Threat Scenario Dependency-Based Model of Information Security Risk Analysis

Basuki Rahmad, Suhono H Supangkat, Jaka Sembiring, Kridanto Surendro

Institut Teknologi Bandung, Indonesia

Summary

Asset dependency paradigm can help us to represent the phenomena of risk dependency on the relevant assets. This paper is aimed to propose the information security risk analysis model, based on the threat-scenario dependency paradigm to represent the asset dependency. Two current approaches of asset dependency representation, threat dependency and security dimension dependency, still have limitations on consistency and the formulation of control's role to reduce the risk. The proposed model can improve the consistency of threats mapping and the control's roles to reduce the likelihood and degradation value of threat.

Key words:

Security Risk Analysis, Threat Scenario Dependency, Bayesian Network.

1. Introduction

Today, IT Risk Management is getting more important [1], as shown by recent survey by ISACA [3]. In general, we can classify the portfolio of IT Risk in project risk, IT Continuity risk, Information Asset risk, vendor & third party risk, application risk, infrastructure risk and strategic risk [2]. But this paper will be focused on the system-level risk: the relation of technical risk (application, infrastructure and facility) and the business risk impacted by the technical risk.

Risk analysis is a part of the risk management cycle, consists of risk identification and risk estimation [4]. We need a security risk management to assure that the risk is mitigated adequately by considering the business needs and organization limitation.

There are several standards/frameworks we can refer as a guidance of information security concepts or information security analysis approach, such as ISO/IEC 27001, ISO/IEC 27002, ISO/IEC 27005, EBIOS, Mehari, Magerit, IT Grundschutz, OCTAVE. We will refer those standards/frameworks in this paper.

In nutshell, current standards/frameworks have provided an adequate guidance on the information security main concepts such as asset, control, threat, vulnerability. Those standards/frameworks also provide several alternatives to analyze an information security risk.

But there are critical limitations in the current approach, especially in the domain of security. First, security terminology is vaguely defined; this leads to confusion among experts as well as the people who should be counseled and served [5]. Second, decisions are often made by managers who do not understand the depth and complexity of the underlying IT infrastructure and therefore base their decisions more on intuition than on a thorough cost/benefit analysis. IT-security personnel are often not involved in the decision making process, and if they are, they have a hard time explaining the complex situation to the decision makers in a proper way [5]. Third, today most companies choose to adapt existing standards than a thorough security threat analysis. That's more practical, though security managers still face the difficulties when they must take a decision based on the several scenarios within the chosen framework [6].

Because of those limitations, information security ontology is proposed. In general, we can classify information security to specific ontology and global ontology. Several previous researches have created specific ontologies in the domain of security, such as Hecker with his privacy ontology [7], Coma with Context Ontology [8] and Vorobiev with his security attack ontology for web services [9]. Global ontologies, provide all security main concepts and its relations, such as Herzog et. al [10] and Ekelhart et. al [11].

Fenz et. al, based on the Ekelhart ontology, then developed an information security analysis approach using Bayesian Network to represent threat to threat dependency [12]. This approach can improve the efficiency of risk management cycle, because all the knowledge of security and IT architecture has been stored in the ontology format.

Next section will discuss more focus in the asset dependency concept for an information security risk analysis.

Manuscript received August 5, 2010 Manuscript revised August 20, 2010

2. Problem Formulation

Asset dependency paradigm can help us to represent the phenomena of risk dependency on the relevant assets. Most standards/frameworks represent the final risk at the threat level where those threats assumed independent each other. This approach has a limitation to capture the real world phenomena of asset dependency. For example, we have a data center wherein we have several servers running several business applications. If our data center is damage, say because of earthquake, all hardware there have a damage potential too. If our servers attacked by denial of service, for example, their availability will effect to the business application availability.

Fenz et al in [12] propose the threat dependency, as illustrated in Fig.1.

Fig. 1 Fenz: Threat dependency

Then based on the threat dependency, Fenz et al proposed threat probability determination using Bayesian Network, as illustrated in Fig.2..

Fig. 2 Fenz: Threat probability determination

Though the threat dependency-based approach provides an alternative of asset dependency in the perspective of asset, but it still has limitations.

- 1. Threat valuation still limited on likelihood
- 2. There is no pattern can be used for threats mapping. So if we face a different IT Architecture context, we have a potential of human error on it.

In the different perspective, Magerit provides the security dimension (such as Confidentiality, Integrity, Availability) dependency between relevant assets, as an alternative of asset dependency [13] [14]. Magerit is the only one of standards/frameworks that has a asset dependency concept. The asset dependency concept in Magerit is managed the asset layer relationship as illustrated in Fig.3.

Fig. 3 Magerit Asset Layering Dependency

Based on the asset layer relationship, the security dimension dependency between two assets can be illustrated in Fig. 4.

Fig. 4 Magerit Security Dimension Dependency

Magerit's security dimension dependency offer more simple approach, but still has two limitations:

1. Threat identification for each security dimension has a "over-valued" or "under-valued" of degradation value, because it decided by an assesor justification. This can be happen because Magerit doesn't provide the pattern to classify threat based-on its degradation level to security dimension. 2. Magerit doesn't differentiate clearly what control types can reduce the likelihood of threat and what control types can reduce the degradation of threat, though Magerit in its method [13] has stated that two roles of controls.

In nutshell, though the threat dependency and the security dimension dependency have provide a significant contribution in the asset dependency paradigm in security risk analysis, there are still potential problems in consistency, miss-valued of threat and the role of controls.

3. Main Concept References

Before we discuss the proposed model, this section will give a brief explanation about the main concepts used in the proposed model: asset, threat and control.

3.1 Assets

The concept of asset represents entities involved in the information system operation. We refer ISO/IEC 27005 [4] and Mehari knowledge-base [15] to develop the asset catalogue as illustrated in Table 1.

Table 1. Asset Catalogue		
CODE	DESCRIPTION	
BP	Business Processes	
SW	Software	
SW.BAP	Business Application: Industry specific solution	
	of standard package	
SW.DBMS	System management database	
SW.MD	Middleware or package system that facilitate the	
	integration between business applications	
DI	Data & Information	
DI.DB	Data & Information managed by DBMS	
DI.FLSVR	Data & Information as a file server and not	
	managed by DBMS	
DI.MED	Media to store data/information	
HW	Hardware	
HW.SVR	Servers (including its system software)	
HW.STO	Storage (including its system software)	
HW.WS	Workstation (including its system software)	
HW.NW	Network hardware (including its system	
	software)	
COM	Communication Network	
COM.LAN	Local Area Network (LAN)	
COM.EXN	Extended Network, connects LAN to the wider	
	communication network (WAN, MAN, Internet,	
	etc)	
AUX	Auxiliary equipments	
AUX.HVAC	HVAC system (Heating, Ventilating, Air	
	Conditioning)	
AUX.PWR	Electrical power source	
AUX.CBL	Telecommunication and electrical cabling	
PHY	Physical Facility	
PHY.DC	Data Center or Disaster Recovery Center	

CODE	DESCRIPTION
PHY.WR	Working room
PER	Personnel
PER.USR	User personels that operate information system
PER.CST	IT Staff user that conduct a information system
	custodian or technical support

3.2 Threats

In this paper we use a threat catalogue as illustrated in Table 2. This catalogue is a combination of Magerit [14] and ISO/IEC 27005 [4].

Table 2: Threat Catalogue		
CODE	DESCRIPTION	
Natural		
N1	Fire	
N2	Flood	
N3	Lightning	
N4	Seismic phenomena	
N5	Volcanic phenomena	
N6	Storm/hurricane	
Environme	ental or Technical Failure	
ET1	Water damage	
ET2	Electromagnetic interference from device	
ET3	Industrial electromagnetic explosion	
ET4	Short Circuit	
ET5	Power failure	
ET6	Pollution	
ET7	Hardware failure	
ET8	Network failure	
ET9	Software failure	
ET10	Unsuitable temperature or/and humidity conditions	
ET11	Media degradation	
ET12	HVAC failure	
Human Ac	cidental	
HA1	User's error	
HA2	Administrator's error	
HA3	Configuration Error	
HA4	Organizational deficiencies	
HA5	Malware diffusion	
HA6	[Re]-routing error	
HA7	Sequence error	
HA8	Information leaks	
HA9	Information modification	
HA10	Incorrect information entry	
HA11	Information degradation	
HA12	Destruction of information	
HA13	Disclosure of information	
HA14	Bug on software	
HA15	Defects in software maintenance or updating	
HA16	Defects in hardware maintenance	
HA17	Defects in network maintenance	
HA18	System failure due to exhaustion of resources	
HA19	Staff shortage	
Human De	liberate (malicious)	
HD1	Spying by a foreign state or a mafia (using	
	important resources)	

from the street sta	
nom me sueet, etc.	
HD3 Vandalism from inside: by people authorized	d within
the premises (personnel, sub-contractor, etc.)).
HD4 Terrorism: sabotage, explosives left close to	
sensitive premises	
HD5 Hardware theft	
HD6 Network equipment theft	
HD7 Malicious erasure of networking configuration	ons
HD8 Malicious erasure of hardware configuration	S
HD9 Saturation of the network caused by a worm	
HD10 Malicious and repeated saturation of IT reso	urces
by a group of users	
HD11 Distorted data entry or fiddling of data	
HD12 Intentional erasure (direct or indirect), theft of	or
destruction of program or data containers	
HD13 Intended access to data or information and	
disclosure of information	
HD14 Document or media theft	
HD15 Malicious erasure (directly or indirectly) of	
software on its storage	
HD16 Malicious modification (direct or indirect) of	f the
functionalities of a program or of the operati	on of
an office program (Excel, Access, etc)	
HD17 Illegal usage of software	
HD18 Intrusion to system by third party whose con	tract
with organization	
HD19 Malicious erasure of software configurations	5
HD20 Absence or strike of IT operational personne	l
HD21 Masquerading of user identity	
HD22 Abuse of access privileges	
HD23 Software misuse	
HD24 Hardware misuse	
HD25 Network misuse	
HD26 Document misuse	
HD27 Malware diffusion	
HD28 [Re]-routing message	
HD29 Sequence alteration	
HD30 Unauthorized access	
HD31 Traffic analysis	
HD32 Eavesdropping	
HD33 Software manipulation	
HD34 Denial of service	
HD35 Extortion	
HD36 Social engineering	

For every threat we define the likelihood value. This value represent represents two intrinsic values, the likelihood of threat occurrence and the likelihood of exploitation scale to information security dimension.

3.5 Controls

To improve the role of control, we refer Mehari's control types [15]. The combination of control types to threat value reduction is illustrated in Table

Table 3: Control	's role to	Threat Reduction
------------------	------------	------------------

Control Type	Threat Likelihood Reduction	Threat Degradation Reduction
Preventive	Х	
Dissuasive	Х	
Protection		Х
Palliative		Х
Recuperative		Х

In this research, we refer the control catalogue provided by ISO/IEC [16] [17]. Each control is mapped to above control types.

4. Proposed Model

4.1 The Concept of Threat Scenario

As a base of our model, we propose the concept of threat scenario. The rationale of this concept is that all threats can be classified based on its characteristic of attack. We adopt the attack type classification of EBIOS [18] to construct our threat scenario concept. Table 4 illustrates six attack classifications of EBIOS.

Table 4: EBIOS Threat Attack Type

Threat	Scenario	Description
USG	the hijacking of uses	goods are diverted from their media framework User rating (use of features available, planned or permitted) without being altered or damaged;
ESP	espionage	goods carriers are observed, with or without equipment further, without being damaged
EXD	exceeded limits of operation	goods carriers are overloaded or used beyond their limits of operation
DMG	damage	the goods are damaged materials, partially or completely, temporarily or permanently;
MOD	modifications	goods are processed materials
LOP	loss of property	goods carriers are insane (lost, stolen, sold, given) without being altered or damaged, so it is possible exercise property rights.

4.2 Threat Scenario Dependency

We also propose threat scenario dependency, consists of threat scenario – security dimension dependency, threat scenario – threat scenario dependency (represent asset dependency) and threat scenario – threat dependency, as illustrated in Tabel 5, 6 and 7.

ACET	Thurst Companie	Security Dimension		
ASEI	Inreat Scenario	С	I	Α
Business	USG	Х	Х	Х
Process	ESP	Х		
	EXD			Х
	DMG		Х	Х
	MOD	Х	Х	Х
	LOP			Х
Software	USG	Х	Х	Х
	ESP	Х		
	EXD			Х
	DMG			Х
	MOD	Х	Х	Х
	LOP	Х		Х
Data (DB &	USG	Х	Х	Х
FLSVR)	ESP	Х		
,	DMG		Х	Х
	MOD		Х	
	LOP	Х		Х
Data (MED)	USG	X	х	X
(ESP	X		
	DMG			Х
	LOP	Х		X
Hardware	USG	Х	Х	Х
	ESP	Х		
	EXD			Х
	DMG			Х
	MOD	Х	Х	Х
	LOP	Х		Х
Network	USG	Х	х	Х
	ESP	X		
	EXD			Х
	DMG			X
	MOD	Х	х	X
	LOP	X		X
Auxiliary	EXD			Х
Equipment	DMG			Х
Physical	DMG			X
Facility				
Personnel	USG			Х
	ESP	Х	1	
	EXD		Х	Х
	DMG			X
	LOP	X		X
	201	11		21

Table 5: Threat Scenario - Security Dimension

Threat scenario – threat scenario dependency can be used to represent asset dependency in more generic pattern compared to threat dependency (by Fenz et al) and security dimension dependency (by Magerit).

Table 6: Threat Scenario - Threat Scenario

Thursof Cooperin	Depend on		
Threat Scenario	Same layer	Other layer	
Business Process			
BP.USG	-	PER.USR.USG	
		SW.BAP.USG	
		DI.DB.USG	
		DI.FLSVR.USG	
		DI.MED.USG	
		COM.LAN.USG	
		COM.EXN.USG	

Thursd Courses	Depend on	
I hreat Scenario	Same layer	Other layer
BP.ESP	-	PER.USR.ESP
		SW.BAP. ESP
		DI.DB. ESP
		DI.FLSVR. ESP
		DI.MED. ESP
		COM EXN ESP
BP EXD	-	PER LISE EXD
DILLAD		SW.BAP.EXD
		COM.LAN.EXD
		COM.EXN.EXD
BP.DMG	-	PER.USR.DMG
		SW.BAP. DMG
		DI.DB. DMG
		DI.FLSVK. DMG
		COM LAN DMG
		COM EXN DMG
BP.MOD	-	SW.BAP, MOD
		DI.DB. MOD
		DI.FLSVR. MOD
		COM.LAN. MOD
		COM.EXN. MOD
BP.LOP	-	PER.USR.LOP
		SW.BAP. LOP
		DI.DB. LOP
		DI.FLSVK. LOP
		COM LAN LOP
		COM EXN. LOP
Data & Information		
DI.DB.USG	-	SW.DBMS.USG
		HW. STO.USG
DI.DB.ESP	-	SW.DBMS. ESP
		HW. STO. ESP
DI.DB.DMG	-	SW.DBMS. DMG
DI DD MOD		HW. STO. DMG
DI.DB.MOD	-	SW.DBMS. MOD
		SW DPMS LOP
DI.DB.LOF	-	HW STO LOP
DLFLSVR USG	-	PER USR USG
		PER.CST.USG
		HW. STO.USG
DI.FLSVR.ESP	-	PER.USR.ESP
		PER.CST.ESP
DI DI GUD DI (G		HW. STO.ESP
DI.FLSVR.DMG	-	HW. STO.DMG
DI.FLSVR.MOD	-	PER.USK.EXD
		HW STO MOD
DIFLSVR LOP	-	HW STOLOP
DI MED USG	-	PER CST USG
DI.MED.ESP	-	PER.CST.ESP
DI.MED.DMG	-	PHY.DC.DMG
DI.MED.LOP	-	-
Software		
SW.BAP.USG	SW. MD.USG	HW.SVR.USG
		PER.CST.USG
		PER.USR.USG
SW.BAP.ESP	SW. MD.ESP	HW.SVR.ESP
		PER.CST.ESP
CILL D & D EXTE		PER.USR.ESP
SW.BAP.EXD	SW. MD.EXD	HW.SVR.EXD
SW.BAP.DMG	SW. MD.DMG	HW.SVR.DMG

Threat Scenario	Depend on	
	Same layer	Other layer
SW.BAP.MOD	SW. MD.MOD	HW.SVR.MOD
SW.BAP.LOP	SW. MD.LOP	HW.SVR.LOP
SW. DBMS.USG	SW.BAP.USG	HW.STO.USG
		PER.CST.USG
SW. DBMS.ESP	SW.BAP.ESP	HW.STO.ESP
		PER.CST.ESP
SW. DBMS.EXD	SW.BAP.EXD	HW.STO.EXD
SW. DBMS.DMG	SW.BAP.DMG	HW.STO.DMG
SW. DBMS.MOD	SW.BAP.MOD	HW.STO.MOD
SW. DBMS.LOP	SW.BAP.LOP	HW. STO.LOP
SW. MD.USG	-	HW.SVR.USG
		PER.CST.USG
SW. MD.ESP	-	HW.SVR.ESP
		PER.CST.ESP
SW. MD.EXD	-	HW.SVR.EXD
SW. MD.DMG	-	HW.SVK.DMG
	-	
SW. MD.LOP	-	HW.SVR.LOP
Communication		
Network		NED COT LIGC
COM.LAN.USG	-	PER.CST.USG
COMIANESP		PER CST ESP
COM.LAN.LSI	-	HW NW ESP
COM.LAN.EXD	-	HW.NW.EXD
		PER.CST.EXD
		PER.CST.DMG
		PER.CST.LOP
COM.LAN.DMG	-	HW.NW.DMG
COM.LAN.MOD	-	HW.NW.MOD
COM.LAN.LOP	-	HW.NW.LOP
COM.EXN.USG	-	PER.CST.USG HW.NW.USG
COM.EXN.ESP	-	PER.CST.ESP HW.NW.ESP
COM.EXN.EXD	-	HW.NW.EXD
		PER.CST.EXD
		PER.CST.DMG
CONFIDENC		PER.CST.LOP
COM.EXN.DMG	-	HW.NW.DMG
COM.EXN.MOD	-	HW.NW.MOD
Hardware	-	ПW.NW.LOP
		DED CET LICC
HW SVR FSD	- HW NW ESD	PER CST ESP
HW SVR FYD		AUX HVAC FYD
II W. UY K.EAD	-	AUX HVAC DMG
		AUX.PWR.EXD
		AUX.PWR.DMG
		AUX.CBL.EXD
		AUX.CBL.DMG
		PER.CST.EXD
		PER.CST.DMG
HW SVR DMC		PEK.UST.LUP PHY DC DMG
HW SVR MOD	-	-
HW.SVRLOP	-	-
HW. STOUSG	-	PER.CST.USG
HW. STO.ESP	HW.NW.ESP	PER.CST.ESP
HW. STO.EXD	-	AUX.HVAC.EXD
		AUX.HVAC.DMG
		AUX.PWR.EXD
		AUX.PWR.DMG

	Depend on		
Threat Scenario	Same layer	Other layer	
		AUX.CBL.EXD	
		AUX.CBL.DMG	
		PER.CST.EXD	
		PER.CST.DMG	
		PER.CST.LOP	
HW. STO.DMG	-	PHY.DC.DMG	
HW. STOLOD	-	-	
HW. STOLOP	-	-	
HW.NW.USG	-	PER.CST.USG	
HW.NW.ESP	-	PER.CST.ESP	
HW.NW.EXD	-	AUX.HVAC.EXD	
		AUX.HVAC.DMG	
		AUX.PWR.EXD	
		AUX CBL EXD	
		AUX.CBL.DMG	
		PER.CST.EXD	
		PER.CST.DMG	
		PER.CST.LOP	
HW.NW.DMG	-	PHY.DC.DMG	
HW.NW.MOD	-	-	
HW.NW.LOP	-	-	
HW.WS.USG	-	PER.USR.USG	
HW.WS.ESP	HW.NW.ESP	PHY USR ESP	
HW WS EVD	11.0.1.0.1.201	AUX HVAC EXD	
IIW.WS.LAD	-	AUX HVAC DMG	
		AUX.PWR.EXD	
		AUX.PWR.DMG	
		AUX.CBL.EXD	
		AUX.CBL.DMG	
		PER.CST.EXD	
		PER.CST.DMG	
		PER.CST.LOP	
HW.WS.DMG	-	PHY.WR.DMG	
HW.WS.MOD	-	-	
HW.WS.LOP	-	-	
Auxiliary Equip.		DED GOT END	
AUX.HVAC.EXD	-	PER.CST.EXD	
		PER.CST.DMG	
		PER.CST.LUP PHV DC DMG	
AUX PWR FXD	-	PFR CST FXD	
NOMI WRIEND		PER CST DMG	
		PER.CST.LOP	
AUX.PWR.DMG	-	PHY.DC.DMG	
AUX.CBL.EXD	-	PER.CST.EXD	
		PER.CST.DMG	
		PER.CST.LOP	
AUX.CBL.DMG	-	PHY.DC.DMG	
Discourse 1 E 111		PHY.WR.DMG	
Physical Facility			
	-	-	
Personnal	-	-	
PER.USK.USG	-		
PEK.USK.ESP	-	HW.WS.ESP	
PER-USK.EXD	-	PHY.WK.DMG	
PER-USK.DMG	-	-	
PER.USR.LOP	-	-	
PER.CST.USG	-		
PER.CSI.ESP	-	HW.WS.ESP	
PER.CST.EAD	-	гпт.wk.DMG	
PER.CST.DMG	-	-	

Depend on			
ne layer	Other layer		
	-		
	ne layer		

Threat scenario – threat dependency is important because the value of threats will determine the value of threat scenario.

Table 7: Threat Scenario - Threat

Arget	TSC	Threat								
Asset		Ν	ET	HA	HD					
Business	USG									
Process	ESP	I								
	EXD									
	DMG									
	MOD									
	LOP									
Software	USG			НА6,	HD17, HD21,					
				HA7,	HD22, HD23,					
	-			HA8	HD30					
	ESP				HD1, HD32					
	EXD		ET9	HA14,						
	-			HA15						
	DMG			HA5	HD3, HD27					
	MOD			HA2,	HD16, HD19,					
				HA3,	HD28, HD29,					
				HA15	HD33					
D. (D.D. 0	LOP				HD15					
Data (DB &	USG			HA8,	HD13					
FLSVR)	ECD			HA13						
	ESP				HD1, HD32					
	DMG			HA5,	HD3, HD12					
	MOD			HA12	UD11					
	MOD			HAI,	HDII					
				HA9,						
	LOP			IIA10						
Data (MED)	LUI			1140	UD12 UD26					
Data (MED)	030			HA13	11D13, 11D20					
	ESP			11/115	HD1					
	DMG	N1	FT1	НА9	HD3 HD4					
	Divid	N2	ET10	HA11	HD12					
		112	ET11	HA12	11012					
	LOP				HD14					
Hardware	USG				HD21, HD22,					
(SVR, STO,					HD24, HD30					
WS)	ESP			HA18	HD1, HD32					
	EXD		ET10	HA5,	HD10, HD34					
				HA16	· ·					
	DMG	N1,	ET6	1	HD3, HD4					
		N3								
	MOD			HA2,	HD8, HD18,					
				НАЗ,	HD27					
				HA16						
	LOP				HD5					

		Thread						
Asset	TSC		E.F.	Threat				
	110.0	N	ET	HA	HD			
Hardware	USG				HD21,			
(INW)					HD22,			
					HD30			
	ESD			HA18	HD1			
	1.51			IIAIO	HD32			
	FXD		FT10	HA5	HD10			
	LAD		LIIO	11113	HD34			
	DMG	N1, N3	ET6		HD3, HD4			
	MOD			HA2,	HD8,			
				HA3,	HD18,			
				HA16	HD27			
	LOP				HD6			
Communicati	USG			НА6,	HD21,			
on Network				НА7,	HD22,			
				HA8	HD25,			
					HD30			
	ESP				HD1,			
					HD31,			
	5115		5750		HD32			
	EXD		ET8	HA5,	HD9,			
				HA18	HD10,			
	DIG				HD34			
	DMG				HD3, HD4, HD27			
	MOD			HA17	HD28,			
	LOD				HD29			
	LOP		1777.5					
Auxiliary Equipment	EXD		E15, ET12					
	DMG	N1,	ET1,		HD2, HD3,			
		N2,	ET2,		HD4			
		N3,	ЕТ3,					
		N4,	ET4					
		N5,						
D1 : 1	D. / G	N6	5754					
Physical	DMG	NI,	ETI,		HD2, HD3,			
Facility		N2,	E12,		HD4			
		N3,	E13,					
		N4,	E14					
		IND, NG						
Dangannal	LICC	INO			11D21			
Personner	050				HD21,			
					HD35			
	ESP			1	HD1			
	1.01				HD36			
	EXD		ET10	HA4				
	DMG	N1.			HD4			
		N2.						
		N4,						
		N5.						
		N6						
	LOP			HA19	HD20			

Three dependency patterns will be used as a base of a proposed model, discussed in the next section.

100

4.3 Proposed Model

Our proposed model is illustrated in Fig 5. This model will be represented in the probability statement of Bayesian Network.

Fig. 5 Conceptual Model

Where.

,	
SD_i	: Information security dimension
	{Confidentiality, Integrity, Availability}
TSi	: threat-scenario
RTi	: reduced-Threat
Ti	: Threat
$LR(T_i)$: Control combination effectiveness for
	Threat likelihood-factor reduction
$IR(T_i)$: Control combination effectiveness for
	Threat impact-factor reduction
DISS	: Control combination effectiveness for
	dissuasive controls
PREV	: Control combination effectiveness for
	Preventive controls
PROT	: Control combination effectiveness for
	protective controls
PALL	: Control combination effectiveness for
	palliative controls
RECU	: Control combination effectiveness for
	recuperative controls
C	· Cinala control offections

Ci : Single control effectiveness It is assumed that the risk has a finite set of probability status (expressed as a vector of probability distribution [high, medium, low]). Because of the vector expression of risk, all relevant variables (threat scenario, threat, control) are also expressed in probability distribution vector.

4.3.1 Risk on the Information Security Dimension

The information security dimension risk is a function of its accumulated potential of exploitation and its value, expressed below:

$$P(\vec{R}_{SDl}) = P(\vec{SD}_{SDl}) * P(\vec{V}_{SDl})$$
 (1)

Where $P(\vec{R}_{SDI})$ is a probability of the information security dimension risk, $P(\overline{SD}_{SDC})$ is a probability of information security dimension being exploited and $\mathcal{P}(\vec{V}_{SDI})$ is a value of the information security dimension.

The probability of information security dimension being exploited $P(\overline{SD}_{SD})$ is a function of the relevant threatscenarios, represented as a conditional probability as below:

$$P(\overline{SD}_{SDl}) = P(\overline{SD}_{SDl}|\overline{TS}_{1_{SDl}} \dots \overline{TS}_{n_{SDl}}) \qquad (2)$$

Where $\overline{TS}_{1_{\text{EDE}}}$ are relevant threat-scenarios to the information securitydimension.

4.3.2 Probability of Threat-Scenario

As can be shown from the Fig.5, the probability of threatscenario is a function of relevant other threat-scenarios and relevant reduced-threats. To make easier the understanding, we use two additional nodes for calculation: reduced-threat combination and relevant threat-scenario combination.

$$P(\overline{TS}_{i}) = P(\overline{TS}_{i} | \overline{CTR}_{TS_{i}} | \overline{CTS}_{TS_{i}})$$
(3)

Where $P(TS_t)$ is probability of threat-scenario, \overline{CTR}_{TS_t} is a combination of relevant reduced-threats to threatscenario \overline{rs}_t and \overline{crs}_{rs_t} is a combination of relevant threat-scenarios to threat-scenario \overline{TS}_{1} .

The combination of reduced-threats to threat-scenario \overline{TS}_{i} is a function of relevant reduced-threats, as expressed in the conditional probability below:

$$P(\overline{CTS}_{TS_{i}}) = P(\overline{CTS}_{1TS_{i}}|\overline{TS}_{1TS_{i'}} - \overline{TS}_{nTS_{i}})$$
(4)

Where $(\overline{TS}_{1TS_{1}}, \overline{TS}_{nTS_{1}})$ is a threat-scenario list of relevant assets. And the combination of reduced-threats is

a function of relevant reduced-threats, as expressed in the conditional probability below:

$$P(\overline{CTR}_{TS_{i}}) = P(\overline{CTR}_{TS_{i}}|\overline{TR}_{1TS_{i}} \dots \overline{TR}_{nTS_{i}})$$
(5)

Where $(\overline{TR}_{1TS_{1}}, \dots, \overline{TR}_{nTS_{i}})$ is a relevant reduced-threat list to threat-scenario TS_{i} .

4.3.3 Probability of Reduced-Threat

Reduction of Threat can be divided on two types: reduction of likelihood-factor and reduction of exploitation-factor that can cause the impact on asset's value. Because of this reason, the probability of reducedthreat can be expressed below:

$$P(\vec{RT}_{i}) = P(\vec{T}_{i}) * (1 - P(\vec{LR}_{Ti})) * (1 - P(\vec{LR}_{Ti}))$$
 (6)

Where $P(\overline{RT}_{t})$ is a probability of reduced-threat, $P(\overline{T}_{t})$ is a probability of threat before reduced, $P(\overline{LR}_{Tt})$ is a probability of control combination effectiveness to reduce the likelihood-factor and $P(\overline{LR}_{Tt})$ is a probability of control combination effectiveness to reduce the exploitation-factor.

By this proposed approach, it's possible to express the influence of the low effectiveness of control, though the probability of threat is very high. This approach also can be used as an alternative of the positive and positive-negative point scale used to express the role of effectiveness to threat, as implemented by Fenz [19].

4.3.4 Control Combination Effectiveness

Control combination effectiveness for likelihood reduction will be determined by the effectiveness of controls whose *Dissuasive* and *Preventive* type. Probability of T_i likelihood reduction is a function of control combination effectiveness of *Dissuasive* control type and *Preventive* control type.

$$P(\overline{LR}_{Tl}) = \frac{\alpha_1 * P(\overline{DISS}_{Tl}) + \alpha_2 * P(\overline{PREV}_{Tl})}{\alpha_1 + \alpha_2}$$
(7)

Where $P(\overline{DISS}_{TC})$ is a control combination effectiveness of relevant dissuasive controls and $P(\overline{PREV}_{TC})$ is a control combination effectiveness of relevant preventive controls.

We have weighted values for *Dissuasive* and *Preventive*. In our opinion, the role of *Preventive* to reduce the threat likelihood value is bigger than *Dissuasive* because *Preventive* controls can prevent the threat event directly where *Dissuasive* control type is aimed to increase the risk perspective if threat happens. Because of this reason, we propose the ratio of weighting α_1 : α_2 =1:2.

Control combination effectiveness for exploitation-factor reduction will be determined by the effectiveness of controls whose *Protective*, *Palliative* and *Recuperative* type.

$$P(iR_{Ti}) = \frac{\beta_2 * P(PROT_{Ti}) + \beta_2 * P(PALL_{Ti}) + \beta_2 * P(RECU_{Ti})}{\beta_2 + \beta_2 + \beta_2}$$
(8)

Protective controls are aimed to limit or detect the degradation before that degradation propagates. Palliative and recuperative controls are aimed to restore the loss because of degradation. By considering the magnitude of impact reduced, we propose the ratio of weighting β_1 : β_2 : β_3 =1:2:2.

Control combination effectiveness of each type can be expressed as a conditional probability of relevant controls, as shown below:

$$P(\overline{DISS}_{Tl}) = P(\overline{DISS}_{Tl} | \overline{C}_{1Tl} \dots \overline{C}_{nTl})$$
(9)

$$P(\overline{PREV_{Tl}}) = P(\overline{PREV_{Tl}}|\overline{C}_{1Tl} \dots \overline{C}_{nTl})$$
(10)

$$P(\overline{PREV_{Tl}}) = P(\overline{PREV_{Tl}} | \tilde{C}_{1Tl} \dots \tilde{C}_{nTl})$$
(11)

$$P(\overline{PALE}_{Tl}) = P(\overline{PALE}_{Tl} | \tilde{C}_{1Tl} \dots \tilde{C}_{nTl})$$
(12)

$$P(\overline{RECU}_{Tl}) = P(\overline{RECU}_{Tl} | \tilde{C}_{1Tl} \dots \tilde{C}_{nTl})$$
(13)

Where $(\vec{c}_{1TD}, ..., \vec{c}_{nTD})$ are relevant controls for every control types.

5. Comparison to other approaches

1

Based on the above explanation, we can summarize the comparison of the proposed model to the other relevant approaches as shown in the table below:

ITEMS COMPARED	ISO/IEC 27005	EBIOS	Mehari	Magerit	IT Grundschutz	Fenz et al	PROPOSED
Knowledge-base							
- Asset		Х	Х	Х	Х	Х	Х
- Safeguard/Control		Х	Х	Х	Х	Х	Х
- Threat		Х	Х	Х	Х	Х	Х
- Vulnerability						Х	
Asset Dependency							
Approach							
- Threat Dependency						Х	

- Threat-Scenario Depend.							Х
- Dimension dependency				Х			
Risk Analysis Approach							
- Control Effectiveness			Х	Х		Х	Х
- Likelihood reduction	Х	Х	Х	Х	Х	Х	Х
- Impact reduction				Х			Х
- Bayesian-Network						Х	Х
support							

6. Conclusion

Asset dependency can be improved with the concept of threat scenario dependency. The existence of generic pattern (threat scenario – security dimension dependency, threat scenario – threat scenario dependency and threat scenario – threat dependency) can be used as a guidance when modeling the IT Architecture and analyze threats, so the human error potential can be reduced.

The proposed model also can improve the accuracy of risk measured because the model provides the control's role more explicitly.

References

- Basel Committee of Banking Supervision, "International Convergence of Capital Measurement and Capital Standards: A Revised Framework", Bank for International Settlement, 2004
- [2] Ernie Jordan and Luke Silcock, "Beating IT Risks", John Wiley & Sons, 2005
- [3] ISACA, "Top Business/Technology Issues: Survey Results", ISACA, 2008
- [4] ISO/IEC 27005: Information Technology Security Techniques – Information Security Risk Management, ISO/IEC, 2008
- [5] M. Donner, "Toward a security ontology," *IEEE Security and Privacy*, vol. 1, no. 3, pp. 6–7, May/June 2003. [Online]. Available: <u>http://dlib.computer.org/sp/books/sp2003/pdf/j3006.pdf</u>
- [6] Andreas Ekelhart, Stefan Fenz, Markus Klemen, Edgar Weippl, "Security Ontologies: Improving Quantitative Risk Analysis", Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), 2007
- [7] Hecker, M., S.Dillon, T., Chang, E. (2008): Privacy Ontology Support for E-Commerce, *IEEE Internet Computing*, pp. 54-61, IEEE Computer Society
- [8] Coma, C., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.N. (2008): Context Ontology for Secure Interoperability, 2008 *Third International Conference on Availability, Reliability* and Security, pp. 821-827, IEEE Computer Security
- [9] Artem Vorobiev, Jun Han (2006): Security Attack Ontology for Web Services, Second International Conference on Semantics, Knowledge, and Grid (SKG'06), pp. 42, IEEE Computer Security
- [10] Almut Herzog, Nahid Shahmehri, Claudiu Duma. An Ontology of Information Security. International Journal of Information Security and Privacy 1(4). Pages: 1-23. 2007
- [11] Andreas Ekelhart, Stefan Fenz, Markus Klemen, Edgar Weippl, "Security Ontologies: Improving Quantitative Risk

Analysis", Proceedings of the 40th Hawaii International Conference on System Sciences (HICSS'07), 2007

- [12] Fenz, S. Ontology- and Bayesian-based Information Security Risk Management. TU Wien Dissertation, 2008
- [13] Públicas, M. d. Magerit Version 2 Methodology for Information Systems Risk Analysis and Management: I – The Method. Ministerio de Administraciones Públicas, 2006
- [14] Públicas, M. d. Magerit Version 2 Methodology for Information Systems Risk Analysis and Management: II – Catalogue of Elements. Ministerio de Administraciones Públicas, 2006
- [15] CLUSIF. Mehari 2007: Knowledge Base. CLUSIF, 2007
- [16] ISO/IEC. ISO 27001:2005 Information Technology -Security Techniques - Information Security Management Systems – Requirement, 2005
- [17] ISO/IEC. ISO 27002:2005 Information Technology -Security Techniques - Information Security Management Systems - Code of Practice, 2005
- [18] ANSSI. EBIOS: Bases de connaissances. ANSSI, 2010
- [19] Fenz, S. Ontology- and Bayesian-based Information Security Risk Management. TU Wien Dissertation, 2008

Basuki Rahmad is a PhD student at School of Electrical Engineering & Informatic (STEI), Institut Teknologi Bandung. He obtained his undergraduate and master degree in electrical engineering from STEI – Institut Teknologi Bandung 2000 and 2004 respectively. He also holds professional certification related to information system assurance: CISA and CISM from ISACA.

Suhono H. Supangkat is a professor at STEI, Institut Teknologi Bandung, Indonesia. He obtained his undergraduate degree from STEI – Institut Teknologi Bandung (1986), master degree from Meisei University Tokyo (1994) and Doctoral degree from University of Electro Communications Tokyo (1998). His focus research is in the information assurance, IT

Governance, telecommunication policy.

Jaka Sembiring is an associate professor at STEI, Institut Teknologi Bandung, Indonesia. He obtained an undergraduate degree form electrical engineering – Institut Teknologi Bandung, Master and doctoral degree in electrical engineering from Waseda University. His focus research is in stochastic systems.

signal processing and stochastic systems.

Kridanto Surendro is an associate professor at STEI – Institut Teknologi Bandung, Indonesia. He obtained an undergraduate and master degree from Industrial Engineering, Institut Teknologi Bandung, and doctoral degree in Computer Science from Computer Science, Keio University, Tokyo. His focus reseach is in the information system, IT

Governance, IT Risk Management, Strategic IT Plan.