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ABSTRACT 
The de Bruijn graph being a regular topology and having 
structured node connectivity has a small nodal degree. Node 
placement problem in de Bruijn graph is a combinatorial 
optimization problem. To exploit the limitless capabilities of 
lightwave technology, we construct optimized regular multihop 
network based de Bruijn graph when the traffic flow among the 
network nodes is asymmetric. Given that the network nodes 
must be connected in a regular interconnection pattern and that 
the node positions in the regular network can be adjusted by 
properly tuning their (optical) transceivers, here we propose the 
best possible node placement in the given regular topology. We 
formulate four efficient heuristic algorithms to design 
optimized de Bruijn graph structures for given traffic matrices 
and compare these algorithms. 
Keywords: 
 Lightwave networks, node placement problem, multihop, de 
Bruijn graph, optimized structures. 

I. INTRODUCTION 

Life in our increasingly information-dependent society 
requires multimedia services such as real-time voice, 
video, high-resolution graphics, distributed databases, 
distributed computing among high-performance systems, 
etc. These applications require fast delivery of high 
volume of traffic over a large area. To satisfy these 
demanding needs, fiber-optic medium, which offers a 
very high bandwidth-distance product, is commonly 
chosen as the transmission medium. 
The huge (nearly 50 Tbps) and inexpensive bandwidth of 
the optical medium promise the potential for new 
services and capabilities. However, the ability of a user 
to access this huge bandwidth is constrained by the much 
slower electronic processing speed of its channel 
interface.  
A lightwave network can be constructed by exploiting 
the capabilities of optical technology, viz., WDM and 
tunable optical transceivers (transmitters and receivers) 
as follows: the vast optical bandwidth of a fiber is carved 
up into smaller capacity channels, each of which can 
operate at peak electronic processing speeds (viz., over a 
small wavelength range) of, say a few Gbps. By tuning 

its transmitter(s) to one or more wavelength channels, a 
node can transmit into those channel(s) to receive from 
the appropriate channels. The system can be configured 
as a broadcast-and-select network in which all of the 
inputs from various nodes are combined in a WDM 
passive star coupler and the mixed optical information is 
broadcast to all outputs (see figure 1). 
Thus, given any physical network topology, the fact is 
that the lasers (transmitters) and the filters (receivers) 
can be made tunable opens up a multitude of possible 
virtual network configurations. Thus, there are three 
main advantages for employing WDM. First, using 
WDM, a regular virtual structure can be realized over an 
arbitrary physical topology by superimposing on it a 
logical structure. Second, WDM technology allows 
parallel and concurrent transmissions, thus making 
available a much larger bandwidth at each station. Third, 
for better reuse of each WDM channel’s bandwidth, the 
relative positions of the nodes can be changed 
dynamically based on the traffic fluctuations.  

Figure1: Broadcast-and-select WDM network 

Network designs using wavelength-division multiplexing 
(WDM) technologies can be grouped into two classes: 
single-hop networks and multihop networks [1]. In a 
single-hop WDM network, information is transmitted 
directly from the source to the destination without going 
through intermediate nodes. The main drawback of this 
design is the need to use fast tunable optical transceivers, 
which are not mature for mass production at the current 
stage. On the other hand, in a multihop WDM network 
only a small number of fixed optical transceivers are 
needed, but the information from a source node may 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.7, July 2010 

 

263

need to go through a number of intermediate nodes 
before reaching its destination node. 
On any underlying physical topology, one can impose a 
carefully selected connectivity pattern that provides 
dedicated connections between certain pairs of stations. 
Traffic destined to a station that is not directly receiving 
from the transmitting station must be routed through 
intermediate stations. This overlaid topology is referred 
to as the logical or virtual topology. 
The logical topology of a multihop WDM network can 
be either regular (symmetrical), such as ShuffleNet, 
Toroid, DeBruijn graph, and Hypercube, or irregular 
(asymmetrical). A regular topology can use simple 
routing rules, which is crucial for high-speed networks. 
Two major design issues for regular topologies are: i) 
modular increase and decrease of network size and ii) 
adaptation to nonuniform traffic. Research on the first 
issue can be found, for example, in [2] and [3]. Research 
on the second issue can be grouped into two classes. The 
first class focuses on the optimal initial placement of 
nodes into an empty regular topology given the (average) 
traffic requirements between all pairs of nodes. This is 
known as the node placement problem. The commonly 
used objective function is to minimize the traffic 
weighted mean internodal distance of a network. If the 
network consists of equal length links, this is equivalent 
to minimize the mean network packet delay. Assume that 
all nodes have already been placed in the network; the 
second class of research for adapting to nonuniform 
traffic focuses on the outing/switching problem on a 
packet-by-packet or call-by-call basis [4], [5]. 
In general, arbitrary virtual topologies may provide 
better performance than regular topologies; however, 
regular topologies provide simpler routing mechanisms 
which are desirable for high-speed environments since 
they consume less processing time. Among the regular 
virtual topologies, the linear bus, ring, ShuffleNet, de 
Bruijn graph, toroid and hypercube are the more popular 
ones. The linear bus topology is the simplest; however, 
designing an optimal linear structure is an NP-hard 
problem, as shown in [6]. A study on optimized ring 
structures can be found in [7]. In bus and ring structured 
networks, the per-node throughput decreases linearly 
with increasing number of nodes. Thus, these networks 
cannot be scaled up over larger areas for supporting an 
increasing number of nodes [8]. Hence, mesh topologies 
(e.g., ShuffleNet, de Bruijn graph) are preferred since 
they use a smaller average fraction of the network’s 
resources for transmitting information from a source to 
its destination. In general, mesh-connected networks 
have multiple paths between node-pairs; thus, they are 
more reliable and they can support more concurrent 
transmissions. All of these properties are very desirable 
for high-speed switching environments.  

Due to the aforementioned properties of mesh-connected 
regular structures, we concentrate on one such structure 
in this class. In particular, we consider the de Bruijn 
graph. The de Bruijn Graphs can support much larger 
numbers of nodes than the same degree Shuffle nets by 
having the same average number of hops[5]. Moreover, 
it retains the simple addressing and routing properties of 
Shuffle nets.  
Depending on the design goals, several optimality 
criteria may be considered. These include minimizing the 
flow-weighted average hop distance, minimizing the 
maximum load over any link, etc. In our present study, 
minimization of weighted average hop distance is 
investigated. In general, this optimization problem does 
not yield to polynomial time solutions (i.e., the search 
space for the optimum solution grows exponentially with 
the number of nodes). So, we investigate four efficient 
heuristic algorithms, namely GREEDY, LOCAL, 
GLOBAL and ITERATIVE for constructing optimized 
node arrangements in de Bruijn graph configurations. 

II. DE BRUIJN GRAPH  

A de Bruijn Graph can support much larger numbers of 
nodes than the same degree Shuffle net by having the 
same average number of hops. Moreover, it retains the 
simple addressing and routing properties of Shuffle nets.  
For any positive integers ∆ ≥ 2 and D ≥ 1, de Bruijn 
graph G (Δ, D) [9] is a directed graph consisting of N = 
Δ

D 
nodes with the set of {0,1,2,… Δ-1}

D 
nodes where 

there is an edge from node (a
1, a2 ,…… 

a
D
) to node (b1, b2, 

…… 
b

D
) if and only if b

i 
= a

i+1 
, where a

i
, b

i 
Є {0, 1, 2,… 

Δ-1}, 1 ≤ i ≤ D-1.  
D is the diameter of the de Bruijn graph with a deflection 
penalty D. Each node has in- and out- degree Δ, and Δ 
nodes (i.e. 000,111) have self-loops (self-loop exists in 
the logical graph but does not exist in the physical 
network configuration). The de Bruijn graph structure is 
inherently asymmetric due to the nodes with self-loops 
(see Figure 2) [5].  
There is one-to-one correspondence between the 
connectivity of the nodes in the de Bruijn graph G (Δ, D) 
with all the possible states of a Δ shift register of length 
D. If state b can be reached from state a in one shift 
operation in the shift register then there is an edge from 
node a to b. Therefore, the de Bruijn graph can be seen 
as the state transition diagram of the shift register [9]. A 
node in the de Bruijn graph can be represented by a 
sequence of D digits as defined in the shift register 
analogy [10]. An edge from node A to node B can be 
represented by a string of (D + 1) digit. Consequently, 
any path in the graph of length k from source to 
destination nodes can be represented by a string D + k 
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000

001

011 

100 

010 

110 101 111

digits. The first D digits represent the source node and 
the last D digits represent the destination node. 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 2: An 8 Node (Δ = 2, D = 3) de Bruijn graph 

Let F = {λij} be the traffic matrix where λij denotes the 
traffic from the source Node i to the destination Node j 
(λii = 0) and let Λ= Σi,j λij be the total load offered to the 
network. 
 
The average weighted hop-distance under generalized 
traffic conditions can be computed as follows: 
⎯Hgeneral = (1/Λ  　 Σi∈V Σj∈V (hop distance from Node i to 
Node j) x λij ; where V is the set of N nodes. 
A number of heuristic algorithms for minimizing 
H general, i.e., the weighted number of hops, averaged 
over all source destination pairs, are described next. 

III. OPTIMIZATION ALGORITHMS 

(i) Algorithm GREEDY 

This algorithm employs a greedy approach to maximize 
the one-hop traffic in a de Bruijn graph. First, the N2 
elements of the traffic matrix are sorted in non-
decreasing order. Then, find two higher elements in the 
sorted list corresponding to the two directly connected 
distinct nodes having highest average flow value and 
these two are attached to two directly connected links of 
the NΔ links of the de Bruijn graph. This defines the 
placement of two nodes connected directly. In the 
successive steps, the next higher two elements of the 
sorted list are assigned to two of the directly connected 
available links. If no directly connected nodes found, 
next higher element from the list is placed in one of the 

available links. During this process, a flow assignment 
(λab) might be invalid if (1) its two corresponding nodes 
(nodes a and b) are already placed, or (2) only node a is 
placed and all the p locations to which it directly 
connects are already assigned, or (3) only node b is 
placed and all the p locations from where it is directly 
connected are already assigned. In such cases, the current 
element is skipped and the next highest element is 
considered. An algorithmic description of this procedure 
is given below. For an illustrative example, see Figure 3. 
 
Algorithm GREEDY: 
 
let G ={0,1, ……N-1} be the set of nodes; 
let S be the sorted list of the elements of the traffic 
matrix F; 
while (all nodes are not placed) do 
begin 
find two higher elements in S corresponding to traffics 
from node a to node b (≠ a) and node b to node a, having 
highest average flow value;  
if (links available for connecting node a to b and b to a) 
then 
place nodes a and b at two unoccupied locations such 
that node a is directly connected to node b and node b is 
directly connected to node a; 
discard the two current higher elements from S; 
else 
find the highest element in S corresponding to traffic 
from node a to node b; 
if (link available for connecting node a to node b) then 
place nodes a and b at two unoccupied locations such 
that 
node a is directly connected to node b; 
discard the current highest element from S; 
end; 
   Source      Destination                          

 0 1 2 3 
0 - 8 3 4 
1 7 - 6 3 
2 8 7 - 2 
3 6 3 5 - 

 (a) Traffic Matrix F (Blank entries denote zero flow) 

Flow From To 
8 0 1 
8 2 0 
7 1 0 
7 2 1 
6 1 2 
6 3 0 
5 3 2 
4 0 3 
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00
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00

01
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3 0 2 
3 1 3 
3 3 1 
2 2 3 

(b) Traffic matrix F sorted in descending order 

 
 
  
 
 
 
 
 
 
 
 
 
 
 

(c) Step 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

(d) Step 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

(e) Step 3 

Average weighted hop distance = 1.42 

Figure 3: An illustrative example for Algorithm GREEDY 

(ii) Algorithm LOCAL 

In (Δ, D) de Bruijn graph, there are Δ
D-1 groups each 

consisting of ∆ no. of children and ∆ no. of parents. 
However, these groups are not necessarily disjoint and 
self-loop nodes are counted twice. 
This algorithm first places the nodes in a group where no 
node is self-looped, if possible. The procedure is as 
follows. From among the N nodes, two sets with ∆ nodes 
in each set are chosen such that the traffic from one set 
(say set A) to the other (say set B) is heavy compared to 
the reverse-flowing traffic from set B to set A. Set A 
nodes are assigned as parents and each of these nodes 
has direct links to all the nodes in set B which are 
considered as children. Based on the same criterion, 
another 2∆ nodes are chosen from the remaining nodes. 
This process is repeated until all the nodes (parents and 
children) are assigned. An algorithmic description of this 
procedure is given below. For an illustrative example, 
using the above same traffic matrix, step-by-step node 
placement is shown in Figure 4. 
Algorithm Local: 
Let G= {0,1,2,….., N-1} be the set of nodes; 
For r = 1 to Δ

D-1 do 
Begin 
While (nai ≠ nbj ) do 
Begin 
Choose 2∆ nodes (na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ ) from 
G such that 
 

∑∑
Δ

−

Δ

=1 1

(
i j

λnai nbj – λnbj nai ) is maximized; 

     For i = 1 to ∆ do 
       Begin  
         Place nodes nai as the parent nodes; 
         Place nodes nbi as children nodes; 
      End  
G = G – { na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ }; 
End 
Else 
Begin 
Choose 2∆ nodes (na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ ), 
where self-looped node is counted twice, from G such 
that 
 

∑∑
Δ

−

Δ

=1 1

(
i j

λnai nbj – λnbj nai ) is maximized; 

00 

01 

11 10 

0 

1 

2 

3 
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0

0

11

2

0 

1 

300 

01 

11 10 

2

0 
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     For i = 1 to ∆ do 
       Begin  
         Place nodes nai as the parent nodes; 
         Place nodes nbi as children nodes; 
      End  
G = G – { na1 , nb1 , na2 , nb2 , …., na∆ , nb∆ }; 
End 
End 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Step-1 

 
 
 
 
 
 
 
 
 

 
 

 

Step-2 

Average weighted hop distance = 1.37 

Figure 4: Illustration of Local Algorithm (Using the above traffic 
matrix) 

(iii) Algorithm GLOBAL 

This heuristic algorithm performs optimization based on 
global information. The algorithm takes into 
consideration the traffic to (and from) this node from (to) 
all the nodes that are already placed in the de Bruijn 
graph. First, node 0 is placed at location {0}D. Then, a 
penalty function, fP(0, i, c) for node i (i Є unplaced 
nodes) for location c (c Є unassigned locations) is 
evaluated. We have used the penalty function based on 

the overall flow-weighted hop-distance of a candidate 
node to and from all the other nodes that are already 
placed. Then, node i’ is placed at location c’, where 
fp(0,i’ ,c’ ) =  min{fp(0, i, c)} for all unplaced nodes i 
and unassigned locations c. Penalty values, P (g, c) of all 
the unplaced nodes g for all the unassigned locations c 
are updated by incorporating the newly placed node i’ 
into the computations. This process is repeated until all 
the nodes are placed. An illustrative example for this 
algorithm is given in Figure 5.  
 
Algorithm Global: 
let G = {0, 1, ..., N -1} be the set of nodes; 
let C = {0,1, 2,… N-1}D, where D is the diameter of the 
de Bruijn graph

 
 

G = G - {0};  
C = C  - {0}D; 
compute penalty functions fp(0, g, c) for all g Є G  and  c 
Є C ; 
P (g, c) = fP(0, g, c) for all  g  Є G  and  c Є C ; 
while G ≠ φ do 
begin 
let Pmin(g’, c’ ) = min{ P (g, c)  | g  Є G; c  Є C}; 
place node g’ at position c’; 
G = G  -  { g’}; C = C  - { c’ }; 
compute penalty functions fP(g’, g, c) for all g  Є G and 
c  Є C; 
P (g, c) = P (g, c) + fP(g’, g, c) for all g  Є G and c Є C; 
end; 

 
function fP(g’,g,c); {Penalty function} 
begin 
let λg’

max
   and λg’

min
       be the maximum and  minimum  

elements  
in {λg’ i| i Є G – { g’ }};        
On a (traffic flow, hop distance) – space   let L(g’)  be a 
straight line from  
(λg’

max
   , 1) to (λg’

min, D); 
{Note that minimum and maximum possible hop-
distances are 1 and D} 
let traffic from node  g’ reaches position c in h’ hops; 
also, let traffic from position c reaches node g’ in h’ 
hops; 
let d = distance of the point (λg’g , h) from L (g’); 
let d’= distance of the point (λgg’ , h) from L (g); 
fP(g’, g, c) = (d + d’); 
end; 
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Destination 
 
 
 
 
 

Source 

0 1 2 3 4 5 6 7

0 - 6 0 2 0 7 7 5

1 5 - 8 6 4 8 1 9

2 2 0 - 2 1 3 7 9

3 1 0 5 - 4 9 2 1

4 9 6 1 1 - 5 3 4

5 0 9 5 1 2 - 9 8

6 6 4 2 3 6 4 - 9

7 1 7 0 5 2 8 6 -

Traffic matrix F (blank entries denote zero flow) 

Step-1: Only node 0 is placed at location (000) 

 
 
Step-2: 
Compute penalty function fp (0, 5, (100)) i.e., to 
compute penalty value calculation for placing node 5 at 
location (100), given node 0 was placed in the previous 
step. 

 

 
 
Step -3: 
We calculate penalty function for nodes 1, 2, 3, 4, 5, 6 
and 7 for location 001, 010, 011,100, 101, 110, 111 and 
final node arrangement will be as follows:  
 

 
                           
Figure 5:  An illustrative example for algorithm GLOBAL 

(iv) Algorithm ITERATIVE 

Consider an N-dimensional surface composed of (N!) 
points representing the values of our cost function (i.e., 
average weighted hop-distance) for all different 
permutations of [0, 1, ....., N- 1] with node i placed at 
location whose decimal address value is i . Now, this 
surface will have several local minima and one (or more) 
global minimum. Our iterative algorithm starts by 
picking randomly one point (α0 , α1 ......, αN - 1) on this 
surface. Then, at each iteration, node αu is inserted at the 
place of node αg (g < u; g = 0, ... , N- 2; u = g + 1, ... , N-
1) if the average hop distance in the new arrangement is 
less than that in the previous arrangement.  
Algorithm Iterative: 
let G = {0, 1, ..., N - 1} be the set of nodes; 
NoOfIterations = log2N; 
{Could be performed for different number of iterations 
as well, 
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but this value appeared to perform quite well} 
for q := 1 to NoOfIterations do 
begin 
pick a random permutation of [0, ... , N−1] 
{or the output of an earlier algorithm} 
as the initial node sequence; 
let α = [α0,...,αN−1] denote this initial node sequence, 
where αi is the node placed at location whose decimal 
address value is i 
for g := 0 to N - 2 do 
begin 

for u := g + 1 to N - 1 do 
begin 

α’ = [α’0,...,α’N−1]  
where α’i = αi for 0 ≤ i ≤ g -1  and  u + 1 ≤ i < N – 1 
         α’g = αu and α’i = αi-1 for g + 1 ≤ i ≤  u 
 let H(α) = average weighted hop-distance in the 
de Bruijn Graph represented by α ; 

if H(α’) < H(α) 
α ← α’; 

end; 
end; 

end; 
 
An illustrative example for this algorithm is given in 
Figure 6. 
 
G = set of nodes {0,1, 2, 3, 4, 5, 6, 7}; 
NoOfIterations = log2N = log28 = 3; 
Consider, the node placement of GLOBAL algorithm is 
the input of ITERATIVE algorithm. 
Thus from previous example, α = {0, 7, 5, 3, 4, 1, 2, 6} 
Average weighted hop distance in GLOBAL algorithm 
H(α) = 2.11 
 
Step 1: 
New node arrangement after first iteration is as follows: 
                  

 
 
 

Step 2: 
In the second iteration, there is no change in node 
arrangement. 
 
Step 3: 
Final node placement is as follows: 
          

 

Figure 6: Illustrative example of ITERATIVE algorithm 

IV. COMPARISON AMONG 
ALGORITHMS 

Algorithm GREEDY is the simplest and is also the 
fastest. It provides good solutions for small networks; 
however, its performance degrades as N increases. 
Algorithm GREEDY attempts to maximize only the one-
hop traffic. However, this approach can lead to large 
hop-distances for the remaining traffic that are not routed 
in one hop. The numerical example in Fig. 3 points out 
this weakness of the algorithm. In Fig. 3, the traffic 
matrix is constructed in such a way that algorithm 
GREEDY routes the first four heaviest traffic in one hop. 
However, all the remaining traffic is routed via 
maximum number of hops. 
Algorithm LOCAL works only on local traffic 
information. However, unlike the GREEDY algorithm, 
while considering a pair of nodes a and b, algorithm 
LOCAL considers the traffic from node a to node b as 
well as the traffic from node b to node a. 
Algorithm GLOBAL, while choosing a node for placing 
in the de Bruijn graph, considers all the nodes that are 
already placed. Algorithm GLOBAL employs a penalty 
function (see Fig. 5) to reduce the difference between i 
and j. For example, in Fig. 5, first node 0 is placed at 
location 

At first iteration average weighted hop distance H(α)=1.96 

Average weighted hop distance H(α)  = 1.93
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(000). Then, node 7 is placed at location (001) since 
node 0 and Node 7 have the minimum traffic among 
themselves and are maximum hop distances away from 
each other. 
The algorithm ITERATIVE exhibits the general 
properties of iterative algorithms. For example, 
performance of this algorithm can be arbitrarily 
improved, at the cost of reduced speed by running the 
algorithm for a larger number of iterations. The 
computations performed in this algorithm are very 
regular and can be easily conducted in a pipelined 
fashion. Moreover, different iterations can be performed 
in parallel on different processors of a multiprocessor 
system where each processor uses its independent 
random number generator for constructing the initial 
random sequence. 
The overall performance of the ITERATIVE algorithm is 
better than other algorithms. GREEDY algorithm is the 
fastest, but it does not perform as good as the other 
algorithms, especially for large networks.  

V. NUMERICAL RESULTS 

Each of the two algorithms is applied to the same traffic 
matrix. In order to reduce the bias of certain algorithms 
to certain traffic patterns, the algorithms are applied to a 
fixed set of 20 different, random traffic matrices. The 
weighted average hop-distances obtained from the 
experiments are then averaged over the set of 20 traffic 
matrices. These results are tabulated in Table I. 

Table- I 

De
gr
ee 

Dia
met
er 

No. 
of 
No
des 

Average weighted  hop distance 
Algo. 
GREE

DY 

Algo. 
LOC
AL 

Algo. 
GLO
BAL 

Algo. 
ITERA
TIVE

2 2 4 1.41 1.35 1.35 1.27 
2 3 8 2.29 2.30 2.04 1.91 
2 4 16 2.88 2.72 2.83 2.67 
2 5 32 3.72 3.77 3.69 3.52 
2 6 64 4.84 4.44 4.32 4.12 
       

3 2 9 1.85 1.77 1.61 1.53 
3 3 27 2.71 2.59 2.47 2.40 
       

4 2 16 1.91 1.76 1.74 1.69 
4 3 64 3.94 3.83 3.68 3.45 

VI. CONCLUSION 

Four heuristic algorithms based on GREEDY, LOCAL, 
GLOBAL and ITERATIVE approaches are proposed for 
constructing photonic implementations of optimized de 
Bruijn graph configurations. These logical structures are 

multihop in nature, and they can be superimposed on any 
physical topology by exploiting the broadcast-and-select 
property of WDM lightwave networks in which all of the 
inputs from various nodes are combined in a star coupler 
and the mixed optical information is broadcast to all 
outputs. 
Assuming static traffic conditions, these heuristic 
algorithms optimize the weighted average hop distance 
in the network. A comparative study is made for these 
algorithms and their performance was demonstrated by 
employing numerical examples. 
The algorithms corresponding to our discussions above 
are static. However, the virtual network topology might 
have to be reconfigured in order to respond to any 
change in the traffic pattern. Reconfigurable networks 
would require tunable transceivers, instead of fixed-
tuned ones. Although, currently, wavelength-agile 
transceivers are quite expensive, we believe that this 
cost-performance tradeoff will favor reconfigurable 
networks when low-cost tunable transceivers become 
commercially available. Thus, a dynamic reconfiguration 
heuristic is to be studied next.  
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