
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

262

Manuscript received July 5, 2010
Manuscript revised July 20, 2010

Node Placement Optimization Techniques in Multihop
Lightwave Based de Bruijn Graph Network

 Tarun Kumar Ghosh1, Debi Bera2

1Department of Computer Science & Engineering
Haldia Institute of Technology, West Bengal-721657, INDIA

2 Department of Computer Science & Engineering
Haldia Institute of Technology, West Bengal-721657, INDIA

ABSTRACT
The de Bruijn graph being a regular topology and having
structured node connectivity has a small nodal degree. Node
placement problem in de Bruijn graph is a combinatorial
optimization problem. To exploit the limitless capabilities of
lightwave technology, we construct optimized regular multihop
network based de Bruijn graph when the traffic flow among the
network nodes is asymmetric. Given that the network nodes
must be connected in a regular interconnection pattern and that
the node positions in the regular network can be adjusted by
properly tuning their (optical) transceivers, here we propose the
best possible node placement in the given regular topology. We
formulate four efficient heuristic algorithms to design
optimized de Bruijn graph structures for given traffic matrices
and compare these algorithms.
Keywords:
 Lightwave networks, node placement problem, multihop, de
Bruijn graph, optimized structures.

I. INTRODUCTION

Life in our increasingly information-dependent society
requires multimedia services such as real-time voice,
video, high-resolution graphics, distributed databases,
distributed computing among high-performance systems,
etc. These applications require fast delivery of high
volume of traffic over a large area. To satisfy these
demanding needs, fiber-optic medium, which offers a
very high bandwidth-distance product, is commonly
chosen as the transmission medium.
The huge (nearly 50 Tbps) and inexpensive bandwidth of
the optical medium promise the potential for new
services and capabilities. However, the ability of a user
to access this huge bandwidth is constrained by the much
slower electronic processing speed of its channel
interface.
A lightwave network can be constructed by exploiting
the capabilities of optical technology, viz., WDM and
tunable optical transceivers (transmitters and receivers)
as follows: the vast optical bandwidth of a fiber is carved
up into smaller capacity channels, each of which can
operate at peak electronic processing speeds (viz., over a
small wavelength range) of, say a few Gbps. By tuning

its transmitter(s) to one or more wavelength channels, a
node can transmit into those channel(s) to receive from
the appropriate channels. The system can be configured
as a broadcast-and-select network in which all of the
inputs from various nodes are combined in a WDM
passive star coupler and the mixed optical information is
broadcast to all outputs (see figure 1).
Thus, given any physical network topology, the fact is
that the lasers (transmitters) and the filters (receivers)
can be made tunable opens up a multitude of possible
virtual network configurations. Thus, there are three
main advantages for employing WDM. First, using
WDM, a regular virtual structure can be realized over an
arbitrary physical topology by superimposing on it a
logical structure. Second, WDM technology allows
parallel and concurrent transmissions, thus making
available a much larger bandwidth at each station. Third,
for better reuse of each WDM channel’s bandwidth, the
relative positions of the nodes can be changed
dynamically based on the traffic fluctuations.

Figure1: Broadcast-and-select WDM network

Network designs using wavelength-division multiplexing
(WDM) technologies can be grouped into two classes:
single-hop networks and multihop networks [1]. In a
single-hop WDM network, information is transmitted
directly from the source to the destination without going
through intermediate nodes. The main drawback of this
design is the need to use fast tunable optical transceivers,
which are not mature for mass production at the current
stage. On the other hand, in a multihop WDM network
only a small number of fixed optical transceivers are
needed, but the information from a source node may

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

263

need to go through a number of intermediate nodes
before reaching its destination node.
On any underlying physical topology, one can impose a
carefully selected connectivity pattern that provides
dedicated connections between certain pairs of stations.
Traffic destined to a station that is not directly receiving
from the transmitting station must be routed through
intermediate stations. This overlaid topology is referred
to as the logical or virtual topology.
The logical topology of a multihop WDM network can
be either regular (symmetrical), such as ShuffleNet,
Toroid, DeBruijn graph, and Hypercube, or irregular
(asymmetrical). A regular topology can use simple
routing rules, which is crucial for high-speed networks.
Two major design issues for regular topologies are: i)
modular increase and decrease of network size and ii)
adaptation to nonuniform traffic. Research on the first
issue can be found, for example, in [2] and [3]. Research
on the second issue can be grouped into two classes. The
first class focuses on the optimal initial placement of
nodes into an empty regular topology given the (average)
traffic requirements between all pairs of nodes. This is
known as the node placement problem. The commonly
used objective function is to minimize the traffic
weighted mean internodal distance of a network. If the
network consists of equal length links, this is equivalent
to minimize the mean network packet delay. Assume that
all nodes have already been placed in the network; the
second class of research for adapting to nonuniform
traffic focuses on the outing/switching problem on a
packet-by-packet or call-by-call basis [4], [5].
In general, arbitrary virtual topologies may provide
better performance than regular topologies; however,
regular topologies provide simpler routing mechanisms
which are desirable for high-speed environments since
they consume less processing time. Among the regular
virtual topologies, the linear bus, ring, ShuffleNet, de
Bruijn graph, toroid and hypercube are the more popular
ones. The linear bus topology is the simplest; however,
designing an optimal linear structure is an NP-hard
problem, as shown in [6]. A study on optimized ring
structures can be found in [7]. In bus and ring structured
networks, the per-node throughput decreases linearly
with increasing number of nodes. Thus, these networks
cannot be scaled up over larger areas for supporting an
increasing number of nodes [8]. Hence, mesh topologies
(e.g., ShuffleNet, de Bruijn graph) are preferred since
they use a smaller average fraction of the network’s
resources for transmitting information from a source to
its destination. In general, mesh-connected networks
have multiple paths between node-pairs; thus, they are
more reliable and they can support more concurrent
transmissions. All of these properties are very desirable
for high-speed switching environments.

Due to the aforementioned properties of mesh-connected
regular structures, we concentrate on one such structure
in this class. In particular, we consider the de Bruijn
graph. The de Bruijn Graphs can support much larger
numbers of nodes than the same degree Shuffle nets by
having the same average number of hops[5]. Moreover,
it retains the simple addressing and routing properties of
Shuffle nets.
Depending on the design goals, several optimality
criteria may be considered. These include minimizing the
flow-weighted average hop distance, minimizing the
maximum load over any link, etc. In our present study,
minimization of weighted average hop distance is
investigated. In general, this optimization problem does
not yield to polynomial time solutions (i.e., the search
space for the optimum solution grows exponentially with
the number of nodes). So, we investigate four efficient
heuristic algorithms, namely GREEDY, LOCAL,
GLOBAL and ITERATIVE for constructing optimized
node arrangements in de Bruijn graph configurations.

II. DE BRUIJN GRAPH

A de Bruijn Graph can support much larger numbers of
nodes than the same degree Shuffle net by having the
same average number of hops. Moreover, it retains the
simple addressing and routing properties of Shuffle nets.
For any positive integers ∆ ≥ 2 and D ≥ 1, de Bruijn
graph G (Δ, D) [9] is a directed graph consisting of N =
Δ

D
nodes with the set of {0,1,2,… Δ-1}

D
nodes where

there is an edge from node (a
1, a2 ,……

a
D
) to node (b1, b2,

……
b

D
) if and only if b

i
= a

i+1
, where a

i
, b

i
Є {0, 1, 2,…

Δ-1}, 1 ≤ i ≤ D-1.
D is the diameter of the de Bruijn graph with a deflection
penalty D. Each node has in- and out- degree Δ, and Δ
nodes (i.e. 000,111) have self-loops (self-loop exists in
the logical graph but does not exist in the physical
network configuration). The de Bruijn graph structure is
inherently asymmetric due to the nodes with self-loops
(see Figure 2) [5].
There is one-to-one correspondence between the
connectivity of the nodes in the de Bruijn graph G (Δ, D)
with all the possible states of a Δ shift register of length
D. If state b can be reached from state a in one shift
operation in the shift register then there is an edge from
node a to b. Therefore, the de Bruijn graph can be seen
as the state transition diagram of the shift register [9]. A
node in the de Bruijn graph can be represented by a
sequence of D digits as defined in the shift register
analogy [10]. An edge from node A to node B can be
represented by a string of (D + 1) digit. Consequently,
any path in the graph of length k from source to
destination nodes can be represented by a string D + k

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

264

000

001

011

100

010

110 101 111

digits. The first D digits represent the source node and
the last D digits represent the destination node.

Figure 2: An 8 Node (Δ = 2, D = 3) de Bruijn graph

Let F = {λij} be the traffic matrix where λij denotes the
traffic from the source Node i to the destination Node j
(λii = 0) and let Λ= Σi,j λij be the total load offered to the
network.

The average weighted hop-distance under generalized
traffic conditions can be computed as follows:
⎯Hgeneral = (1/Λ 　 Σi∈V Σj∈V (hop distance from Node i to
Node j) x λij ; where V is the set of N nodes.
A number of heuristic algorithms for minimizing
H general, i.e., the weighted number of hops, averaged
over all source destination pairs, are described next.

III. OPTIMIZATION ALGORITHMS

(i) Algorithm GREEDY

This algorithm employs a greedy approach to maximize
the one-hop traffic in a de Bruijn graph. First, the N2
elements of the traffic matrix are sorted in non-
decreasing order. Then, find two higher elements in the
sorted list corresponding to the two directly connected
distinct nodes having highest average flow value and
these two are attached to two directly connected links of
the NΔ links of the de Bruijn graph. This defines the
placement of two nodes connected directly. In the
successive steps, the next higher two elements of the
sorted list are assigned to two of the directly connected
available links. If no directly connected nodes found,
next higher element from the list is placed in one of the

available links. During this process, a flow assignment
(λab) might be invalid if (1) its two corresponding nodes
(nodes a and b) are already placed, or (2) only node a is
placed and all the p locations to which it directly
connects are already assigned, or (3) only node b is
placed and all the p locations from where it is directly
connected are already assigned. In such cases, the current
element is skipped and the next highest element is
considered. An algorithmic description of this procedure
is given below. For an illustrative example, see Figure 3.

Algorithm GREEDY:

let G ={0,1, ……N-1} be the set of nodes;
let S be the sorted list of the elements of the traffic
matrix F;
while (all nodes are not placed) do
begin
find two higher elements in S corresponding to traffics
from node a to node b (≠ a) and node b to node a, having
highest average flow value;
if (links available for connecting node a to b and b to a)
then
place nodes a and b at two unoccupied locations such
that node a is directly connected to node b and node b is
directly connected to node a;
discard the two current higher elements from S;
else
find the highest element in S corresponding to traffic
from node a to node b;
if (link available for connecting node a to node b) then
place nodes a and b at two unoccupied locations such
that
node a is directly connected to node b;
discard the current highest element from S;
end;
 Source Destination

 0 1 2 3
0 - 8 3 4
1 7 - 6 3
2 8 7 - 2
3 6 3 5 -

 (a) Traffic Matrix F (Blank entries denote zero flow)

Flow From To
8 0 1
8 2 0
7 1 0
7 2 1
6 1 2
6 3 0
5 3 2
4 0 3

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

265

00

01

11 10

0

1

00

01

11 10

0

1

2

3 0 2
3 1 3
3 3 1
2 2 3

(b) Traffic matrix F sorted in descending order

(c) Step 1

(d) Step 2

(e) Step 3

Average weighted hop distance = 1.42

Figure 3: An illustrative example for Algorithm GREEDY

(ii) Algorithm LOCAL

In (Δ, D) de Bruijn graph, there are Δ
D-1 groups each

consisting of ∆ no. of children and ∆ no. of parents.
However, these groups are not necessarily disjoint and
self-loop nodes are counted twice.
This algorithm first places the nodes in a group where no
node is self-looped, if possible. The procedure is as
follows. From among the N nodes, two sets with ∆ nodes
in each set are chosen such that the traffic from one set
(say set A) to the other (say set B) is heavy compared to
the reverse-flowing traffic from set B to set A. Set A
nodes are assigned as parents and each of these nodes
has direct links to all the nodes in set B which are
considered as children. Based on the same criterion,
another 2∆ nodes are chosen from the remaining nodes.
This process is repeated until all the nodes (parents and
children) are assigned. An algorithmic description of this
procedure is given below. For an illustrative example,
using the above same traffic matrix, step-by-step node
placement is shown in Figure 4.
Algorithm Local:
Let G= {0,1,2,….., N-1} be the set of nodes;
For r = 1 to Δ

D-1 do
Begin
While (nai ≠ nbj) do
Begin
Choose 2∆ nodes (na1 , nb1 , na2 , nb2 , …., na∆ , nb∆) from
G such that

∑∑
Δ

−

Δ

=1 1

(
i j

λnai nbj – λnbj nai) is maximized;

 For i = 1 to ∆ do
 Begin
 Place nodes nai as the parent nodes;
 Place nodes nbi as children nodes;
 End
G = G – { na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ };
End
Else
Begin
Choose 2∆ nodes (na1 , nb1 , na2 , nb2 , …., na∆ , nb∆),
where self-looped node is counted twice, from G such
that

∑∑
Δ

−

Δ

=1 1

(
i j

λnai nbj – λnbj nai) is maximized;

00

01

11 10

0

1

2

3

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

266

0

0

11

2

0

1

300

01

11 10

2

0
1

 For i = 1 to ∆ do
 Begin
 Place nodes nai as the parent nodes;
 Place nodes nbi as children nodes;
 End
G = G – { na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ };
End
End

Step-1

Step-2

Average weighted hop distance = 1.37

Figure 4: Illustration of Local Algorithm (Using the above traffic
matrix)

(iii) Algorithm GLOBAL

This heuristic algorithm performs optimization based on
global information. The algorithm takes into
consideration the traffic to (and from) this node from (to)
all the nodes that are already placed in the de Bruijn
graph. First, node 0 is placed at location {0}D. Then, a
penalty function, fP(0, i, c) for node i (i Є unplaced
nodes) for location c (c Є unassigned locations) is
evaluated. We have used the penalty function based on

the overall flow-weighted hop-distance of a candidate
node to and from all the other nodes that are already
placed. Then, node i’ is placed at location c’, where
fp(0,i’ ,c’) = min{fp(0, i, c)} for all unplaced nodes i
and unassigned locations c. Penalty values, P (g, c) of all
the unplaced nodes g for all the unassigned locations c
are updated by incorporating the newly placed node i’
into the computations. This process is repeated until all
the nodes are placed. An illustrative example for this
algorithm is given in Figure 5.

Algorithm Global:
let G = {0, 1, ..., N -1} be the set of nodes;
let C = {0,1, 2,… N-1}D, where D is the diameter of the
de Bruijn graph

G = G - {0};
C = C - {0}D;
compute penalty functions fp(0, g, c) for all g Є G and c
Є C ;
P (g, c) = fP(0, g, c) for all g Є G and c Є C ;
while G ≠ φ do
begin
let Pmin(g’, c’) = min{ P (g, c) | g Є G; c Є C};
place node g’ at position c’;
G = G - { g’}; C = C - { c’ };
compute penalty functions fP(g’, g, c) for all g Є G and
c Є C;
P (g, c) = P (g, c) + fP(g’, g, c) for all g Є G and c Є C;
end;

function fP(g’,g,c); {Penalty function}
begin
let λg’

max
 and λg’

min
 be the maximum and minimum

elements
in {λg’ i| i Є G – { g’ }};
On a (traffic flow, hop distance) – space let L(g’) be a
straight line from
(λg’

max
 , 1) to (λg’

min, D);
{Note that minimum and maximum possible hop-
distances are 1 and D}
let traffic from node g’ reaches position c in h’ hops;
also, let traffic from position c reaches node g’ in h’
hops;
let d = distance of the point (λg’g , h) from L (g’);
let d’= distance of the point (λgg’ , h) from L (g);
fP(g’, g, c) = (d + d’);
end;

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

267

Destination

Source

0 1 2 3 4 5 6 7

0 - 6 0 2 0 7 7 5

1 5 - 8 6 4 8 1 9

2 2 0 - 2 1 3 7 9

3 1 0 5 - 4 9 2 1

4 9 6 1 1 - 5 3 4

5 0 9 5 1 2 - 9 8

6 6 4 2 3 6 4 - 9

7 1 7 0 5 2 8 6 -

Traffic matrix F (blank entries denote zero flow)

Step-1: Only node 0 is placed at location (000)

Step-2:
Compute penalty function fp (0, 5, (100)) i.e., to
compute penalty value calculation for placing node 5 at
location (100), given node 0 was placed in the previous
step.

Step -3:
We calculate penalty function for nodes 1, 2, 3, 4, 5, 6
and 7 for location 001, 010, 011,100, 101, 110, 111 and
final node arrangement will be as follows:

Figure 5: An illustrative example for algorithm GLOBAL

(iv) Algorithm ITERATIVE

Consider an N-dimensional surface composed of (N!)
points representing the values of our cost function (i.e.,
average weighted hop-distance) for all different
permutations of [0, 1,, N- 1] with node i placed at
location whose decimal address value is i . Now, this
surface will have several local minima and one (or more)
global minimum. Our iterative algorithm starts by
picking randomly one point (α0 , α1, αN - 1) on this
surface. Then, at each iteration, node αu is inserted at the
place of node αg (g < u; g = 0, ... , N- 2; u = g + 1, ... , N-
1) if the average hop distance in the new arrangement is
less than that in the previous arrangement.
Algorithm Iterative:
let G = {0, 1, ..., N - 1} be the set of nodes;
NoOfIterations = log2N;
{Could be performed for different number of iterations
as well,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

268

but this value appeared to perform quite well}
for q := 1 to NoOfIterations do
begin
pick a random permutation of [0, ... , N−1]
{or the output of an earlier algorithm}
as the initial node sequence;
let α = [α0,...,αN−1] denote this initial node sequence,
where αi is the node placed at location whose decimal
address value is i
for g := 0 to N - 2 do
begin

for u := g + 1 to N - 1 do
begin

α’ = [α’0,...,α’N−1]
where α’i = αi for 0 ≤ i ≤ g -1 and u + 1 ≤ i < N – 1
 α’g = αu and α’i = αi-1 for g + 1 ≤ i ≤ u
 let H(α) = average weighted hop-distance in the
de Bruijn Graph represented by α ;

if H(α’) < H(α)
α ← α’;

end;
end;

end;

An illustrative example for this algorithm is given in
Figure 6.

G = set of nodes {0,1, 2, 3, 4, 5, 6, 7};
NoOfIterations = log2N = log28 = 3;
Consider, the node placement of GLOBAL algorithm is
the input of ITERATIVE algorithm.
Thus from previous example, α = {0, 7, 5, 3, 4, 1, 2, 6}
Average weighted hop distance in GLOBAL algorithm
H(α) = 2.11

Step 1:
New node arrangement after first iteration is as follows:

Step 2:
In the second iteration, there is no change in node
arrangement.

Step 3:
Final node placement is as follows:

Figure 6: Illustrative example of ITERATIVE algorithm

IV. COMPARISON AMONG
ALGORITHMS

Algorithm GREEDY is the simplest and is also the
fastest. It provides good solutions for small networks;
however, its performance degrades as N increases.
Algorithm GREEDY attempts to maximize only the one-
hop traffic. However, this approach can lead to large
hop-distances for the remaining traffic that are not routed
in one hop. The numerical example in Fig. 3 points out
this weakness of the algorithm. In Fig. 3, the traffic
matrix is constructed in such a way that algorithm
GREEDY routes the first four heaviest traffic in one hop.
However, all the remaining traffic is routed via
maximum number of hops.
Algorithm LOCAL works only on local traffic
information. However, unlike the GREEDY algorithm,
while considering a pair of nodes a and b, algorithm
LOCAL considers the traffic from node a to node b as
well as the traffic from node b to node a.
Algorithm GLOBAL, while choosing a node for placing
in the de Bruijn graph, considers all the nodes that are
already placed. Algorithm GLOBAL employs a penalty
function (see Fig. 5) to reduce the difference between i
and j. For example, in Fig. 5, first node 0 is placed at
location

At first iteration average weighted hop distance H(α)=1.96

Average weighted hop distance H(α) = 1.93

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

269

(000). Then, node 7 is placed at location (001) since
node 0 and Node 7 have the minimum traffic among
themselves and are maximum hop distances away from
each other.
The algorithm ITERATIVE exhibits the general
properties of iterative algorithms. For example,
performance of this algorithm can be arbitrarily
improved, at the cost of reduced speed by running the
algorithm for a larger number of iterations. The
computations performed in this algorithm are very
regular and can be easily conducted in a pipelined
fashion. Moreover, different iterations can be performed
in parallel on different processors of a multiprocessor
system where each processor uses its independent
random number generator for constructing the initial
random sequence.
The overall performance of the ITERATIVE algorithm is
better than other algorithms. GREEDY algorithm is the
fastest, but it does not perform as good as the other
algorithms, especially for large networks.

V. NUMERICAL RESULTS

Each of the two algorithms is applied to the same traffic
matrix. In order to reduce the bias of certain algorithms
to certain traffic patterns, the algorithms are applied to a
fixed set of 20 different, random traffic matrices. The
weighted average hop-distances obtained from the
experiments are then averaged over the set of 20 traffic
matrices. These results are tabulated in Table I.

Table- I

De
gr
ee

Dia
met
er

No.
of
No
des

Average weighted hop distance
Algo.
GREE

DY

Algo.
LOC
AL

Algo.
GLO
BAL

Algo.
ITERA
TIVE

2 2 4 1.41 1.35 1.35 1.27
2 3 8 2.29 2.30 2.04 1.91
2 4 16 2.88 2.72 2.83 2.67
2 5 32 3.72 3.77 3.69 3.52
2 6 64 4.84 4.44 4.32 4.12

3 2 9 1.85 1.77 1.61 1.53
3 3 27 2.71 2.59 2.47 2.40

4 2 16 1.91 1.76 1.74 1.69
4 3 64 3.94 3.83 3.68 3.45

VI. CONCLUSION

Four heuristic algorithms based on GREEDY, LOCAL,
GLOBAL and ITERATIVE approaches are proposed for
constructing photonic implementations of optimized de
Bruijn graph configurations. These logical structures are

multihop in nature, and they can be superimposed on any
physical topology by exploiting the broadcast-and-select
property of WDM lightwave networks in which all of the
inputs from various nodes are combined in a star coupler
and the mixed optical information is broadcast to all
outputs.
Assuming static traffic conditions, these heuristic
algorithms optimize the weighted average hop distance
in the network. A comparative study is made for these
algorithms and their performance was demonstrated by
employing numerical examples.
The algorithms corresponding to our discussions above
are static. However, the virtual network topology might
have to be reconfigured in order to respond to any
change in the traffic pattern. Reconfigurable networks
would require tunable transceivers, instead of fixed-
tuned ones. Although, currently, wavelength-agile
transceivers are quite expensive, we believe that this
cost-performance tradeoff will favor reconfigurable
networks when low-cost tunable transceivers become
commercially available. Thus, a dynamic reconfiguration
heuristic is to be studied next.

VII. REFERENCES
[1] A. S. Acampora and M. J. Karol, “An overview of

lightwave packet networks,” IEEE Network Mag., vol. 3,
pp. 29–41, Jan. 1989.

[2] N. F. Maxemchuk, “Regular mesh topologies in local and
metropolitan area networks,” AT&T Tech. J., vol. 64, no.
7, pp. 1659–1685, Sept. 1985.

[3] P. P. To, T. S. Yum, and Y. W. Leung, “Multistar
implementation of expandable shufflenets,” IEEE/ACM
Trans. Networking, vol. 2, pp. 345–351, Aug. 1994.

[4] K. C. Lee and V. O. K. Li, “Routing for all-optical
networks using wavelengths outside erbium-doped fiber
amplifier bandwidth,” Proc. IEEE INFOCOM’94, vol. 2,
Toronto, Ont., Canada, 1994, pp. 946–953.

[5] K. N. Sivarajan and R. Ramaswami, “Lightwave networks
based on de bruijin graphs,” IEEE/ACM Trans.
Networking, vol. 2, pp. 70–79, Feb. 1994.

[6] S. Banerjee, B. Mukherjee and D. Sarkar "Heuristic
algorithms for constructing near-optimal structures of
linear multihop lightwave networks," Proc., IEEE
INFOCOM ’92, Florence, pp. 671-680, May 1992.

[7] S. Banerjee and B. Mukherjee, "The Photonic Ring
Algorithms for near-optimal node arrangements," Journal
of Fiber and Integrated Optics, vol. 12, pp. 133-171, April
1993. (special issue on networking with optical
technology).

[8] N. F. Maxemchuk, "Regular mesh topologies in local and
metropolitan area networks," AT&T Tech. J., vol. 64, pp.
1659-1686, Sept. 1985.

[9] B. Bollobas, “External Graph Theory with Emphasis on
Probabilistic Methods”, American Mathematics Society,
1986.

[10] S. W. Golomb, “Shift register sequences”, Aegean Park
Press, 1982.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010

270

Tarun Kumar Ghosh received the
B.Tech. and M.Tech degrees in
Computer Science & Engineering from
the University of Calcuta, Kolkata,
India in 1999 and the Bengal
Engineering & Science University,
Howrah, West Bengal, India in 2001
respectively.
He joined as a Lecturer in the

Department of Computer Science & Engineering, Asansol
Engineering College, West Bengal, India in February 2001 and
worked there for about three and half years. Then he has been
working as an Assistant Professor in the Department of
Computer Science & Engineering, Haldia Institute of
Technology, West Bengal, India for about six years. He
published eight papers in various journal and conference
proceedings. He has written a book titled “Computer
Organization & Architecture” from Tata McGraw Hill
publication. He is a member of ACM. His research interests
include lightwave networks, high-speed computing and
computer architecture.

Debi Bera received the M. Sc.
Degree in Computer Science from
Vidyasagar University, West Bengal,
India in 2008 and will receive the M.
Tech. degree in Computer Science &
Engineering from West Bengal
University of Technology, India in
July 2010.
Her research interests include
lightwave networks and computer
architecture.

