cluster validity. In 
general terms, there are three approaches to investigate 
cluster validity [31]. The first is based on external criteria. 
This implies that we evaluate the results of a clustering 
algorithm based on a pre-specified structure, which is 
imposed on a data set and reflects our intuition about the 
clustering structure of the data set. The second structure is 
based on internal criteria. In this case the clustering results 
are evaluated in terms of quantities that involve the vectors 
of the data set themselves (e.g. proximity matrix).  The 
third approach of clustering validity is based on relative 
criteria. Here the basic idea is the evaluation of a 
clustering structure by comparing it to other clustering 
schemes, resulting by the same algorithm but with different 
input parameter values.    
Given n d-dimensional data objects or points in a cluster, 
we can define the centroid x0, radius R, diameter D and 
variance of the cluster as  
 

 
 

 
 

 
 
where R is the average distance from member objects to 
the centroid, and D is the average pair wise distance within 
a cluster. Both R and D reflect the tightness of the cluster 
around centroid[35].   
The Cluster compactness measure is based on the variance 
of the data points distributed in the subtrees (clusters). The 
variance of cluster T is computed as  

 
Where d(xi, xj) is distance metric between two 
points(objects) xi and xj, where n is the number of objects 
in the subtree Ti and x0 is the mean of the subtree T. A 
smaller the variance value indicates, a higher 
homogeneity of the objects in the data set, in terms of the 
distance measure d ( ). Since   d ( ) is the Euclidean 
distance, v (Ti) becomes the statistical variance of data 
set σ (Ti). 
Many different methods for determining the number of 
clusters have been developed. Hierarchical clustering 
methods provide direct information about the number of 
clusters by clustering objects on a number of different 
hierarchical levels, which are then presented by a 
graphical tree structure known as dendrogram. One may 
apply some external criteria to validate the solutions on 
different levels or use the dendrogram visualization for 
determining the best cluster structure.   
In order to measure the efficacy of clustering, a measure 
based upon the radius and diameter of each subtree 
(cluster) is devised. The radius and diameter values of 
each cluster are expected low value for good cluster. If 
the values are large that the points (objects) are spread  
widely  and may overlap. The cluster tightness measure 
is a within – cluster estimate of clustering effectiveness , 
however it is possible to devise inter- cluster measure 
also, to better measure the separation between  the 
various clusters.  
The selection of the correct number of clusters is actually 
a kind of validation problem. A large number of clusters 
provides a more complex “model” where as a small 
number may approximate data too much. Hence, several 
methods and indices have been developed for the 
problem of cluster validation and selection of the number 
of clusters [27, 8, 26, 28, 30]. Many of them based on the 
within and between-group distance.  

3. Our Clustering Algorithm 

A tree is a simple structure for representing binary 
relationship, and any connected components of tree is 
called subtree. Through this MST representation, we can 
convert a multi-dimensional clustering problem to a tree 
partitioning problem, ie., finding particular set of tree 
edges and then cutting them. Representing a set of multi-
dimensional data points as simple tree structure will 
clearly lose some of the inter data relationship. However 
many clustering algorithm proved that no essential 
information is lost for the purpose of clustering.  This is 
achieved through rigorous proof that each cluster 
corresponds to one subtree, which does not overlap the 
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representing subtree of any other cluster. Clustering 
problem is equivalent to a problem of identifying these 
subtrees through solving a tree partitioning problem. The 
inherent cluster structure of a point set in a metric space is 
closely related to how objects or concepts are embedded in 
the point set. In practice, the approximate number of 
embedded objects can sometimes be acquired with the help 
of domain experts. Other times this information is hidden 
and unavailable to the clustering algorithm. In this section 
we preset DGEMST clustering algorithm which produce 
optimal number of clusters, with dendrogram for each of 
them.   

3.1 DGEMST Clustering Algorithm 

Given a point set S in En, the hierarchical method starts by 
constructing a Minimum Spanning Tree (MST) from the 
points in S. The weight of the edge in the tree is Euclidean 
distance between the two end points. So we named this 
MST as EMST1.  Next the average weight Ŵ of the edges 
in the entire EMST1 and its standard deviation σ are 
computed; any edge with W > Ŵ + σ or current longest 
edge is removed from the tree. This leads to a set of 
disjoint subtrees ST = {T1, T2 …} (divisive approach). Each 
of these subtrees Ti is treated as cluster. Oleksandr 
Grygorash et al proposed algorithm [21] which generates k 
clusters. Our previous algorithm [15] generates k clusters 
with centers, which used to produce Dual similarity 
clusters. Both of the minimum spanning tree based 
algorithms assumed the desired number of clusters in 
advance. In practice, determining the number of clusters is 
often coupled with discovering cluster structure. Hence we 
propose a new algorithm named, Dynamically Growing 
Euclidean Minimum Spanning Tree algorithm (DGEMST), 
which does not require a predefined cluster number. The 
algorithm works in two phases. The first phase of the 
algorithm partitioned the EMST1 into sub trees 
(clusters/regions). The centers of clusters or regions are 
identified using eccentricity of points. These points are a 
representative point for the each subtree ST. A point ci is 
assigned to a cluster i if ci  ∈ Ti.  The group of center points 
is represented as C = {c1, c2……ck}. These center points c1, 
c2 ….ck are connected and again minimum spanning tree 
EMST2 is constructed is shown in the Figure 4. This 
EMST2 is used for finding optimal number clusters. A 
Euclidean distance between pair of clusters can be 
represented by a corresponding weighted edge. Our 
algorithm is also based on the minimum spanning tree but 
not limited to two-dimensional points. There were two 
kinds of clustering problem; one that minimizes the 
maximum intra-cluster distance and the other maximizes 
the minimum inter-cluster distances. Our Algorithm 
produces clusters with intra-cluster similarity. The Second 
phase of the algorithm converts the subtree/cluster into 
dendrogram (agglomerative approach). This algorithm use 

both divisive as well as agglomerative approach to find 
Dual similarity clusters.  Since the subtrees are 
themselves are clusters, are further, classified in order to 
get more informative similarity clusters.  
 
Here, in this algorithm we use a cluster validation 
criterion based on the geometric characteristics of the 
clusters, in which only the inter-cluster metric is used. 
The DGMST algorithm is a nearest centroid-based 
clustering algorithm, which creates region or subtrees 
(clusters/regions) of the data space. The algorithm 
partitions a set S of data of data D in data space in to n 
regions (clusters). Each region is represented by a 
centroid reference vector. If we let p be the centroid 
representing a region (cluster), all data within the region 
(cluster) are closer to the centroid p of the region than to 
any other centroid q: 
 
    R (p) = {x ∈ D ⎪ dist(x, p) ≤ dist(x, q) ∀q}  
 
Thus, the problem of finding the proper number of 
clusters of a dataset can be transformed into problem of 
finding the proper region (clusters) of the dataset. Here, 
we use the MST as a criterion to test the inter-cluster 
property. Based on this observation, we use a cluster 
validation criterion, called Cluster Separation (CS) in 
DGMST algorithm [4]. 
 
Cluster separation (CS) is defined as the ratio between 
minimum and maximum edge of MST. ie 
 
                CS = Emin  / Emax , 
 
where Emax is the maximum length edge of MST, which 
represents two centroids that are at maximum separation, 
and Emin is the minimum length edge in the MST, which 
represents two centroids that are nearest to each other. 
Then, the CS represents the relative separation of 
centroids. The value of CS ranges from 0 to 1. A low 
value of CS means that the two centroids are too close to 
each other and the corresponding partition is not valid. A 
high CS value means the partitions of the data is even 
and valid. In practice, we predefine a threshold to test the 
CS.  If the CS is greater than the threshold, the partition 
of the dataset is valid. Then again partitions the data set 
by creating subtree (cluster/region). This process 
continues until the CS is smaller than the threshold. At 
that point, the proper number of clusters will be the 
number of cluster minus one. The CS criterion finds the 
proper binary relationship among clusters in the data 
space. The value setting of the threshold for the CS will 
be practical and is dependent on the dataset. The higher 
the value of the threshold the smaller the number of 
clusters would be. Generally, the value of the threshold 
will be > 0.8[4]. Figure 3 shows the CS value versus the 
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number of clusters in hierarchical clustering. The CS value 
< 0.8 when the number of clusters is 5. Thus, the proper 
number of clusters for the data set is 4.  Furthermore, the 
computational cost of CS is much lighter because the 
number of subclusters is small. This makes the CS criterion 
practical for the DGEMST  algorithm when it is used for 
clustering large dataset.      
 
Algorithm: DGEMST ( ) 
Input      : S the point set 
Output   : Optimal number of clusters with dendrograms               
 
Let e1 be an edge in the EMST1 constructed from S 
Let e2 be an edge in the EMST2 constructed from C 
Let We be the weight of e1 
Let σ be the standard deviation of the edge weights 
 in EMST1 
Let ST be the set of disjoint subtrees of the EMST1 
Let nc be the number of clusters  
 
 1.  Construct an EMST1 from S  
 2.  Compute the average weight of Ŵ of all the   
      Edges from EMST1 
 3.  Compute standard deviation σ of the edges 
 4.  ST = ø; nc = 1 
 5.  Repeat 
 6.    For each e1 ∈ EMST1 
 7.       If (We > Ŵ + σ) or (current longest edge e1) 
 8.          Remove e1 from EMST1 which result T’, a   
              is new disjoint subtree 
 9.          ST = ST U {T’} // T’ is new disjoint  
              subtree 
10.         nc = nc+1  
11.         Compute the center Ci of Ti using  
              eccentricity of points  
12.         Compute the diameter of Ti using 
              eccentricity of points 
13.         Compute the variance of Ti 
14.         C = UTi  ∈ ST {Ci} 
15.         Construct an EMST2 T from C 
16.         Emin = get-min-edge (T)  
17.         Emax = get-max-edge (T)  
18.         CS = Emin / Emax  
19.         Begin with T’, disjoint clusters with level     
              Lnc (0) = 0 and sequence number m = 0 
20.       While (T’ has some edge) 
21.             e2 = get-min-edge(T’) // for least  
                  dissimilar pair of clusters 
22.             (i, j) = get-vertices (e2)  
23.             Increment the  sequence number                       
                  m = m+ 1, merge the clusters (i) and (j),    
                  into single cluster to form next  
                  clustering m and  set the level of this  
                  cluster to Lnc(m) =  e2; 
24.             Update T’ by forming new vertex by  

                  combining the vertices i, j; 
25.  Until CS < 0.8     
26.  Return optimal clusters with dendrogram 
 
Figure 1 shows a typical example of EMST1 constructed 
from point set S, in which inconsistent edges are 
removed to create subtree (clusters/regions). Our 
algorithm finds the center of the each cluster, which will 
be useful in many applications. Figure 2 shows the 
possible distribution of the points in the two cluster 
structures with their center vertex as 5 and 3. 
 

 
 
 
  Figure 1. EMST1 - Clusters connected through a point  

 

 
 

 
Figure 2. Two Clusters with Center vertices 5 and 3 
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Figure 3. Number of Clusters vs. Cluster Separation 

 

 
Figure 4. EMST2 From 4 region/cluster center points 

 

 
 

 
Figure 5. Dendrogram for optimal clusters 

Our DGEMST algorithm works in two phases. The first 
phase of the algorithm (lines 1-18) uses divisive 
approach of hierarchical clustering. Euclidean minimum 
spanning tree EMST1 is constructed in line 1. The 
average and standard deviation of the weighted edges of 
the Euclidean minimum spanning tree are computed to 
find inconsistent edges are specified in the lines 2-3. The 
inconsistent edges are identified and removed from 
Euclidean minimum spanning tree EMST1 in order to 
generate subtree T’ is specified in the lines 7-9. The 
center of each subtree is computed. The radius, diameter 
and variance of subtree (cluster) are computed (Lines 
(11-13). Lines 15-18 in the algorithm are used find the 
value of cluster separation (CS). This value is useful to 
find optimal number of clusters.  
The second phase of the algorithm converts the subtrees 
T’ into dendrograms is shown in the figure 5 (only two 
dendrograms are shown). For the newly created subtree 
T’ again further hierarchical clustering is performed 
(lines 20-24). It places the entire disjoint cluster at level 
0 (line 19). It then checks to see if T’ still contains some 
edge (line 20). If so, it finds minimum edge e2 (line 21). 
It then finds the vertices i, j of an edge e2 (line 22). It 
then merges the vertices and forms a new vertex 
(agglomerative approach). At the same time the 
sequence number is increased by one and the level of the 
new cluster is set to the edge weight (line 23). Finally,  
updation of Euclidean minimum spanning tree is 
performed at line 24. The lines 20-24 in the algorithm are 
repeated until optimal number of clusters are obtained, 
which can be determined using CS value (line 18). Our 
algorithm uses both divisive as well as agglomerative 
approach in the DGEMST algorithm to find optimal 
Dual similarity clusters.  
In order to measure the efficacy of clustering, a measure 
based upon the radius and diameter of each subtree 
(cluster) is devised. The radius and diameter values of 
each cluster are expected low value for good cluster is 
shown in Figure 6. If the values are large that the points 
(objects) are spread widely and may overlap. The cluster 
tightness measure is a within – cluster estimate of 
clustering effectiveness. The radius and diameter are 
good measure to find the tightness of clusters. The radius 
and diameter values of each cluster are expected low 
value for good cluster. If the values are large that the 
points (objects) are spread widely.  
The variance for each subtree (cluster) is computed to 
find the compactness of clusters is shown in Figure 7. A 
smaller the variance value indicates, a higher 
homogeneity of the objects in the data set. The cluster 
compactness measure evaluates how well the subtrees 
(clusters) of the input is redistributed in the clustering 
process, compared with the whole input set, in terms of 
data homogeneity reflected by Euclidean distance metric 
used by the clustering process. Smaller the cluster 
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compactness value indicates a higher average compactness 
in the out put clusters.    
 

 

 
Figure 6. Tightness of individual clusters 

 

 
                 Figure 7. Compactness of individual clusters  

4. Conclusion 

Our DGEMST clustering algorithm does not assumes any 
predefined cluster number. The algorithm gradually finds 
clusters with center for each cluster. These clusters ensure 

guaranteed intra-cluster similarity. Our algorithm does 
not require the users to select and try various parameters 
combinations in order to get the desired output. Our 
DGEMST clustering algorithm uses a new cluster 
validation criterion based on the geometric property of 
partitioned regions/clusters to produce optimal number of 
“true” clusters with center for each of them. The inter-
cluster distances between centers of clusters/regions are 
used to find optimal number of clusters. The DGEMST 
clustering algorithm generates dendrogram for optimal 
clusters, which is used to find the relationship between 
objects with in a cluster. The algorithm also finds radius, 
diameter and variance of individual clusters using 
eccentricity of points in a cluster. The radius and 
diameter values give the information about tightness of 
individual clusters. The variance value of the cluster is 
useful in finding the compactness of individual cluster. 
This information will be very useful in many applications. 
The validity assessment approaches proposed in the 
DGEMST algorithm will works better in various 
domains.  All of these look nice from theoretical point of 
view. However from practical point of view, there is still 
some room for improvement for running time of the 
clustering algorithm. This could perhaps be 
accomplished by using some appropriate data structure. 
In the future we will explore and test our proposed 
clustering algorithm in various domains. The DGEMST 
algorithm uses both divisive as well agglomerative 
approaches. In this paper we used both the approaches to 
find optimal Dual similarity clusters. We will further 
study the rich properties of EMST-based clustering 
methods in solving different clustering problems.  
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