
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

54

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

Hardware Implementation of the Stone Metamorphic Cipher

Rabie A. Mahmoud1, Magdy Saeb2

1. Department of Mathematics, Faculty of Science, Cairo University, Egypt.

2. Computer Engineering Department, Arab Academy for Science, Tech. & Maritime Transport (AAST),

Alexandria, Egypt.

ABSTRACT: The Stone Cipher is a metamorphic cipher
that uses a variable word size and variable-size user’s key.
The cipher employs two basic functions; the encryption
function and a Pseudo Random Number Generator (PRG)
that is based on a specially-developed one-way hash
function. Four bit-balanced operations are pseudo-
randomly selected to generate the sequence of operations
constituting the cipher. These operations are: XOR, INV,
ROR, NOP for bitwise xor, invert, rotate right and no
operation respectively. The user key is encrypted using the
cipher encryption function with agreed-upon initial values
then it is used to generate the bit stream required to select
these operations. In this work, we provide a Field
Programmable Gate Array (FPGA) hardware
implementation of this cipher.

Keywords: FPGA, Cipher, Metamorphic, Cryptography,
Hardware.

1. Introduction

 The Stone Cipher is a metamorphic cipher that is
hardware implemented utilizing Field Programmable Gate
Arrays (FPGA). The idea of this cipher is to use four low-
level operations that are all bit-balanced to encrypt the
plaintext bit stream. These operations are: xoring a key bit
with a plaintext bit (XOR), inverting a plaintext bit (INV),
exchanging one plaintext bit with another one in a given
plaintext word using a right rotation operation (ROR) and
producing the plaintext bit without any change (NOP). In
addition, the internal sub-keys are generated using a
combination of the encryption function itself and a one-
way hash function. The generated key stream is used to
select the various operations. In the following sections, we
provide the structure of the cipher, the formal description
of its algorithm, the details of our circuit design,
discussion of the results of the FPGA implementation and
finally a summary and our conclusions.

2. The Stone Cipher Structure

 The conceptual block diagram of the implemented
cipher is shown below in Figure 1. It is constructed of two
basic functions; the encryption function and the sub-key
generating one-way hash function. The pseudo random
number generator is built using the same encryption
function and the MDP-384 [4] one-way hash function in
cascade. Two large numbers (a, b) are used to iteratively
generate the sub-keys. The details of the substitution box
S-orb can be found in [5].

Figure 1. The structure of the cipher

The user key is first encrypted then the encrypted key is
used to generate the sub-keys. The encryption function or
the cipher engine is built using four low-level operations.
Table1 demonstrates the details of each one of these
operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

55

Table 1: The basic cipher engine
(Encryption function) operations

Mnemonic Operation Select Operation

code
XOR Ci = Ki ⊕ Pi 00
INV Ci = ¬ (Pi) 01
ROR Pi ← Pi 10
NOP Ci = Pi 11

The basic crypto logic unit (CLU) is shown in Figure 2. All
operations are at the bit level. The unit is to be repeated a
number of times depending on the required word or block
size. The rotation operation, referred to by the circular
arrow which is performed using multiplexers and is shown
in Figure 3. This CLU is used as the encryptor and the
decryptor where by changing the output cipher bit to
become an input plain text bit, the new output will be the
same as the old plain text bit. Obviously, this is a feature of
the applied functions namely XOR, INV or NOP. The only
exception is in the case of ROR, the decryptor will use
ROL [6].

7404

inst

XOR

inst2

AND3

inst3

AND3

inst4

AND3

inst5

AND3

inst6

OR4

inst7

7404

inst8

7404

inst9

7404

inst10

7404

inst11

Pi Ki

S1
S0

Figure 2. The basic crypto logic unit

Figure 3. The rotation operation (ROTR) implementation
using multiplexers

The operation selection bits (S1 S0) can be chosen from any
two sub-key consecutive bits; as shown in Figure 4. The
same idea applies for the rotation selection bits (S’1 S’0).

Figure 4. The proposed key format where the location of
the selection bits is shown

3. The Algorithm

 The formal description of the algorithm, as shown in
[6], is summarized as follows:

Algorithm: STONEMETAMORPHIC
INPUT: Plain text message P, User Key K,
 Block Size B
OUTPUT: Cipher Text C
Algorithm body:
Begin
Begin key schedule
1. Read user key;
2. Encrypt user key by calling encrypt function and using
the initial agreed-upon values as the random input to this
function;
3. Read the values of the large numbers a and b from the
encrypted key;
4. Generate a sub-key by calling the hash one-way
function;
5. Store the generated value of the sub-key;
6. Repeat steps 5 and 6 to generate the required number of
sub-keys;
End key schedule;

Begin Encryption
7. Read a block B of the message P into the message
cache;
8. Use the next generated 192-bit key to bit-wise encrypt
the plain text bits by calling the encrypt function;
9. If message cache is not empty, Goto step 8;
10. Else if message cache is empty:
 If message not finished
 10.1 Load next block into message cache;
 10.2 Goto 8;
 Else if message is finished then halt;
End Encryption;
End Algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

56

Function ENCRYPT
Begin
1. Read next message bit;
2. Read next key bit from sub-key;
3. Read selection bits from sub-key;
4. Read rotation selection bits from sub-key;
5. Use selection & rotation bits to select and perform
operation: XOR, INV, ROR, NOP;
6. Perform the encryption operation using plaintext bit
and sub-key bit to get a cipher bit;
7. Store the resulting cipher bit;
End;

4. FPGA Implementation

 The simplicity and lucidity of the encryption function
of the Stone Cipher lead to a relatively easy-to-design
FPGA-based implementation. We have implemented the
cipher using VHDL hardware description language [2],
[3], [7] and Quartus II 9.1 Service Pack 2 Web Edition [1],
and utilizing Altera design environment. The metamorphic
cipher implementation is based on the idea of encrypting
256-bit plaintext blocks using 256-bit user key and eight
rotation selection bits, producing 256-bit ciphertext blocks.
Every 256-bit sub-keys are extracted from the 384-bit of
the output PRG. The schematic diagram for a
demonstrative 256-bit encryption module is shown in
Figure 5. The design was implemented using an
EP2C70F896C6, Cyclone II family device. The worst case
pin-to-pin delay was found to be equal to 28.420 ns. The
longest pin-to-register delay was 7.787 ns and the shortest
pin-to-register delay was 6.925 ns. The longest register-to-
pin delay was 23.215 ns. A series of screen-captures of the
different design software outputs are shown in Figures 6 to
12. Figures 6, 7, 8, and 9 provide indication of successful
compilation, parts of RTL for metamorphic cipher
respectively which are shown a repeated MUX's in
different connections. Figure 10 displays the encryptor
simulation showing the output encrypted bits where the
pins of input plaintext, output ciphertext, and the selection
bits of sub-keys to specify the operation of encryption
function are highlighted in the screen. Figures 11 and 12
demonstrate the floor plan and the timing report
respectively.

Figure 5. Schematic diagram of metamorphic cipher
implementation

Figure 6. Compiler tool screen showing correct
implementation

Figure 7. RTL screen for part of metamorphic cipher
implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

57

Figure 8. RTL screen for part of the resulting circuit
diagram

Figure 9. RTL screen for part of the cipher
implementation

Figure 10. Simulator screen showing the output encrypted

data based on the selection bits of user key

Figure 11. Floor-plan of cipher implementation

Figure 12. Timing report

The details of the analysis and synthesis report are shown
in appendix B.

Summary & Conclusion

 We have furnished a brief discussion of the hardware
implementation of the Stone Metamorphic Cipher.
Various modules were implemented applying VHDL and
then joined together using the schematic editor. The
resulting circuit provides a proof-of-concept FPGA
implementation. It was shown that the worst case pin-to-
pin delay is equal to 28.420 ns. Moreover, area and speed
optimization were performed and it is shown that the
worst case pin-to-pin delay is equal to 26.341 ns in the
case of area optimization and 27.233 ns in speed
optimization. One may inquire why the maximum delay
in case of speed optimization is marginally greater than in
the case of area optimization. This can be explained by
noting that the speed optimization objective is to increase
the maximum operating frequency (fmax) that is dependent
on the register-to-register delay not pin-to-pin delay.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

58

Moreover, high fan-out reduces the usage of global
interconnection resources. Therefore, the speed
optimization decreases the use of global resources. This is
clearly demonstrated in the synthesis report of our design.
A comparison with other implementations is not
applicable since this is the first time the cipher is FPGA-
implemented. This and other related issues will be dealt
with in future development of the device.

References

[1] Altera’s user-support site:
http://www.altera.com/support/examples/vhdl/vhdl.ht
ml [2] Enoch O. Hwang, "Digital Logic and
Microprocessor Design with VHDL," La Sierra
University, Riverside, California, USA, 2005.

[3] Pong P. Chu, "RTL Hardware Design Using VHDL,"
John Wiley & Sons, Inc., New Jersey, 2006.

[4] Magdy Saeb, "Design & Implementation of the
Message Digest Procedures MDP-192 and MDP-384,"
ICCCIS2009, International Conference on
Cryptography, Coding & Information Security, Paris,
June 24-26, 2009.

[5] Magdy Saeb, "The Chameleon Cipher-192: A
Polymorphic Cipher," SECRYPT2009, International
Conference on Security & Cryptography, Milan, Italy,
July, 2009.

[6] Magdy Saeb, "The Stone Cipher-192 (SC-192): A
Metamorphic Cipher," The International Journal on
Computers and Network Security (IJCNS), Vol.1
No.2, pp. 1-7, Nov., 2009.

[7] Volnei A. Pedroni, "Circuit Design with VHDL," MIT
Press, 2004.

Appendix A:

Sample VHDL code for a four-bit encryption module

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.all;

ENTITY Metamorphic IS
 Port (PlainText : in std_logic_vector (3 downto 0);
 Key : in std_logic_vector (3 downto 0);
 CipherText: out std_logic_vector (3 downto 0));
END Metamorphic ;

ARCHITECTURE behavioral OF Metamorphic IS
 signal Temp: std_logic_vector (3 downto 0);

 signal Rotation_Selection : std_logic_vector(1 downto 0);
BEGIN

 process (PlainText, Key, Temp)
 variable R : integer range 3 downto 0;
 begin
 if Key(3) = '0' and Key(2)= '0' then
 Temp <= PlainText xor Key;

 elsif Key(3) = '0' and Key(2) = '1' then
 Temp <= not PlainText;

 elsif Key(3) = '1' and Key(2)= '1' then
 Temp <= PlainText;

 elsif Key(3) = '1' and Key(2)= '0' then
 Rotation_Selection <= Key(0) & Key(1) ;
 R := conv_integer (Rotation_Selection);

 if R = 0 then Temp <= PlainText;
 elsif R = 1 then Temp <= PlainText(0) &
 PlainText (3 downto 1);
 elsif R = 2 then Temp <= PlainText (1 downto 0) &
 PlainText (3 downto 2);
 elsif R = 3 then Temp <= PlainText (2 downto 0) &
 PlainText(3);
 end if;
 end if;
 end process;
 CipherText <= Temp;
END behavioral;

Sample VHDL code for a MDP-1 module of hash function

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.all;

ENTITY MDP_1 IS
Port (input_to_hash: in std_logic_vector (31 downto 0);
 M_D_P_1: out std_logic_vector (383 downto 0));
END MDP_1;

ARCHITECTURE behavioral OF MDP_1 IS
 signal W0 : std_logic_vector (31 downto 0);

 signal K0 : std_logic_vector(31 downto 0) :=
 "01100000011100010100100110001111";

 signal a0 : std_logic_vector(31 downto 0) :=
 "01011111011111110100010111001100";

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

59

 signal b0 : std_logic_vector(31 downto 0) :=
 "00110110010010111101000001001100";
 signal c0 : std_logic_vector(31 downto 0) :=
 "00100011111001010000111001110000";
 signal d0 : std_logic_vector(31 downto 0) :=
 "01001100000010000001110010000000";
 signal e0 : std_logic_vector(31 downto 0) :=
 "00100011100110111110011111101001";
 signal f0 : std_logic_vector(31 downto 0) :=
 "00010100101101111111010010000000";

 signal a0, b0, c0, d0, e0, f0, a1, b1, c1, d1, e1, f1 :
 std_logic_vector(31 downto 0);

BEGIN
W0 <= input_to_hash (31 downto 0);

a1 <= (a0(30 downto 0) & a0(31)) + ((a0 and b0) or ((not
 a0) and c0)) + ((c0 and d0) or ((not c0) and e0))
 + f0 + W0 + K0;
b1 <= (e0(26 downto 0) & e0(31) & e0(30) & e0(29) &
 e0(28) & e0(27));
c1 <= (a0(30 downto 0) & a0(31));
d1 <= (b0(29 downto 0) & b0(31) & b0(30)) xor (a0(30
 downto 0) & a0(31));
e1 <= (c0(28 downto 0) & c0(31) & c0(30) & c0(29)) xor
 (b0(29 downto 0) & b0(31) & b0(30));
f1 <= (d0(27 downto 0) & d0(31) & d0(30) & d0(29) &
 d0(28)) xor (c0(28 downto 0) & c0(31) & c0(30) &
 c0(29));

M_D_P_1 <= a1 & b1 & c1 & d1 & e1 & f1 & a1 &
 b1 & c1 & d1 & e1 & f1;

END behavioral;

Appendix B: The analysis and synthesis report details:

Family: Cyclone II
Device: EP2C70F896C6
Total logic elements: 3085 out of 68,416 (5 %)
Total combinational functions: 3085
 Logic element usage by number of LUT inputs

 -- 4 input functions: 2562
 -- 3 input functions: 517
 -- <=2 input functions: 6

Dedicated logic registers: 0
Total memory bits: 0 out of 1,152,000 (0 %)
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %)
Total PLLs: 0 out of 4 (0 %)
Optimization Technique: Balanced
Maximum fan-out: 1025
Total fan-out: 12067
Average fan-out: 3.30

Fitter Summary

Block interconnects: 4080 out of 197,592 (2 %)
C16 interconnects: 508 out of 6,270 (8 %)
C4 interconnects: 3337 out of 123,120 (3 %)
Direct links: 273 out of 197,592 (< 1 %)
Global clocks: 1 out of 16 (6 %)
Local interconnects: 1139 out of 68,416 (2 %)
R24 interconnects: 779 out of 5,926 (13 %)
R4 interconnects: 3708 out of 167,484 (2 %)
Nominal Core Voltage: 1.20 V
Low Junction Temperature: 0 °C
High Junction Temperature: 85 °C.

The usage number of logic elements and their connections
in the device can be changed depending on the
optimization technique which is used for synthezing the
cipher. Table B1 shows the number of usage logic
elements and the interconnections between them in Area,
Speed, and Balanced optimization technique. We noticed
that the number of usage logic elements in the device
increased in speed optimization technique comparing with
balanced optimization technique to provide more block,
local, and direct interconnections and applied 3.34 average
fan-out, while less consuming of logic elements in area
optimization technique gives less average fun-out 3.26
comparing with average fun-out 3.30 in balanced
optimization technique.

Table B1: A comparison between optimization technique

implementations of the stone cipher

 Balance Area Speed
Total logic elements 3085 2870 3226
Total combinational functions 3085 2870 3226

4 input functions 2562 2394 2808
3 input functions 517 465 390

<=2 input functions 6 11 28
Maximum fan-out 1025 517 1025
Total fan-out 12067 11249 12714
Average fan-out 3.30 3.26 3.34
Block interconnects 4080 3998 4338
C16 interconnects 508 539 533
C4 interconnects 3337 3153 3179
Direct links 273 358 380
Global clocks 1 1 1
Local interconnects 1139 910 1229
R24 interconnects 779 821 781
R4 interconnects 3708 3529 3969

The comparison between optimization techniques was
extracted from the timing reports of implementing area
and speed optimization. Figure B.1 shows a comparison
chart between various implementation delays.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

60

 ● in area optimization, the worst case pin-to-pin delay
was found to be equal to 26.341 ns. The longest pin-to-
register delay was 7.885 ns and the shortest pin-to-register
delay was 6.840 ns. The longest register-to-pin delay was
22.930 ns.
 ● in speed optimization, the worst case pin-to-pin
delay was found to be equal to 27.233 ns. The longest pin-
to-register delay was 8.232 ns and the shortest pin-to-
register delay was 6.912 ns. The longest register-to-pin
delay was 22.230 ns.

0

5

10

15

20

25

30

Pin-to-pin
delay

Longest pin-
to-register

delay

Shortest pin-
to-register

delay

Longest
register-to-pin

delay

Na
no

Se
co

nd
s

Balanced
Area
Speed

Figure B.1. Delays in our design of the cipher
implementation

Magdy Saeb received the BSEE, School
of Engineering, Cairo University, in
1974, the MSEE, and Ph.D. degrees in
Electrical & Computer Engineering,
University of California, Irvine, in 1981
and 1985, respectively. He was with
Kaiser Aerospace and Electronics, Irvine
California, and The Atomic Energy
Establishment, Anshas, Egypt.
Currently, he is a professor in the
Department of Computer Engineering,
Arab Academy for Science, Technology

& Maritime Transport, Alexandria, Egypt; He was on-leave
working as a principal researcher in the Malaysian Institute of
Microelectronic Systems (MIMOS). His current research
interests include Cryptography, FPGA Implementations of
Cryptography and Steganography Data Security Techniques,
Encryption Processors, Mobile Agent Security.

Rabie Mahmoud received the BS. Degree,
Faculty of Science, Tishreen University,
Syria, in 2001, the MS. in Computational
Science, Faculty of Science, Cairo
University, Egypt in 2007. Currently, he is
working on his Ph.D. Dissertation in the
Department of Mathematics, Faculty of
Science, Cairo University, ., His current
interests include Image processing,
Cryptography, FPGA Implementations of
Cryptography and Data Security Techniques.

