
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

80

Manuscript received August 5, 2010

Manuscript revised August 20, 2010

A New Memory Efficient Technique for Fraud Detection in Web A New Memory Efficient Technique for Fraud Detection in Web A New Memory Efficient Technique for Fraud Detection in Web A New Memory Efficient Technique for Fraud Detection in Web

Advertising NetworksAdvertising NetworksAdvertising NetworksAdvertising Networks

Howida A. shedeed
dr_howida@cis.asu.edu.eg

Faculty of Computer and Information Sciences

Ain Shams University, Cairo, Egypt

Summary
The advertising network considered as the middle man in web

advertising between advertisers and publishers. This paper

presented an intelligent and memory efficient Fraud detection

technique with intelligent classification engine to be used by the

advertising networks to scan clicks and impressions offline

streams happen on publisher side for the purpose of detecting

click fraud and impression fraud. The proposed classification

technique is based on the proposed data structure for a Scalable

Dynamic Counting Bloom Filter (SDCBF). It is a hybrid

structure between the Scalable Bloom Filter (SBF) and the

Counting Bloom Filter (CBF). It is a variant of the CBF in such a

way that, the counter is a dynamic size bit array that can adapt

dynamically to its content. Both theoretical analysis and

experimental results show that, the investigated technique can

achieve minimum space storage with low false positive rate when

detecting both duplicate clicks over a sliding window and fast

click.

Key words:
Fraud detection – web applications – Advertising Network.

1. Introduction

Internet advertising is a major and necessary component of

the competitive marketing strategy of most companies.

Spread of fraud by unscrupulous advertiser’s competitors

and publishers will cause severe damage to the advertiser

and the advertising network. Figure1. Shows the click

traffic model in the advertising network.

Since publishers are paid by the traffic they drive to the

advertisers, there is an incentive for dishonest publishers to

inflate the number of impressions and clicks their sites

generate. In addition, dishonest advertisers tend to

simulate clicks on the advertisements of their competitor

to deplete their advertising budgets. This fraudulent

behavior results in bad reputation for the advertising

commissioners (advertising networks) and sometimes in

extra costs or paying reimbursements for advertisers. So

advertising networks are in need to detect the fraud happen

on traffic derived by the publisher web site accurately and

securely.

One of the main challenges involved in detecting such

fraudulent behavior is maintaining the privacy of the web

users, furthermore, the challenging scale of the click and

impression streams in an ever growing Internet [9].

Figure1. Clicks Traffic in Advertising Networks.

In this research we develop a professional and memory

efficient tool for assisting advertising networks in scanning

and analyzing click and impression streams to detect any

potential fraud from the dishonest publisher or the

dishonest advertiser competitors. The system applied two

detection techniques: the duplicate detection technique

which applied for detecting duplicates from both click and

impression streams within a user defined time span

(window). It considers a click or impression to be

duplicate if it exceeds a user defined threshold of legal

number of duplicates within this span [6]. The second

technique is used for detecting non-human behavior

(robotic traffic) which known as fast click detection. In

this technique we link the clicks with impressions together

to detect the clicks that happen without impressions

(automated clicks) or after a short period of time less than

a user defined threshold [2].

We develop in this research an intelligent classifier engine

to be used with the two techniques for fraud detection. The

proposed engine design is based on the proposed

probabilistic data structure for a Scalable Dynamic

Counting Bloom Filter (SDCBF) which provides space

efficient storage for sets with minimum probability of false

positives on membership queries. SDCBF is a hybrid

structure between the scalable bloom filter and the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

81

counting bloom filter with enhancement added to its

structure to fit out our memory efficient solution. It is a

variant from the counting bloom filter in such a way that,

the counter is a dynamic size bit array that can adapt

dynamically to the count number.

Sec 2 presented the previous work in this research area.

Sec 3 presented the proposed structure for the scalable

dynamic counting Bloom filter SDCBF. Sec 4 illustrate

the application of the fraud detection techniques using the

proposed engine design. Sec 5 shows the system design

and the results of the experiment. Finally conclusion and

future work are drawn in Sec 6.

2. Previous Work

Many algorithms has been investigated in this application

such as [1] which proposed a simple solution to detect

duplicate clicks using a bit vector. The algorithm keeps

track of which elements have been observed in the stream

by flagging their corresponding bits in the bit vector to 1.

A new element is a duplicate if its bit has been flagged to 1

in the Bit Vector. The algorithm is simple, exact, and takes

O (1) steps and space to insert a new element into the bit

vector, or to check it for duplication. However, this simple

scheme cannot be implemented in our case. The alphabet

we are dealing with in this application is the domain of IDs

of clicks which are represented by 64 characters. Thus,

keeping a bit for every ID entails keeping 2
512
 bits ≈

1.676* 10
153
 bytes, which is infeasible.

[1] Proposed an improvement of the above solution called

“The overlapping bit-substrings solution”. The algorithm

keeps partial information, rather than all the combinations

of the alphabet b = 64 Character = 512 bits. It keeps less

than 2
b
 bits, but still get approximate results with a very

low error (false positive). [1] Modified his algorithm once

more to serve both purposes of achieving better results,

and facilitating the probabilistic analysis. He used the

same idea of shrinking the size of the bit vector to less

than 2b. However, instead of using overlapping bit-

substrings of the IDs, he used an independent hash

functions. Interestingly, using independent hash functions

makes his solution another development of Bloom Filters

[5].

2.1 Bloom Filter

A Bloom Filter [5] is a probabilistic data structure that was

proposed to detect approximate membership of elements.

Given two sets, X, and Y, the Bloom Filter algorithm

would loop on every element in set X, to check if it

belongs to set Y, too. The algorithm is probabilistic,

requires O(|X|) operations, O(|Y|) space, and d

independent hash functions. A Bloom Filter can assert that

an element in X does not belong to Y, but cannot assert that

an element in X belongs to Y. That is, its errors are only

false positive, and never false negative.

An empty Bloom Filter as shown in figure 2 is an array of

M cells that are initially zeroed. Each element, y, in Y is

hashed using d independent hash functions to addresses y1,

y2, . . . , yd, which are set to 1, such that 0 ≤ yi ≤ M − 1, ∀i.

For each element, x, in X, its d hash results, x1 to xd, are

generated in the same manner, and checked against the

Bloom Filter that represents the set Y. If any of the cells x1

to xd is not set to 1, then it can be asserted that x ∉	Y. If all

the cells x1 to xd are set to 1, then there is a good

probability that x ∈Y. The interesting thing about Bloom

Filters is that they do not store the elements of the set

whose membership is tested. This is very useful in cases

where the IDs of the elements are huge, like in our case.

Figure 2. Bloom Filter with d=5 hash functions

The probability of a false positive is inversely proportional

to d, the number of hash functions used, given that the

space utilized grows proportionally with d.

[1] used M bit array for his Bloom Filter where M is O(N),

and N is the estimated size of the processed window.

The above algorithm for using Bloom Filter has some

disadvantages such as: It has a fixed space size according

to false positive error, so it is impossible to store extra

elements without increasing the false positive probability.

It does not count the number of duplication for each

element and finally it is not scalable for more elements.

2.2 Stable Bloom filter

[6] Proposed Stable Bloom filters as a variant of Bloom

filters for streaming data. The idea is that since there is no

way to store the entire history of a stream (which can be

infinite). Stable Bloom continuously evicts the stale

information to make room for those more recent elements.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

82

The authors show that a tight upper bound of false positive

rates is guaranteed, and the method is superior in terms of

both accuracy and time efficiency when a small space and

an acceptable false positive rate are given.

2.3 Counting Bloom filter

[1] Proposed a modification of Bloom Filters to enable

Bloom Filters to count the duplicates. The underlying idea

is to replace the array of M bits with an array of M

counters, thus we have a Counting Bloom Filter (CBF).

The same idea was proposed by [7] to modify Bloom

Filters for implementing a scalable distributed cache

sharing protocol.

For every element that is to be inserted, increment the d

counters to which the element hashes. To delete an

element, decrement the d counters to which the element

hashes. The number of hash functions d can be determined

according to the required error rate as we will illustrate

later.

The disadvantages of this technique, which is avoided in

the proposed technique in this paper, is that the array

positions for Bloom filter are extended from being a single

bit, to an n-bit counter. The size of counters is usually 3 or

4 bits. Hence counting Bloom filters use 3 to 4 times more

space than static Bloom filters. With huge number of

membership for our application this will be inefficient in

using space, and the CBF size will enlarge to

uncontrollable size. Also we may suffer from an overflow

problem when the counter reached 2
4
 for a 4 bit counter

for example.

Many applications used the CBF such as [8] which used

the CBF for network intrusion detection and [11] which

proposed a comprehensive service-storage solution using

the CBF.

2.4 Cache Counting Bloom filter

[4] Introduced a multi-level memory hierarchy and a

special hardware cache architecture for counting Bloom

filters that is utilized by network processors and packet

processing applications such as packet classification and

distributed web caching systems. Based on the value of the

counters in the counting Bloom filter, a multi-level cache

architecture called the cache counting Bloom filter (CCBF)

is presented and analyzed. The results show that the

proposed cache architecture decreases the number of

memory accesses (but not the memory size) by at least

51.3% when compared to a standard Bloom filter.

2.5 Scalable Bloom Filter

Scalable Bloom Filter [10] provides a solution for the case
in which not only is the number of elements not known in

advance but also we need to strictly enforce some

maximum error probability.

3. Proposed Technique

In this paper the author presents a new technique for fraud

detection based on the author’s investigated structure for

the Bloom filter called a Scalable Dynamic Counting

bloom filter (SDCBF). The proposed structure for SDCBF

is a hybrid structure of the (SBF) introduced in [8] and the

(CBF) introduced in [1] to benefit from the advantages of

both architectures. But its variant from the CBF structure

in such a way that, the filter is a linked list of bit arrays

and each bit array is dynamic in size according to the

stored number. Initially the counter is null until its index is

referenced, then the engine replaces the counter with a bit

array with initial user defined size. The system enlarges or

reduces the array size according to the new stored number

in the counter after incrementing or decrementing the

counter. Each counter is independent of the other counters.

Both theoretical analysis and experimental results show

that our proposed software architecture for the SDCBF can

achieve minimum space storage with at least 50% less than

the structure used for the traditional CBF that uses a

constant counter size. Another advantage in the proposed

structure is that, it is impossible to suffer from overflow

problem when incrementing the counter, since the

counter’s size can dynamically increased to accommodate

the new number.

The investigated SDCBF as shown in figure 3 consists of a

list of slices. Each slice consists of a linked list of counters

and each counter is a dynamic bit array counter.

Figure 3 The Proposed Architecture for the SDCBF

DCBF

DCBF

SDCBF: list of DCBFs

DCBF: list of slices

Slice Slice: list of Dynamic Bit Arrays

Bit

Array

Bit Array: list of Bits

Bit

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

83

Thus the SDCBF is made up of a series of one or more

Dynamic Counting Bloom Filter. Querying is made by

testing for the presence in each filter. Each successive

filter is created with a tighter maximum error probability

on a geometric progression, so that the compounded

probability over the whole series converges to some

wanted value, even accounting for an infinite series [10].

In the classical Bloom Filter all hash functions are used to

generate indexes over M. Since these hash functions are

independent, nothing prevents collisions in the outputs. In

the most extreme case we could have h1 (x) = h2 (x) = . . .

= hk (x) for k hash functions. This means that in the

general case each element will be described by 1 to k

distinct indexes.

Although for large values of M a collision seldom occurs,

this aspect makes some elements more prone to false

positives. So we partitioning the M array among the k hash

functions, thus creating k slices of m = M/k bits, In this

variant, each hash function hi(x), with 1 ≤ i ≤ k, produces

an index over m for its respective slice.

The SDCBF starts with one filter with k0 slices and error

probability P0 (False Positive), number of slices= number

of hash functions k0=	log(1/P). When this filter gets full

according to the tightening ratio r, a new one is added with

k1 slices and error probability P1 = P0*r, where 0 < r < 1.

At a given moment we will have l filters with error

probabilities P0, P0r, P0r
2
,… P0r

l−1
. The compounded error

probability for the SBF will be P = 1 − ∏ (1 − p�r
�)���

��� .

The number of slices for the next counting bloom filter ki=

k0+ i* log r
��.

SDCBF able to adapt to variations in size of several orders

of magnitude in an efficient way. When a new filter is

added to a SDCBF, its size can be chosen orthogonally to

the required false positive probability. A flexible growth

can be obtained by making the filter size grows

exponentially. We can have a SDCBF made up of a series

of filters with slices having sizes m0, m0s, m0s
2
, . . . ,m0s

l−1
.

Considering the choice of s = 2 for small expected growth

and s = 4 for larger growth according to the server memory

size.

4. Applying The Detection Techniques Using

The Engine

This section illustrate how we can use the proposed

structure for the Scalable Dynamic Counting Bloom Filter

on applying the two fraud detection techniques, the

duplicate detection technique and the fast click detection

technique.

4.1 The Duplicate Detection Technique

In this solution the investigated structure for the SDCBF

for counting the number of duplicate is used for both

impression stream and click stream. The implemented

algorithm uses 5 independent hash functions.

Initially the advertising network has to define a threshold

for the allowable number of duplicates. If the number of

duplicates for certain ID in the counting Bloom filter

exceeds this threshold then this ID will be classified as

fraud element and then added to a data dictionary that we

used for collecting the indexes of the duplicated elements

and their numbers of duplication. If this ID already exist in

the dictionary then update its value, else add new key

value pair in the dictionary. The duplicate detection

technique is applied using sliding window approach with a

specified time span defined by the advertising

commissioner.

Slide the window for every new entry arriving with its

corresponding time span. If the new index for the bottom

border of the window is greater than or equal to the stream

size then terminates and display the output dictionary, else

this mean that there are one or more new elements. So

repeat the previous task with the new sliding window.

 4.2 Fast Click Detection

A reasonable way to detect automated clicks is to check

the time difference between a click and its corresponding

impression. Scripts normally simulate a click just after

loading the page. The commissioner needs to employ an

algorithm that matches every click with its impression

based on the IDs of the cookie, the site, and the

advertisement.

Assuming that, the duplicate impressions and clicks are

already purged, therefore, we will not face the problem of

finding more than one impression matching one click. The

technique should alert if the time difference is less than

time units, where is the predefined minimum allowed

delay. In practice, the minimum allowed delay is around 5

seconds. Formally, given a click entry (timestampJ, IDI), it

is required to check if the last impression with the same

IDI of the click has a timestampI, such that (timestampJ −

timestampI) �.

An approximate solution introduced by [2] and also used

in [3] is as follows: The technique should keep a data

structure, Old Imps, which carries all the impressions’ IDs

(and not the timestamps) that have been observed at least

units ago. To limit the amount of history kept by the

commissioner, we assume that impressions older than a

specific threshold, , will be purged. Another data

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

84

structure, New-Imps, will be kept that carries all the

impressions’ IDs (and not the timestamps) that have been

observed in the last time units. The purpose of keeping

Old-Imps is to make sure that every click has a preceding

impression. The purpose of keeping New-Imps is to know

which impressions are not old enough to be joined with

clicks. In addition, we have to maintain a sequential buffer,

Imps-Buffer, of the impressions received in the last + 1

time units.

To maintain the integrity of the data structures, every time

unit, new impressions that have arrived in the last time unit

are moved from Imps-Buffer to New-Imps. Impressions

that are becoming older than time units are deleted from

New-Imps, and added to Old-Imps; and impressions that

become older than units are purged from Old-Imps.

In order to know which impressions to move from New-

Imps to Old-Imps, and which impressions to purge from

Old-Imps, Imps-Buffer has to store the impressions

sequentially. When a click is received, it is only accounted

for if its impression does not belong to New-Imps but

exists in Old-Imps. That is, the impression with the same

click identification (same cookie, site, and advertisement

IDs) has been seen more than time units before the click.

The only remaining problem is devising a data structure

that allows for constant time search, insertion, and deletion

to cope with the stream processing constraints. The same

data structure can be used for both Old-Imps, and New-

Imps, since the same operations need to be supported by

both data structures. [2] Suggested to use a vector of

integers with independent hash functions like the one he

used for duplicates which is a memory consuming solution.

In this research, the author suggested to use a list of

dynamic bit arrays with independent hash functions like

the one used for detecting duplicates, which is a memory

efficient structure. Searching in this list of bit arrays

entails hashing the clickID using the independent hash

functions and checking if all the corresponding bit arrays

are non-zero. Inserting an element entails hashing the

impression ID using the independent hash functions, and

incrementing all the corresponding bit arrays. Deleting an

element entails hashing the impression ID using the

independent hash functions, and decrementing all the

corresponding bit arrays. A bit array in Old-Imps will be 0

only if no impressions were inserted that hash to that

integer, or all such impressions got deleted after becoming

older than units, and hence, their counters were

decremented back to 0. A similar argument applies for

New-Imps. The same hash functions can be used for both

Old-Imps and New-Imps to reduce the hashing time.

When observing a new click, its ID is hashed using the

hash functions, and the click is only valid if at least one of

the corresponding bit arrays is 0 in New-Imps, and all the

corresponding bit arrays are non-zero in Old-Imps.

5. System Design and Experimental Results

5.1 The Generic Clustered Web Server Architectural

Model

This section explains how the fraud detection system can

be deployed in a real clustered Web server architecture.

Figure 4. Shows a generic web server architecture model

borrowed from [12]. As shown in the figure, the

architecture consists of four layers. As far as the fraud

detection application is concerned, the first layer

comprises the gateway to the Internet, through which the

requests come from the Internet Browsers to the

commissioner servers; as well as the load balancer, which

assigns requests to different Web servers in the second

layer of Web servers. Two consecutive requests from the

same site, and the same cookie ID can be routed to two

different web servers according to the load of the servers

at the time the requests are made.

Figure 4. The Advertising Networks’ Generic

Web Server Architectural Model.

The second layer comprises the web servers. The primary

functionality of the web servers is serving the

advertisements to the requests, redirecting clicks, logging

traffic, and enforcing constraints like advertisers’

geographical targeting, budgeting, etc. We assume the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

85

traffic logs collected by the Web servers are sent

periodically to the third layer. The third layer is the Back-

end that collects the data from the Web servers, does some

data manipulation, and re-adjusts advertisements’ budgets

that are being consumed by the Web servers. This layer is

assumed to have several machines with a single file system,

or is otherwise running on a single powerful machine with

some redundancy for fault-tolerance. The fourth layer is

the database layer, which is responsible for accounting,

trend analysis, etc.

5.2 System Interface and Experimental Results

To illustrate and prove the idea of this research a simple

prototype system has been implemented to do the

experiment and explain the results.

Figure 5. Shows the main user interface screen for the

system and also explains the data source after reading.

Figure 5 the data source after reading

Figure 6 is the interface screen used to configure the

SDCBF, the “Initial counter filter size” defines the

maximum expected number of duplicates initialized by the

Ad. network. Also the Ad. network’s user defines the

“Initial number of bits per counter” which defines the

initial size for the dynamic bit array counter. Afterword

according to the proposed technique the counter’s size will

increased or decreased to accommodate the new stored

number after incrementing or decrementing the counter.

Figure7 Used to configure the classification engine for

duplicate detection by specifying the threshold for the

allowable number of duplicates and the “minimum delay

time” which defines the sliding window size. The system

also enables the user to implement the algorithm on a

subset of the stream not the all stream.

Figure 8 explains the interface screen used to configure the

fast click detection engine by defining 	� : the minimum

allowable delay between impression and click and : the

scan time period threshold.

Finally Figure 9 shows the output report for ‘duplicate

detection” experiment after analyzing the input stream.

The experiment is done with maximum allowable number

of duplicate = 4 and the initial counter size= 3bit, the result

shows that for total count of 2039, 98 duplicates are found

from 38 users. The number of duplicates found is 2 to 9

which required 2 to 4 bits counter. Only 22 of 98

duplicates are exceeds 7, which required 4 bit counter and

the remaining 77 required only 3 bits counters. The

remaining 1941 count required only maximum 2 bits

counters. Thus, the total size for the required filter will be

at maximum 22*4+77*3+1941*2= 4023 bit. But in all the

preceding research that uses a fixed size CBF, the required

CBF’s size=2039*4=8156 in this case. Thus the proposed

structure achieved minimum space storage with at least 51%

less than the structure used for the traditional CBF such as

the one used in [1], [7] and [8], that uses a constant

counter size.

Figure 6 Configuring The SDCBF

Figure 7 Configuring the Duplicate Detection Technique

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

86

Figure 8 Configuring the Fast Click Detection Technique.

Figure 9 The Output Report

6. Conclusion and Future Work

This paper presented the architecture and design of an

offline stream scanning tool with intelligent classification

engine that scans click and impression streams happen on

publisher side for the purpose of detecting click fraud and

fast click fraud. The proposed engine design is based on

the proposed probabilistic data structure for the Scalable

Dynamic Counting Bloom Filter (SDCBF). SDCBF is

used in the two techniques for Fast Click Detection and

Duplicate Detection over Impression and Click streams.

This paper introduced the Scalable Dynamic Counting

Bloom Filters (SDCBF), a mechanism that allows

representing sets without having to know the maximum set

size and yet being able to choose from the start the

maximum false positive probability. The mechanism

adapts to set growth by using a series of classic Dynamic

Counting Bloom Filters of increasing sizes and tighter

error probabilities, added as needed. Also this mechanism

is efficient in memory usage for the counters in such a way

that, each counter is a dynamic bit array that can adapt in

size to the stored number.

In Duplicate Detection Technique, a sliding window is

applied on the stream to detect duplication given the

threshold for the allowable number of duplicates and the

window’s time span.

In Fast Click Detection technique, a sliding window is

applied on the click stream and store its corresponding

impressions in two Scalable Dynamic Counting Bloom

Filter; New-Imp and Old-Imp which classified according

to � , the minimum allowable delay between impression

and click, and γ, the scan time period threshold,

respectively.

Future work will include: Applying the SDCBF in Online

monitoring and also trying to propose an efficient

techniques to detect the publishers’ coalition fraud and the

hit Shaving attacks.

Acknowledgments

I want to acknowledge A. E. Mohamed and H. M. Saad

for helping me in coding the implementation to prove the

idea of this research.

References

[1] A. Metwally, D. Agrawal, and A. El Abbadi,

“Duplicate Detection in Click Streams”, In

Proceedings of the 14
th
 International conference on

World Wide Web, ,May 10-14, 2005, Chiba, Japan

[2] A. Metwally, D. Agrawal, and A. El Abbadi. “On Hit

Inflation Techniques and Detection in Streams of Web

Advertising Networks.”, 27th IEEE International

Conference on Distributed Computing Systems

(ICDCS 2007), June 25-29, 2007, Toronto, Ontario,

Canada. IEEE Computer Society 2007.

[3] A. Metwally, D. Agrawal, A. El Abbadi, “Detectives:

detecting coalition hit inflation attacks in advertising

networks streams”, In Proceedings of the 16th

International Conference on World Wide Web, WWW

2007, Banff, Alberta, Canada, May 8-12, 2007.

[4] Ahmadi, Mahmood; Wong, Stephan, "A Cache

Architecture for Counting Bloom Filters", 15th

international Conference on Netwroks (ICON-2007).

[5] Burton H. Bloom, “Space/Time Trade-offs in Hash

Coding with Allowable Errors”, Communications of

the ACM, 13(7):422–426, 1970.

[6] Fan Deng and Davood Rafiei, “On Approximately

detecting duplicates for streaming data using stable

bloom filters”, In Proceedings of the 2006

ACM ,SIGMOD International Conference on

Management of data, Pages: 25 - 36, 2006.

[7] Fan Li Cao, Pei Almeida, Jussara Broder, Andrei

(2000), "Summary Cache: A Scalable Wide-Area Web

Cache Sharing Protocol", IEEE/ACM Transactions on

Networking 8 (3): 281–293.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

87

[8] Harwayne Gidansky J., Stefan D., Dalal I., “FPGA-

based SoC for real-time network intrusion detection

using counting bloom filters”, In proceeding of the

IEEE SoutheastCon 2009.

[9] Markus Jakobsson and Zulfikar Ramzan, “Crimeware”,

reference book, Symantec Press ,2008.

[10] Paulo Sérgio Almeida, Carlos Baquero, Nuno

Preguica, Hutchison, “Scalable Bloom Filter”,

Information Processing Letters, Pages: 255-261, March

2007.

[11] Shuxing Cheng Chang, C.K. Liang-Jie Zhang, “An

Efficient Service Discovery Algorithm for Counting

Bloom Filter-Based Service Registry”,. IEEE

International Conference on Web Services, July 2009.

ICWS 2009.

[12] V. Cardellini, E. Casalicchio, M. Colajanni, and P.

Yu. The State of the Art in Locally Distributed Web-

Server Systems. ACM Computing Surveys, 34(2):263–

311, 2002.

Author:
Howida AbdelFattah Saber Shedeed
received the PHD. degree in electrical

engineering, Computers and systems

engineering, from Ain Shams university,

faculty of engineering 2005. She is an

Assistant professor in Scientific

Computing department, faculty of

computers and information sciences, Ain

Shams University, Cairo, Egypt.

