Lossless and Lossy Compression of DICOM images With Scalable ROI

Lalitha Y. S†, M.V.Latte ††

† Appa Institute of Engineering & Technology, Gulbarga, Karnataka, India.
†† JSS Institute & Academy, Bangalore, India

Abstract
Most of the commercial medical image viewers do not provide scalability in image compression and/or encoding/decoding of region of interest (ROI). This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activated in a heterogeneous network. The methodology involves extracting a given DICOM image into two segments, compressing the region of interest with a lossless, quality sustaining compression scheme like JPEG2000, compressing the non-important regions (background, et al.) with an algorithm that has a very high compression ratio and that does not focus on quality (SPIHT). With this type of the compression work, energy efficiency is achieved and after respective reconstructions, the outputs are integrated and combined with the output from a texture based edge detector. Thus the required targets are attained and texture information is preserved.

Keywords: ROI, DICOM, SPIHT, JPEG, NONROI, PSNR, MSE, CR

Introduction
To meet the demand for high speed transmission of image; efficient image storage, remote treatment and an efficient image compression technique is essential. Wavelet theory has great potential in medical image compression. In the diagnosis of medical images, the significant part(ROI) is separated and the region of less significance are compressed using Discrete Wavelet Transform and finally Huffman coding is applied to the resultant image to get the compressed image. Advanced Medical imaging applications require storage of large quantities of digitized clinical data and due to the constrained requirements of medical data archiving, compression is adapted in most of the storage and transmission applications. There are two categories of compression: Lossy and lossless methods. Based on the system requirement any one of the methods is employed. Lossless compression ensures complete data fidelity after the reconstruction, and yet the compression ratio is limited in general from 2:1 to 3:1. The application of lossy techniques results in information loss to some degree, but it can provide more than 10:1 compression ratio with little perceptible difference between reconstructed and original images. The method proposed in this paper has been programmed and simulated using the MATLAB software. Among the existing compression schemes, transform coding is one of the most effective techniques. After the transformation, image data in spatial domain will be transformed into spectral domain to attain higher compression gain. Based on the quantization strategy, coefficients of low amplitude in the transformed domain are discarded and significant coefficients are preserved to increase the CR without inducing salient distortion. Further employment of coding technique yields lesser number of bits per pixel. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module.

The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Various types of mobile devices (e.g., Pocket personal computers, personal digital assistants (PDAs), etc.) support applications used by medical personnel for retrieving and examining patient data [1], [2]. Most of these applications deal with medical images, such as computed tomography (CT) scans, computed radiography (CR) scans, and magnetic resonance (MR) images, stored in picture archiving and communication systems (PACS) and/or hospital information systems (HIS). The visual quality of the medical images/scans is required to be high in order to ensure correct and efficient assessment resulting in correct diagnosis. In this context, a mobile device has to handle medical images of significant sizes, while also taking into account its own limitations concerning memory and processing resources. For reducing the size of medical images, the discrete wavelet transform has been widely used in various applications for medical image manipulation. Indicative examples include wavelet-based applications for medical images compression [3], [4] for MR and ultrasound images denoising [5], [6], and for medical images features’ extraction [7], [8]. A plethora of medical image file
settings for observers can be found in international literature (for a
collection of them, see [9]). Most of them include
functionalities that allow image and header information
extraction (in case of DICOM compliant images), as well
as partial image manipulation. The DICOM standard
launched by the National Electrical Manufacturers
Association (NEMA) facilitates the distribution and
viewing of medical images. DICOM defines a special file
format that contains a header (that stores information
about the patient’s name, the type of image, image
dimensions, etc.), and the rest of the image data. Section
(2) focuses DICOM images; Section (3) emphasizes on
existing systems & proposed system. Section (4) includes
results and discussion.

2. DICOM Images

DICOM is a standard for handling, storing, printing, and
transmitting information in medical imaging. It includes a
file format definition and a network communications
protocol. The communication protocol is an application
protocol that uses TCP/IP to communicate between
systems. DICOM files can be exchanged between two
entities that are capable of receiving image and patient
data in DICOM format. NEMA holds the copyright of this
standard.

DICOM enables the integration of scanners, servers,
workstations, printers, and network hardware from
multiple manufacturers into a picture archiving and
communication system (PACS). The different devices
come with DICOM conformance statements which clearly
state the DICOM classes they support. DICOM has been
widely adopted by hospitals and is making inroads in
smaller applications like dentists’ and doctors’ offices.

DICOM is the third version of a standard developed by
American College of Radiology (ACR) and NEMA. In
the beginning of the 1980s it was almost impossible for
anyone other than manufacturers of CT or MR imaging
deVICES to decode the images that the machines generated.
Radiologists wanted to use the images for dose-planning
for radiation therapy. ACR and NEMA joined forces and
formed a standard committee in 1983. Their first standard,
ACR/NEMA 300, was released in 1985. Very soon after
its release, it became clear that improvements were
needed; the text was vague and had internal contradictions.
In 1992 by the US Army and Air Force as part of the
MDIS (Medical Diagnostic Imaging Support) program
run out of Ft. Detrick, Maryland. Loral Aerospace and
Siemens Medical Systems led a consortium of companies
in deploying the first US military PACS at all major Army
and Air Force medical treatment facilities and
teleradiology nodes at a large number of US military
clinics. DeJarnette Research Systems and Merge
Technologies provided the modality gateway interfaces
from third party imaging modalities to the Siemens SPI
network. The Veterans Administration and the Navy
also purchased systems off this contract.

3. Existing systems & Proposed System

Most of the existing systems follow the technique of
observing an image, figuring out the ROI and then use
lossless (JPEG 2000) or lossless (SPIHT) compression
techniques to achieve the result. A brief background
about JPEG2000 & SPIHT is discussed here.

Keynotes on JPEG2000

The JPEG2000 standard provides a set of features that
are of importance to many high-end and emerging
applications by taking advantage of new technologies. It
addresses areas where current standards fail to produce
the best quality or performance and provides
capabilities to markets that currently do not use
compression. The markets and applications better
served by the JPEG2000 standard are internet, color
facsimile, printing, scanning, digital photography,
remote sensing, mobile, and medical image. Each
application area imposes some requirements that the
standard should fulfill. Some of the most important
features that this standard should possess are the
following [10].

* Improved compression efficiency
* Lossy to lossless compression
* Multiple resolution representation
* Region of interest (ROI) coding
* Random code-stream access and processing

Keynotes on SPIHT

Set partitioning in hierarchical trees (SPIHT), proposed
by Said and Pearlman [17], is one of the most efficient
image compression algorithms. The effectiveness of the
SPIHT algorithm originates from the efficient subset
partitioning and the compact form of the significance
information. The SPIHT algorithm defines spatial
orientation trees, sets of coordinates, and recursive set
partitioning rules [17]. The algorithm is composed of
two passes: a sorting pass and a refinement pass. It is
implemented by alternately scanning three ordered lists:
list of insignificant sets (LIS), list of insignificant pixels
(LIP), and list of significant pixels (LSP). The LIS and
LIP represent the individual and sets of coordinates,
respectively, for wavelet coefficients that are less than a
threshold. During the sorting pass the significance of
LIP and LIS are tested, followed by removal (as
appropriate) to LSP and set splitting operations to
maintain the insignificance property of the lists. In the
refinement pass, the th most significant bits in the LSP,
which contains the coordinates of the significant pixels,
are scanned and output. The SPIHT algorithm reduces
the threshold and repeats the two passes until the bit
budget is met. Recently, many modifications have been made to the SPIHT algorithm. SPIHT-based coding represents a very active area of research. For example, Pearlman et al. proposed a set-partitioning embedded block coding algorithm [16] to extend SPIHT to block-based image coding. SPIHT has also been modified [6] for real-time image and video transmission using optimal error protection. In addition, in [12], an efficient color image compression algorithm has been proposed based on the SPIHT algorithm.

A major drawback, however, of the JPEG2000 standard is the fact that it does not support lossy-to-lossless ROI compression. In [11], a lossy-to-lossless ROI compression scheme based on SPIHT [12] and embedded block coding with optimized truncation (EBCOT) [13] is proposed. The input images are segmented into the object of interest and background and a chain code-based shape coding scheme [14] is used to code the ROI’s shape information. Then, the critically sampled shape-adaptive integer wavelet transforms [15] are performed on the object and background image separately to facilitate lossy-to-lossless coding. Two alternative ROI wavelet-based coding methods with application to digital mammography are proposed by Penedo et al. in [16]. The EZW algorithm is applied to the resulting wavelet coefficients to refine and encode the most significant ones. Compression scalability is also supported in the HS-SPIHT [17], where the SPIHT is enhanced to support spatial scalability providing a bit stream that can be easily adapted (reordered) to given bandwidth and resolution requirements by a simple transcoder. Another approach using wavelet localization for ROI-specific scalable compression is presented in [17]. The wavelet coefficients at each level are correlated to weighting factors allowing scalability based on the received Peak SNR (PSNR).

Apart from compression scalability for the whole image or a specific ROI, additional rate scalability can be introduced during network transmission of the image. The latter technique, however, applies mostly on cases of video transmission.

The proposed application adopts the Lossy compression is performed by multiplexing a small number of wavelet coefficients (consisting of the base layer and a few of additional layers for enhancement). Thus, a large number of layers are discarded, resulting in statistically higher compression results concerning the file size. However, lossy medical image compression is considered to be unacceptable for performing diagnosis in most of imaging applications due to quality degradation. Therefore, in order to improve the diagnostic value of lossy compressed images, the ROI coding concept is introduced in the proposed application to improve the quality in specific regions of interest only by applying lossless or low compression in these regions, maintaining the high compression in none of the interest regions of the image.

The wavelet-based ROI coding algorithm implemented in the proposed application is depicted in Fig. 1 (block diagram) ROI and on the region of non-region of interest (NONROI) are quantized with different step sizes.

An important characteristic in all medical images is that it can be classified into two areas easily. Two areas are to be part that is subject to diagnosing the images. So the first step in the paper is segmenting the image into two regions. One approach is suggested for this is the selection of the region of interest by hand and then superimposing the selected pixel matrix on an MXN matrix of zeroes, where M and N refer to the number of horizontal and vertical pixels in the image respectively. The background is left as such with zero values for the selected.

A MATLAB-code has been developed and several experiments have been carried out in different types of images selected from DICOM database. Few cases are discussed here. Initially an image is scalably selected with ROI & NONROI. The corresponding area is masked and compressed using Huffman encoding. For ROI, data is saved before the decomposition using DWT then NON-ROI is compressed using SPIHT encoding and the data is saved before compression, finally its decomposed using DWT. The decompression of NONROI & ROI are carried out using SPIHT & Huffman decoding respectively.

Huffman coding is one of the lossless and entropy coding. This is effectively used for reliable transmission of high quality images through wireless communication channels especially for real-time applications. The proposed method is used to achieve efficient compression that maintains the good image quality without increasing the transmission bandwidth, which also builds Lossless Encoder & Decoder Channel. Entropy is the number of bits needed to encode the data and Huffman, Variable Length, Arithmetic, Run Length are some of its techniques. In our compression technique we are applying Huffman Encoding & Decoding technique. SPIHT encoding and decoding methods are already explained under the work carried
out so for. Furthermore, Peak signal to noise ratio (PSNR), Mean square error (MSE) and Compression ratio (CR) are tabulated for different cases. The average encryption and decryption time are calculated as 0.25secs, 0.3secs respectively. In this case two methods are used to reduce the transmission time and also get the information without loss. Tables give CR, MSE and PSNR values for scalable (combined ROI and NONROI) reconstructed image. This is explained under topic Results and discussion.

4. Results and Discussion:

An important characteristic in DICOM medical images is that it can be classified in to two areas. It is to be compressed by two different lossless compression techniques. So the first step in the paper is segmenting the image into two regions. One approach is suggested for this. One is the selection of the region of interest by hand and then superimposing the selected pixel matrix on an MXN matrix of zeroes, where M and N refer to the number of horizontal and vertical pixels in the image respectively. The unselected image is remaining same it also be consider.

Simulation Results:

Results of DICOM images are tabulated and for these examples, SPHIT algorithm is used for NONROI compression and decompression. Huffman coding and decoding algorithms are used for ROI, to get lossless compression. All decoded images for each bit-rate were recovered at desired rate.

The image quality is measured in terms of PSNR and MSE.

\[
PSNR = \frac{1}{N} \sum \left(\frac{(255)^2}{I_o[x,y] - I_m[x,y]} \right)^2
\]

\[
MSE = \sum \left(I_o[x,y] - I_m[x,y] \right)^2 / N
\]

For good quality image, PSNR value should be as high as possible & MSE value should be as low as possible. Percentage of compression indicates by how much the size of the image has been reduced from its original size and it is given by:

Original file size
Compression Ratio = ----------------------
Compressed file size

It is observed that the PSNR values are varying randomly because the region of interest is scalable. Different ROI of different images are shown bellow. Original DICOM image, scalable ROI,ROI masked region and SPHIT compression of Non ROI al are shown as follows.

![Original DICOM image](image1)

![Scalable ROI](image2)

![ROI masked region](image3)

![SPHIT compression](image4)

![Decoded image](image5)

<table>
<thead>
<tr>
<th>S.No</th>
<th>CR</th>
<th>MSE</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.04</td>
<td>12.71</td>
<td>37.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S.No</th>
<th>CR</th>
<th>MSE</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.86</td>
<td>13.55</td>
<td>37.03</td>
</tr>
</tbody>
</table>

Table 1. DICOM image brain-001

<table>
<thead>
<tr>
<th>S.No</th>
<th>CR</th>
<th>MSE</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.87</td>
<td>17.74</td>
<td>35.64</td>
</tr>
<tr>
<td>3.</td>
<td>2.35</td>
<td>19.12</td>
<td>36.88</td>
</tr>
<tr>
<td>4.</td>
<td>1.77</td>
<td>6.36</td>
<td>40.09</td>
</tr>
<tr>
<td>5.</td>
<td>1.97</td>
<td>13.32</td>
<td>36.88</td>
</tr>
<tr>
<td>6.</td>
<td>1.88</td>
<td>9.22</td>
<td>38.48</td>
</tr>
<tr>
<td>7.</td>
<td>2.06</td>
<td>14.19</td>
<td>36.60</td>
</tr>
</tbody>
</table>

Table 2. DICOM image brain-012

<table>
<thead>
<tr>
<th>S.No</th>
<th>CR</th>
<th>MSE</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.29</td>
<td>23.15</td>
<td>34.48</td>
</tr>
<tr>
<td>2.</td>
<td>1.81</td>
<td>11.06</td>
<td>37.69</td>
</tr>
<tr>
<td>3.</td>
<td>2.31</td>
<td>23.10</td>
<td>34.49</td>
</tr>
<tr>
<td>4.</td>
<td>2.38</td>
<td>14.34</td>
<td>36.56</td>
</tr>
<tr>
<td>5.</td>
<td>1.96</td>
<td>17.45</td>
<td>35.54</td>
</tr>
<tr>
<td>6.</td>
<td>1.78</td>
<td>17.98</td>
<td>34.99</td>
</tr>
<tr>
<td>7.</td>
<td>2.86</td>
<td>13.55</td>
<td>37.03</td>
</tr>
</tbody>
</table>
Many images (100s of images) are compressed and few cases results are tabulated as in table 1, 2 and 3. The images corresponding to few cases are as shown depending on ROI in Fig 2 and Fig 3.

<table>
<thead>
<tr>
<th>S.No</th>
<th>CR</th>
<th>MSE</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.77</td>
<td>5.53</td>
<td>40.69</td>
</tr>
<tr>
<td>2.</td>
<td>2.08</td>
<td>8.86</td>
<td>38.65</td>
</tr>
<tr>
<td>3.</td>
<td>2.32</td>
<td>11.08</td>
<td>37.68</td>
</tr>
<tr>
<td>4.</td>
<td>1.91</td>
<td>14.45</td>
<td>36.53</td>
</tr>
<tr>
<td>5.</td>
<td>2.21</td>
<td>12.81</td>
<td>37.05</td>
</tr>
<tr>
<td>6.</td>
<td>1.95</td>
<td>10.37</td>
<td>37.97</td>
</tr>
<tr>
<td>7.</td>
<td>1.93</td>
<td>9.02</td>
<td>38.57</td>
</tr>
</tbody>
</table>

Conclusion

Thus the medical image has been intelligently compressed. The method strives to achieve a high PSNR, MSE, compression time and reconstruction time as well as a high compression ratio without deterioration of the image quality. The paper also gives precise texture information to facilitate diagnosis and act as a reference line after reconstruction. The most demanding area is the need for a system which automatically extracts the region of interest and proceeds as stated above. But the pitfall is that such generalization is not of much use as ROI varies from image to image and patient to patient. Another step would be to make the edge detection adaptive and try for choice of measures that would minimize the Gaber ringing effect. The ROI can also be watermarked for security once the bit stream emerges from the encoder. This would prevent tampering of the image and also can use the memory optimally.

References

Lalitha Y.S was born on December 7, 1969 in India. She received the B.E degree in Electronics and Communication and M.E. degrees in Power Electronics from Gulbarga University Gulbarga, India, in 1991 and 2002 respectively. She is working as Professor in Appa Institute of Engineering & Technology, Gulbarga, India. Her research interests include image Processing, Wavelet Transform coding. She attended two National Conferences and two International Conference.

Mrityunjaya V Latte was born on April 25th 1964 in India. He received B.E. degree in electrical Engineering and M.E. degree in Digital electronics from S.D.M. College of Engineering & Technology, Dharwad, India in 1986 & 1995 respectively. He was awarded Ph.D. degree in 2004 for his work in the area of digital signal processing. He is working as Principal, JSS Academy of Technical Education, Bangalore, India. His research interests include coding, image processing and multiresolution transforms. He received a best paper award for his paper in a national conference NCSSS -2002 held at Coimbatore, India.