
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

75

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

On a Fast Interconnections

Ravi Rastogi and Nitin*
Department of Computer Science & Engineering and Information Technology, Jaypee University of Information

Technology, Waknaghat, Solan-173234, Himachal Pradesh, INDIA

*College of Information Science and Technology, Peter Kiewit Institute, University of Nebraska at Omaha,
6001 Dodge Street, NE 68182-0116, USA

Summary
In this paper, we have discussed tool called Fast Interconnection,
which have been designed for developing fault-tolerant multi-
stage interconnection networks. The designed tool is one of its
own kind and will help the user in developing 2 and 3-disjoint
path networks.
Key words:
Interconnection Network, Fault-tolerance, 2 and 3-disjoint path
Interconnection Network.

1. Introduction and Motivation

Multi-stage Interconnection Networks (MINs) are widely
used for broadband switching technology and for
multiprocessor systems. Besides this, they offer an
enthusiastic way of implementing switches used in data
communication networks. With the performance
requirement of the switches exceeding several terabits/sec
and teraflops/sec, it becomes imperative to make them
dynamic and fault-tolerant. A number of techniques have
been used to increase the reliability and fault-tolerance of
the MINs, a survey of the fault-tolerance attributes of these
networks is found in [1, 2].

The typical modern day application of the MINs includes
fault-tolerant packet switches, designing multicast,
broadcast router fabrics while system on-chip and
networks on-chip are hottest now days. Normally the
following aspects are always considered while deigning
the fault-tolerant MINs: the topology chosen, the routing
algorithm used, and the flow control mechanism adhered.
The topology helps in selecting the characteristics of the
present chip technology in order to get the higher
bandwidth, throughput, processing power, processor
utilization, and probability of acceptance from the MIN
based applications, at an optimum hardware cost. Soon, as
the topology is freeze, the analytical bounds, which helps
for measuring reliability and availability can be examine
[3-6]. The topology helps in determining the throughput
and latency of the MINs whereas the routing algorithm and
flow control encourage in achieving the performance
bounds. Whenever we want to design an interconnection

network, we used to design them manually using the
windows word. At present, we do not have any tool
through which we can develop the interconnection
networks tool or this remains out of limelight therefore in
this paper; we have discussed a tool designed for
developing fault-tolerant multi-stage interconnection
networks. The designed tool is one of its own kind and
will help the user in developing 2 and 3-disjoint path
networks.

The rest of the paper is as follows: Section 2 discusses the
algorithm of the codes, developed to design the case tool
together with the screen shots followed by the conclusion
and references.

2. Algorithms

In this section, we have provided the algorithm for the
various components, which are part of Fast
Interconnection tool.

2. 1 Auto Align Method

Function of this Method: This method is used to align the
components on the canvas and is called when the auto
align button is clicked.

ALGORITHM: AUTO_ALIGN

Step1: Divide whole of the canvas into
a grid.
Step2: Assign each component to the
respective column such that column
width is less than twice the width of
the component after making a copy of
all the current coordinates.
Step3: Set the x coordinate of the
components equal to the average x value
of that column.
Step4: Set the x coordinates of the
components in the following columns by

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

76

adding the horizontal distance
specified by the user.
Step5: Get the y coordinate of the
first component in first column and
determine the total y height of the
first column.
Step6: Get the y heights of all the
columns.
Step7: Determine the height differences
of all the columns.
Step8: To the aligning y factor of
every column add the average height
difference.
Step9: Assign the newly calculated
(x,y) coordinates to the respective
components.
Step10: Revert alignment if overlapping
occurs.

Figure 1. Shows the components to be aligned.

Figure 2. Shows that the elements to be aligned have been
selected.

Figure 3. Shows that the elements have been aligned.

2.2 Draw Method

Function of this method: This method is used to draw the
components on the canvas. It is called when the canvas is
refreshed, a new component is added to the circuit, when
any movement occurs, or when a wire connection is made.

ALGORITHM: DRAW

Declare four points;
Get the graphics object for the canvas;

Initialize a for loop from 0 to the
total 'number of components' - 1
Begin FOR loop
Draw each component according to the
'type of the component' variable stored
in the component class;
End loop
Initialize a for loop from 0 to the
total 'number of lines' - 1
Begin FOR loop
IF line to be drawn is a normal line
get start point;
get end point;
draw line;
ELSE
retrieve the top and bottom points of
the component
IF line is to be drawn from upper point
THEN
the line clearance will be 1.5 times
the width of the component;
ELSE
the line clearance is 2 times
End IF block
IF the start point is before the final
point draw line 1.5 times of the width
from right;
ELSE
draw line 1.5 times of the width from

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

77

left;
End IF block
End IF block
End FOR loop

Figure 4. Shows that the components drawn using the
draw method.

2.3 Intersection Check

Function of this method: This method detects overlapping
of the components. This method is called when any
component is moved across the canvas or a new
component is added to the circuit or when the components
are aligned.

ALGORITHM: INTERSECTION_CHECK

Get (X, Y) coordinates of the item just
pasted;
Initialize 'component selected'
variable to zero;
IF component and move option is enabled
Initialize 'intersect' variable to
zero;
Initialize 'no of selected components'
variable to zero;
WHILE 'no of selected components' is
less than 'number of components'
get next 'selected component' in a
variable;
get height, width, centre coordinates
in respective variables;
IF current (X, Y) coordinates are in
range of the 'selected component'
coordinates set 'intersect';
End IF block
IF 'intersect' is set and move or
component options are enabled then
draw rectangle around current component
Break loop;

End IF block
increment ''no of selected components'
by one;
End WHILE loop
IF 'intersect' not equal to one and
move and component options are enabled
THEN
create new 'component' and a 'temporary
component reference'
Initialize 'counter' to zero;
WHILE ‘counter' is less than 'number of
components'
store 'component[counter]' in
'temporary component reference';
get width, height and centre
coordinates in respective variables;
IF component boundary overlaps with
another component boundaries then
get x and y coordinates of the
'temporary component reference'
End IF block
increment 'counter';
End WHILE loop
Initialize 'intsct' to zero;
Initialize '2nd selected component
number' to zero;
WHILE ‘2nd selected component number'
less than 'no of components'
IF current component in boundary of
existing component
set intsct;
End IF block
IF 'intsct' is set then
draw red rectangle;
End IF block
Break loop;
Increment ‘2nd selected component
number';
End loop
IF 'intsct' is zero
draw component;
increment the 'number of components';
add new component in the list of
existing components;
End IF block
End IF block

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

78

Figure 5. Shows the working of the intersection
checking method at work.

2.4 Selecting Component

Function of this method: This method is used to select
several or any one component from the circuit. This
method is also called when the components have to be
aligned selectively using the auto align functionality.

ALGORITHM: SELECTING_ONE_COMPONENT

IF select button selected
get (X, Y) coordinate of mouse pointer
click location
Initialize variables for intersection
check, component selected number,
component increment counter
WHILE component number (temporary loop
variable) is less than total number of
components
get next component;
store the coordinates of the component;
IF the pointer coordinates are in the
area of the component set an
intersection flag;
IF the intersection flag is set then
draw a rectangle around the component;
Break the loop;
End IF block
ELSE
increment the component number so that
when the loop runs the next time next
component is selected;
End ELSE block
End WHILE loop
If intersection flag is set then in the
selected components array store the
selected component number;
refresh;
End IF block;

ALGORITHM:
SELECTING_MULTIPLE_COMPONENT

IF the select component button is
pressed and the CTRL key has been
pressed down
Follow the exact same procedure to
search for the one component being
selected from several components drawn
on the canvas;
Initialize a 'flag' variable to zero;
Begin
FOR loop initializing i to 0 running
loop till all the 'selected components'
are considered;
IF any of the 'selected components'
value is equal to the most recently
selected component
THEN
undraw the rectangle around the
component;
decrement the' selected components'
count;
Begin
FOR loop initializing j to i running
loop till all the 'selected components'
but one less components are considered;
shift every 'selected component' array
element to a previous index;
//basically deleting the element from
the array and maintaining the
contiguous nature of the data
End FOR loop
set flag variable;
refresh the rectangles drawn;
Break loop;
End IF block;
End FOR loop;
IF flag is not equal to one then
increment the 'number of selected
components' variable;
store the 'selected component number'
in the 'selected component' array at
the location referenced by
'number of selected components'
variable;
End IF block
End Procedure

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

79

Figure 6. Shows the selection methods usage.

Figure 7. The front window case tool with the various
components.

Figure 8. The front window with different widths of the
wire and with different background color.

3. Conclusion

In this paper, we have discussed a case tool called as Fast
Interconnections, which have been designed to develop the
2 and 3-disjoint path multi-stage interconnection network.
We have provided the algorithm for the various functions,
which we have created for the software.

References

[1] T.Y. Feng, A survey of interconnection networks, Computer,

Vol. 14, 1981 December, pp. 12-27.
[2] G.B. Adams III, D.P. Agrawal, and H.J. Siegel, A survey

and comparison of fault-tolerant multi-stage interconnection
networks, IEEE Computer, Vol. 20, 1987 June, pp. 14-27.

[3] J.H. Patel, Performance of processor-memory
interconnection for multiprocessors, IEEE Transactions on
Computers, Vol. 30, 1981, pp. 771-780.

[4] J.P. Shen, Fault-tolerance analysis of several
interconnection networks, Proceedings of International
Conference on Parallel Processing, August, pp. 102-112.

[5] J. Duato, S. Yalamanchili, and L. Ni, Interconnection
Networks: An Engineering Approach, IEEE Press, 1997.

[6] W.J. Dally and B. Towles, Principles and practices of
interconnection networks, Morgan Kaufmann, 2004.

