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ABSTRACT: The Stone Cipher is a metamorphic cipher 
that uses a variable word size and variable-size user’s key. 
The cipher employs two basic functions; the encryption 
function and a Pseudo Random Number Generator (PRG) 
that is based on a specially-developed one-way hash 
function. Four bit-balanced operations are pseudo-
randomly selected to generate the sequence of operations 
constituting the cipher. These operations are: XOR, INV, 
ROR, NOP for bitwise xor, invert, rotate right and no 
operation respectively. The user key is encrypted using the 
cipher encryption function with agreed-upon initial values 
then it is used to generate the bit stream required to select 
these operations. In this work, we provide a Field 
Programmable Gate Array (FPGA) hardware 
implementation of this cipher. 
 
Keywords: FPGA, Cipher, Metamorphic, Cryptography, 
Hardware.  
 
1. Introduction  

      The Stone Cipher is a metamorphic cipher that is 
hardware implemented utilizing Field Programmable Gate 
Arrays (FPGA). The idea of this cipher is to use four low-
level operations that are all bit-balanced to encrypt the 
plaintext bit stream. These operations are: xoring a key bit 
with a plaintext bit (XOR), inverting a plaintext bit (INV), 
exchanging one plaintext bit with another one in a given 
plaintext word using a right rotation operation (ROR) and 
producing the plaintext bit without any change (NOP). In 
addition, the internal sub-keys are generated using a 
combination of the encryption function itself and a one-
way hash function. The generated key stream is used to 
select the various operations. In the following sections, we 
provide the structure of the cipher, the formal description 
of its algorithm, the details of our circuit design, 
discussion of the results of the FPGA implementation and 
finally a summary and our conclusions. 
 
 

 
2.  The Stone Cipher Structure 

      The conceptual block diagram of the implemented 
cipher is shown below in Figure 1. It is constructed of two 
basic functions; the encryption function and the sub-key 
generating one-way hash function. The pseudo random 
number generator is built using the same encryption 
function and the MDP-384 [4] one-way hash function in 
cascade. Two large numbers (a, b) are used to iteratively 
generate the sub-keys. The details of the substitution box 
S-orb can be found in [5]. 
 

 
 

 
Figure 1.  The structure of the cipher 

 
The user key is first encrypted then the encrypted key is 
used to generate the sub-keys. The encryption function or 
the cipher engine is built using four low-level operations. 
Table1 demonstrates the details of each one of these 
operations. 
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Table 1: The basic cipher engine  
(Encryption function) operations 

 
Mnemonic Operation Select Operation

code 
XOR Ci = Ki ⊕  Pi 00 
INV Ci = ¬ (Pi) 01 
ROR Pi ← Pi 10 
NOP Ci = Pi 11 

 
The basic crypto logic unit (CLU) is shown in Figure 2. All 
operations are at the bit level. The unit is to be repeated a 
number of times depending on the required word or block 
size. The rotation operation, referred to by the circular 
arrow which is performed using multiplexers and is shown 
in Figure 3. This CLU is used as the encryptor and the 
decryptor where by changing the output cipher bit to 
become an input plain text bit, the new output will be the 
same as the old plain text bit. Obviously, this is a feature of 
the applied functions namely XOR, INV or NOP. The only 
exception is in the case of ROR, the decryptor will use 
ROL [6]. 
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Figure 2. The basic crypto logic unit 

 
 

 
 

Figure 3. The rotation operation (ROTR) implementation 
using multiplexers 

 

The operation selection bits (S1 S0) can be chosen from any 
two sub-key consecutive bits; as shown in Figure 4. The 
same idea applies for the rotation selection bits (S’1 S’0). 
 

Figure 4. The proposed key format where the location of 
the selection bits is shown 

3. The Algorithm 

      The formal description of the algorithm, as shown in 
[6], is summarized as follows: 
 
Algorithm: STONEMETAMORPHIC 
INPUT: Plain text message P, User Key K,  
               Block Size B 
OUTPUT: Cipher Text C 
Algorithm body: 
Begin 
Begin key schedule 
1. Read user key; 
2. Encrypt user key by calling encrypt function and using 
the initial agreed-upon values as the random input to this 
function; 
3. Read the values of the large numbers a and b from the 
encrypted key; 
4. Generate a sub-key by calling the hash one-way 
function; 
5. Store the generated value of the sub-key; 
6. Repeat steps 5 and 6 to generate the required number of 
sub-keys; 
End key schedule; 
 
Begin Encryption 
7. Read a block B of the message P into the message 
cache; 
8. Use the next generated 192-bit key to bit-wise encrypt 
the plain text bits by calling the encrypt function; 
9. If message cache is not empty, Goto step 8;  
10. Else if message cache is empty: 
       If message not finished 
      10.1 Load next block into message cache; 
      10.2 Goto 8; 
    Else if message is finished then halt; 
End Encryption; 
End Algorithm. 
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Function ENCRYPT 
Begin 
1. Read next message bit; 
2. Read next key bit from sub-key; 
3. Read selection bits from sub-key; 
4. Read rotation selection bits from sub-key; 
5. Use selection & rotation bits to select and perform 
operation: XOR, INV, ROR, NOP; 
6. Perform the encryption operation using plaintext bit 
and sub-key bit to get a cipher bit; 
7. Store the resulting cipher bit; 
End; 
 

4.  FPGA Implementation 

      The simplicity and lucidity of the encryption function 
of the Stone Cipher lead to a relatively easy-to-design 
FPGA-based implementation. We have implemented the 
cipher using VHDL hardware description language [2], 
[3], [7] and Quartus II 9.1 Service Pack 2 Web Edition [1], 
and utilizing Altera design environment. The metamorphic 
cipher implementation is based on the idea of encrypting 
256-bit plaintext blocks using 256-bit user key and eight 
rotation selection bits, producing 256-bit ciphertext blocks. 
Every 256-bit sub-keys are extracted from the 384-bit of 
the output PRG. The schematic diagram for a 
demonstrative 256-bit encryption module is shown in 
Figure 5. The design was implemented using an 
EP2C70F896C6, Cyclone II family device. The worst case 
pin-to-pin delay was found to be equal to 28.420 ns. The 
longest pin-to-register delay was 7.787 ns and the shortest 
pin-to-register delay was 6.925 ns. The longest register-to-
pin delay was 23.215 ns. A series of screen-captures of the 
different design software outputs are shown in Figures 6 to 
12. Figures 6, 7, 8, and 9 provide indication of successful 
compilation, parts of RTL for metamorphic cipher 
respectively which are shown a repeated MUX's in 
different connections. Figure 10 displays the encryptor 
simulation showing the output encrypted bits where the 
pins of input plaintext, output ciphertext, and the selection 
bits of sub-keys to specify the operation of encryption 
function are highlighted in the screen. Figures 11 and 12 
demonstrate the floor plan and the timing report 
respectively. 
 
  

 
 

Figure 5. Schematic diagram of metamorphic cipher 
implementation 

 
 

 
 

Figure 6. Compiler tool screen showing correct 
implementation 

 
 

 
 

Figure 7. RTL screen for part of metamorphic cipher 
implementation 
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Figure 8. RTL screen for part of the resulting circuit 
diagram 

 

 
 

Figure 9. RTL screen for part of the cipher 
implementation 

 

 
 
Figure 10. Simulator screen showing the output encrypted 

data based on the selection bits of user key 
 
 

 
 

Figure 11. Floor-plan of cipher implementation 
 

 
 

Figure 12. Timing report 
 
 
The details of the analysis and synthesis report are shown 
in appendix B. 

Summary & Conclusion 

     We have furnished a brief discussion of the hardware 
implementation of the Stone Metamorphic Cipher. 
Various modules were implemented applying VHDL and 
then joined together using the schematic editor. The 
resulting circuit provides a proof-of-concept FPGA 
implementation. It was shown that the worst case pin-to-
pin delay is equal to 28.420 ns. Moreover, area and speed 
optimization were performed and it is shown that the 
worst case pin-to-pin delay is equal to 26.341 ns in the 
case of area optimization and 27.233 ns in speed 
optimization.  One may inquire why the maximum delay 
in case of speed optimization is marginally greater than in 
the case of area optimization. This can be explained by 
noting that the speed optimization objective is to increase 
the maximum operating frequency (fmax) that is dependent 
on the register-to-register delay not pin-to-pin delay. 
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Moreover, high fan-out reduces the usage of global 
interconnection resources. Therefore, the speed 
optimization decreases the use of global resources.  This is 
clearly demonstrated in the synthesis report of our design. 
A comparison with other implementations is not 
applicable since this is the first time the cipher is FPGA- 
implemented. This and other related issues will be dealt 
with in future development of the device. 
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Appendix A: 

Sample VHDL code for a four-bit encryption module 
   
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.all; 
 
ENTITY Metamorphic IS 
   Port (PlainText : in std_logic_vector (3 downto 0); 
          Key : in std_logic_vector (3 downto 0); 
          CipherText: out std_logic_vector (3 downto 0)); 
END Metamorphic ; 
 
ARCHITECTURE behavioral OF Metamorphic IS 
 signal Temp: std_logic_vector (3 downto 0); 

 signal Rotation_Selection : std_logic_vector(1 downto 0); 
BEGIN 
 
 process (PlainText, Key, Temp) 
   variable R : integer range 3 downto 0; 
 begin  
    if    Key(3) = '0' and Key(2 )= '0' then  
  Temp <= PlainText xor Key; 
    
   elsif Key(3) = '0' and Key(2) = '1' then     
  Temp <= not PlainText; 
       
   elsif Key(3) = '1' and Key(2 )= '1' then     
  Temp <= PlainText; 
    
   elsif Key(3) = '1' and Key(2 )= '0' then       
         Rotation_Selection <= Key(0)  &  Key(1) ;                                      
         R := conv_integer (Rotation_Selection);  
   
         if     R = 0 then Temp <= PlainText; 
         elsif R = 1 then Temp <= PlainText(0)  & 
                                                 PlainText (3 downto 1); 
         elsif R = 2 then Temp <= PlainText (1 downto 0) &   
                                                 PlainText (3 downto 2);                               
         elsif R = 3 then Temp <= PlainText (2 downto 0) &  
                                                 PlainText(3);   
          end if;           
     end if;           
  end process;      
        CipherText <= Temp;    
END behavioral;     
 
 
Sample VHDL code for a MDP-1 module of hash function  
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 
USE ieee.numeric_std.all; 
 
ENTITY MDP_1 IS 
Port (input_to_hash: in std_logic_vector (31 downto 0); 
         M_D_P_1: out std_logic_vector (383 downto 0)); 
END MDP_1; 
 
ARCHITECTURE behavioral OF MDP_1 IS 
     signal W0 : std_logic_vector (31 downto 0); 
 
     signal K0 : std_logic_vector(31 downto 0) := 
                        "01100000011100010100100110001111"; 
      
     signal a0 : std_logic_vector(31 downto 0) := 
                        "01011111011111110100010111001100"; 
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     signal b0 : std_logic_vector(31 downto 0) := 
                        "00110110010010111101000001001100"; 
     signal c0 : std_logic_vector(31 downto 0) := 
                        "00100011111001010000111001110000"; 
     signal d0 : std_logic_vector(31 downto 0) := 
                        "01001100000010000001110010000000"; 
     signal e0 : std_logic_vector(31 downto 0) := 
                        "00100011100110111110011111101001"; 
     signal f0 : std_logic_vector(31 downto 0) := 
                        "00010100101101111111010010000000"; 
 
     signal a0, b0, c0, d0, e0, f0, a1, b1, c1, d1, e1, f1 :  
                                         std_logic_vector(31 downto 0); 
 
BEGIN 
W0 <= input_to_hash (31 downto 0); 
 
a1 <= (a0(30 downto 0) & a0(31)) + ((a0 and b0) or ((not 
          a0) and c0)) + ((c0 and d0) or ((not c0) and e0)) 
          + f0 + W0 + K0; 
b1 <= (e0(26 downto 0) & e0(31) & e0(30) & e0(29) & 
          e0(28) & e0(27)); 
c1 <= (a0(30 downto 0) & a0(31)); 
d1 <= (b0(29 downto 0) & b0(31) & b0(30)) xor (a0(30   
          downto 0) & a0(31)); 
e1 <= (c0(28 downto 0) & c0(31) & c0(30) & c0(29)) xor 
          (b0(29 downto 0) & b0(31) & b0(30)); 
f1 <= (d0(27 downto 0) & d0(31) & d0(30) & d0(29) & 
          d0(28)) xor (c0(28 downto 0) & c0(31) & c0(30) & 
          c0(29)); 
 
M_D_P_1 <=  a1 & b1 & c1 & d1 & e1 & f1 & a1 &  
                          b1 & c1 & d1 & e1 & f1;  
 
END behavioral; 
 
Appendix B: The analysis and synthesis report details: 
 
Family: Cyclone II 
Device: EP2C70F896C6 
Total logic elements: 3085 out of 68,416 (5 %) 
Total combinational functions: 3085 
 Logic element usage by number of LUT inputs 

               -- 4 input functions: 2562 
              -- 3 input functions: 517 
              -- <=2 input functions: 6 

Dedicated logic registers: 0 
Total memory bits: 0 out of 1,152,000 (0 %) 
Embedded Multiplier 9-bit elements: 0 out of 300 (0 %) 
Total PLLs: 0 out of 4 (0 %) 
Optimization Technique: Balanced 
Maximum fan-out: 1025 
Total fan-out: 12067 
Average fan-out: 3.30 
 

 
Fitter Summary 

Block interconnects: 4080 out of 197,592 (2 %) 
C16 interconnects: 508 out of 6,270 (8 %) 
C4 interconnects: 3337 out of 123,120 (3 %) 
Direct links: 273 out of 197,592 (< 1 %) 
Global clocks: 1 out of 16 (6 %) 
Local interconnects: 1139 out of 68,416 (2 %) 
R24 interconnects: 779 out of 5,926 (13 %) 
R4 interconnects: 3708 out of 167,484 (2 %) 
Nominal Core Voltage: 1.20 V 
Low Junction Temperature: 0 °C 
High Junction Temperature: 85 °C. 
 
 
The usage number of logic elements and their connections 
in the device can be changed depending on the 
optimization technique which is used for synthezing the 
cipher. Table B1 shows the number of usage logic 
elements and the interconnections between them in Area, 
Speed, and Balanced optimization technique. We noticed 
that the number of usage logic elements in the device 
increased in speed optimization technique comparing with 
balanced optimization technique to provide more block, 
local, and direct interconnections and applied 3.34 average 
fan-out, while less consuming of logic elements in area 
optimization technique gives less average fun-out 3.26 
comparing with average fun-out 3.30 in balanced 
optimization technique. 
 
Table B1: A comparison between optimization technique 

implementations of the stone cipher 
 
 Balance Area Speed 
Total logic elements 3085 2870 3226
Total combinational functions 3085 2870 3226

4 input functions 2562 2394 2808
3 input functions 517 465 390 

<=2 input functions 6 11 28 
Maximum fan-out 1025 517 1025
Total fan-out 12067 11249 12714
Average fan-out 3.30 3.26 3.34 
Block interconnects 4080 3998 4338
C16 interconnects 508 539 533 
C4 interconnects 3337 3153 3179
Direct links 273 358 380 
Global clocks 1 1 1 
Local interconnects 1139 910 1229
R24 interconnects 779 821 781 
R4 interconnects 3708 3529 3969
 
The comparison between optimization techniques was 
extracted from the timing reports of implementing area 
and speed optimization. Figure B.1 shows a comparison 
chart between various implementation delays.   



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 
 

 

60

 

    ● in area optimization, the worst case pin-to-pin delay 
was found to be equal to 26.341 ns. The longest pin-to-
register delay was 7.885 ns and the shortest pin-to-register 
delay was 6.840 ns. The longest register-to-pin delay was 
22.930 ns. 
      ● in speed optimization, the worst case pin-to-pin 
delay was found to be equal to 27.233 ns. The longest pin-
to-register delay was 8.232 ns and the shortest pin-to-
register delay was 6.912 ns. The longest register-to-pin 
delay was 22.230 ns. 
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Figure B.1. Delays in our design of the cipher 
implementation 
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