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Abstract 

 This paper presents an optimized architecture and weights of 
three layered ANN designing method using sensitivity analysis 
and adaptive particle swarm optimization (SA–APSO). The 
optimized ANN architecture determination means to look for near 
minimal number of neurons in the ANN and finding the efficient 
connecting weights of it in such a way so that the ANN can 
achieve better performance for solving different problems. The 
proposed algorithm designs the ANN into two phases. In the first 
phase it tries to prune the neurons from ANN using sensitivity 
analysis to achieve the near minimal ANN structure and therefore 
it tries to optimize the weight matrices for further performance 
enhancement by adaptive particle swarm optimization. In the SA 
phase the authors use impact factor and correlation coefficients for 
pruning lower salient neurons. Initially it tries to prune the 
neurons having less impacts in the performance of ANN based on 
their impact factor values. Therefore it tries to lessen more 
neurons through merging the similar neurons in the ANN using 
correlation coefficient among the neuron pairs. In the optimization 
part it applied adaptive particle swarm optimization to optimize 
the connecting weight matrices to attain better performance. In the 
optimization by APSO, a special type of PSO, the authors’ use 
training and validation fitness functions to emphasis on avoiding 
overfitting and more adapted with ANN, and to achieve effective 
weight matrices of ANN. To evaluate SA–APSO, it is applied on 
the dataset of Regional Power Control Center of Saudi 
Electricity Company, Western Operation Area (SEC-WOA) to 
do short term load forecasting (STLF). Results show that the 
proposed SA-APSO is able to design smaller architecture and 
attain excellent accuracy.  
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1. Introduction 

 Architecture designing of an artificial neural network 
(ANN) is a very important area as the performance of an 
ANN largely depends on its effective structure. When 
applications become more complex, the structures  
 

presumably become larger. Moreover, larger structures 
increase the numbers of parameters and lose the 
generalizations ability. The determination of optimized 
ANN architectures means to decide the number of layers 
along with their respective neurons and to get the 
optimized connecting weights among the neurons of 
consecutive layers. It is well known that a three layered 
ANN, consists of an input, a hidden, and an output layer, 
can solve all kinds of linear and non linear problems. 
Therefore, in this research the number of layers is taken as 
three and the number of neurons and values of connecting 
weights will be determined by the sensitivity analysis and 
adaptive particle swarm optimization (SA–APSO) 
approach. Usually the numbers of input and output 
neurons are determined by the sizes of input and output 
vectors of dataset and architecture designing means to 
determine the number of hidden neurons and optimization 
of weights mean to optimize the values of weight matrices.  

 
The problem of designing a near optimal ANN 
architecture for a given application is a tricky question for 
the researchers. However, this is an important issue since 
there are strong biological and engineering evidences to 
support its’ functions. So, the information processing 
ability of an ANN is majorly depends on its architecture 
[1-4]. The fact is that both the large and small networks 
exhibit a number of advantages and disadvantages. On the 
one hand, a larger-sized network may be trained quickly; it 
can more easily avoid local minima and more accurately 
fit the training data. However, it may be inefficient 
because of its high computational complexity, many 
degrees of freedom and poor performance in 
generalization due to over-fitting. On the other hand, a 
smaller network may save the computational costs and 
have good performance in generalization. However, it may 
learn very slowly or may not learn the data set at all. Even 
it is known, there is no guarantee that the smallest feasible 
network will converge to the correct weights during 
training because the network may be sensitive to the initial 
settings and more likely to be trapped in local minima [5-
6]. To design an appropriate architecture for the solution 
of a given task is always an open challenge [1] [3-4].  
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There have been many attempts to design ANN 
architectures automatically: such as various pruning [1-2] 
[4-7], constructive [8-9], and evolutionary (using 
optimization and their hybrid) [10-14] algorithms. 
Roughly speaking, a constructive algorithm starts with a 
minimal sized network (i.e., a network with a minimal 
number of layers, neurons, and connections) and starts to 
add layers, neurons, and connections gradually in the 
training period. In contrast, a pruning algorithm does the 
opposite, i.e., it starts with larger sized network and 
gradually deletes unnecessary layers, neurons, and 
connections during training period.  

 
Sensitivity analysis [1-8] approach is used to identify the 
effective elements in ANN and discarding the redundant 
part from ANN. In [4] the authors propose a pruning 
algorithm using sensitive analysis and cross validation. 
Here they identified lower salient weights/neurons by their 
sensitivity and checks cross validation to maintain the 
generalization property before pruning anything. In [7] the 
authors propose sensitive analysis using standard 
deviation and correlation coefficient to determine salient 
neurons, but they did not apply any optimization approach 
to attain better weight matrices of ANN. 

 
Adjusting weights to train a feed-forward multilayer 
ANN has been one of the earliest applications of PSO. 
The advantage of PSO [10] is it usually computationally 
inexpensive, easily implementable, and does not require 
gradient information of an objective function. Besides it 
uses evolving approach to explore more search spaces for 
finding better solution. In [11] the authors shown that in 
ANN, the PSO can make convergence the weight 
matrices faster with respect to back propagation 
algorithm. Moreover, the success of back propagation 
sometimes depends on choosing its initial weights and 
bias values, where as PSO does not depend on those.  It 
is also stated that the concept of the PSO can be 
incorporated into back propagation algorithm to improve 
its global convergence rate. In [12] the authors applied 
PSO to evolve the structure of an ANN. Both the 
architecture and the weights of ANNs are adaptively 
adjusted according to the quality of the neural network. 
Some hybrid approach of PSO is also used in ANN 
designing in [13-14].The authors in [16] use ANN and 
PSO for STLF but there is no architecture determination 
for ANN. 
 
In this paper the authors propose a hybrid algorithm using 
sensitivity analysis and optimization technique to design 
ANN automatically. In the sensitivity analysis (SA) part, 
impact factor and correlation coefficients among the 
neurons are used to reduce the hidden neurons from ANN. 

Therefore to get better weight matrices adaptive particle 
swarm optimization (APSO) is applied on ANN. Thus the 
proposed SA-APSO attains optimized ANN architecture. 
Since impact factor is a good tool to determine the 
saliency on neurons so it can identify the lower salient 
neurons to prune, besides correlation coefficient among 
the neuron pairs indicate the similarity among neurons pair 
so it is possible to share the load after merging of both. 
Both pruning steps recheck the performance so that it does 
not degrade. Since PSO has the property to explore more 
search spaces in determining the solution and adaptive 
approach is considered here therefore APSO can 
determine the optimized weight matrices for attaining 
better performances and avoiding overfitting. 

2. PROPOSED ALGORITHM 

The proposed SA–APSO algorithm is for designing an 
optimized three layered ANN. It does it in two steps, 
initially it looks for pruning the hidden neurons as much 
as possible to reduce the size of the ANN without 
degrading performance, and after getting the structure it 
focuses to optimize its weight matrices to enhance the 
performances of ANN. In the first phase of pruning it 
determines the saliency of each hidden neuron using 
impact factor, therefore it tries to prune less salient 
neurons. At the time of each neuron pruning, it tries to 
provide proper replacements to avoid degrading its 
performance Afterwards SA-APSO tries to find out the 
similar contributory neuron pairs. Similarity among a pair 
of neurons is measured by correlation coefficients 
(positive or negative) among those two neurons. It is 
obvious that two similar neurons might bear similar 
properties and their contribution in the ANN might be 
similar. Therefore it might be possible to share their 
contribution by a single neuron formed from that pair. 
This is the main philosophy of merging similar paired 
neurons. The authors try to put proper replacements at the 
time of each merging operation. Besides after each 
pruning or merging operation the performance of the ANN 
is measured so that the performance of ANN does not 
degrade. After pruning phase, SA-APSO starts 
optimization of weight matrices. In this phase it uses PSO 
approach for exploring more solution spaces so that better 
candidate solution can be generated and selected gradually. 
In this phase adaptive approach is applied to update and 
generate candidate solutions so that only better performed 
weight matrices will be selected. The detail steps of the 
proposed SA–APSO algorithm are furnished below: 

Step 1(Initialization): Create a fully connected initial 
ANN architecture. The number of neurons in the input 
and output layers are same as the size of the input and 
output vectors of the problem datasets. The numbers of 
hidden neurons are taken arbitrarily. All the weights 
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are initialized randomly within a certain range and the 
biases are assigned to a fixed real value.  
Step 2(Training): Train the ANN by using back 
propagation (BP) algorithm until the error E reduces to 
a certain value. The dataset is divided into two 
different sets like training and validation datasets. 
Training dataset is used to train the ANN. Validation 
dataset is used for determining the interim 
performance and stopping criteria.The training ends 
when the training error is still decreasing and the 
validation error starts to increase. Error E is calculated 
as follows: 
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where, pn  and no  are the total number of input 

patterns and output neurons, respectively. od  and oa  
are the desired and actual outputs, respectively.  
Step 3(Pruning): Compute the impact factor (ImF) of 

each hidden neuron using  

22Im ijii wF σ∑=            (2) 

where denotes the connecting weight from ith 
neuron of the hidden layer to the jth neuron in the 
output layer and  is the sample variance of the ith 
hidden neuron’s output values for all input patterns. If 
the impact factor of hidden neurons remains very low 
i.e., under certain threshold value ( )trσ , identify those 
as low information bearing neurons  and try to prune 
them on by one with proper replacement, otherwise go 
to next step 4. SA–APSO always checks the ANN 
performance after each neuron pruning, if the error 
remains within acceptable range it moves for more 
pruning otherwise it sends for retraining to reduce the 
error under acceptable range. In spite of retraining if 
the error does not come down within acceptable limit 
SA–APSO retrieves the latest pruned neuron and goes 
to next step.  
 
Step 4(Merging): In this step SA–APSO tries to merge 
similar neuron pairs. Compute correlations among 
hidden neuron pairs in an ANN. Both positive and 
negative correlations are considered in similarity 
finding. The pairs having high correlations and higher 
than a threshold value  were marked as the element 
of set M and were selected for merging. Therefore SA–
APSO starts to merge paired neurons one by one 
providing proper replacements. In spite of 
replacements, if the errors exceed accepted range then 

the ANN send for retraining. If the retraining 
becomes successful and error declines within 
expected range then continue other merging steps 
in a similar way. But if the retraining could not 
succeed i.e., error does not reduced under 
accepted range, then restore the last merge 
operation and stop further merging and go to next 
step. 
 
Step 5(Optimization of connecting weights): In this 
step SA–APSO starts for finding optimized weight 
matrices using adaptive particle swarm optimization. 
Here more solution spaces generated using standard 
PSO approach. Therefore it tried to select the best 
candidate solution that can produce better 
performance and can avoid local minima. To update 
the parameters (pbest and gbest) of PSO here the 
authors proposed an adaptive approach so that SA–
APSO can attain better solution and maintaining 
generalization property. To select any updated solution, 
it uses two different fitness functions to get better 
solution and avoiding overfitting. Thus this step 
determines the optimized weight matrices of ANN. 
 
Step 6(Final ANN architecture): Deliver the ANN 
architecture designed by SA–APSO. 
 
The major components of the SA–APSO algorithm are 
described in the follows. 

 
A. Pruning by Impact Factor  

 
After training the ANN, SA–APSO find out the ImF 
value for each hidden neuron to using (2). Therefore 
it identifies the neurons having lower ImF value 
under certain threshold value. SA–APSO considers 
those as less salient neurons who have lower ImF 
value. Lower ImF value indicates lower and 
consistent value delivers by that neuron. Therefore 
the authors attempt to prune the hidden neuron 
having lowest ImF value with proper replacements. 
Since it deals with fully connected ANN, so SA–
APSO adds replacement value to the output neurons 
biases according to (3) to compensate the 
contribution of pruned hidden neuron. 
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k , the biases of the output neurons, where 
0 represents biases, k represents output neurons i.e., 

{k = 1, 2…On},  j
o

jk xW , , is the average weighted 
value feeds from the jth pruned hidden neuron to the 
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kth output neuron. )1(0, +tW o

k , denotes updated bias 
values of the output layered kth neurons. 

 

 Generally, a hidden neuron with small ImF value 
indicates that it delivers almost constant output value 
to the neurons in the succeeding layer. As a result one 
can easily replace the contributions of those neurons 
by providing the additional values in the biases of 
output neurons according to (3). Besides if any 
pruning causes to raise error above tolerable range 
then the ANN send for retraining to reduce the errors. 
If retraining successful then it again go for further 
pruning otherwise it restore its last pruned neuron and 
ends this module.  
   
B.   Merging by Correlation Coefficients 
 
Correlation defines a relationship between two given 
sides, so when it is between two hidden neurons it 
refers the relationship among them. If any two 
neurons exhibit correlated responses (either identical 
or opposite) over the whole input patterns, there is a 
possibility that these two neurons are closely related 
in their natures. The idea behind the merging is that 
since the contribution of each neuron in a correlated 
pair is similar in nature, so it might be expected that 
those can be shared the contribution of each other. 
When the merging of a hidden neuron pair is 
performed SA–APSO always try to provide proper 
replacements so that the error remains lower.  
Similarities (correlation) among any two neurons are     
measured as follows: 
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Here, 
21 ,HHρ represents the correlation among H1 and 

H2 neurons. 
ixσ and

iyσ are standard deviations of 

the outcomes of H1 and H2. ),( 21 HHCov denotes the 
covariance among those, which is determined as: 
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where xi and yi are the output values of H1 and H2 
respectively. The mean output values of H1 and H2 are 
expressed by x  and y  respectively. 
After identifying the similar neuron pair SA–APSO 
starts merging from the most similar neurons and the 
connecting weights for the new merged neuron will be 
changed as follows: 
 
Let Hm be the merged neuron that will be produced by 
merging H1 and H2 neurons. Thus the connecting 

weights from input neurons to Hm will be updated as 
follows: 
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The new weight from input neuron I1 to Hm will be 
the average of the connecting weights between I1 to 
H1 and H2.  Similarly connecting weights from all 
input neurons to Hm is updated.  
 
To update the connecting weights from Hm to output 
neurons will be updated as:  
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where 
1

1
o
mw is updated connecting weight from Hm to 

output neuron O1. 1
11
ow  and 1

12
ow are the previous 

connecting weights between H1 and H2 to O1.  
Similarly the connecting weights from Hm to others 
output neurons are updated in the same way.  
In spite of these replacements of any merge operation 
raises errors then SA–APSO sends for retraining to 
decrement the errors. If retraining successful then it 
looks for more merging to shorten the ANN size. But 
if the retraining fails to reduce the error increases after 
merging, SA–APSO restores last merging to maintain 
better performance. Thus merging operation is applied 
to prune the hidden neurons without degrading 
performance. 

C. Optimization of Weights by APSO 

Particle Swarm Optimization is a heuristic approach 
first proposed in 1995 by Kennedy and Eberhart [10] 
as an evolutionary computational method developed 
for dealing with the optimization of continuous and 
discontinuous function decision making. The PSO 
algorithm is based on the biological and sociological 
behavior of animals such as schools of fish and flocks 
of birds searching for their food. PSO imitates this 
behavior by creating a population with random search 
solution and each potential solution is represented as a 
particle in a population (called swarm In standard 
PSO algorithm, particles are generated and updated 
following (8)–(9), where each particle tries to adjust 
its velocity according to best positions ever visited 
that is stored in its memory called personal best 

)( pbest  and according to the best previous position 
attained by any particle in its neighborhood called 
global best )(gbest  trying to search for a better 
position. Thus, particles communicate with each other 
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and share their information among each other during 
their searching. 
        

[ ] [ ])()()()1( 2211 txgbestcrtxpbestcrtwtv iiii −+−+=+ (8) 

 )1()()1( ++=+ tvtxtx iii                                      (9) 

Here w  is an inertia weight, which provides a 
balance between the local and global exploration, 

iv and )1( +tvi  are current and modified velocities 

of that iteration, respectively. 1c  and 2c are positive 
numbers, used to control the particle’s movement at 
each iteration. They represent cognitive and social 
components, respectively. 1r and 2r are uniform 

distribution numbers in the range [0, 1]. )(txi and 

)1( +txi  are the current and modified position for 
each iteration, respectively. N denotes the number of 
particles. 
 

The authors found that an ANN can be 
represented as the set of four weight matrices. The 
initial weight matrices set is consider as the initial 
particle in the optimization process which was 
provided by the ANN. Thus the initial particle )( kx  
can be represented as: 

},,,{ okhkhokihkk bbwwx =   (10) 

 Here oikhik ww ,  matrices are input-hidden and hidden-

output layered weight matrix sets. okhk bb ,  denote the 
bias matrices of hidden and output layer neurons 
respectively. k and kx denote index of particle and 

thk  particle respectively. 
 
The following steps occurred in APSO weight 
optimization process: 
 

Step 1: APSO receives the initial particle from 
ANN in the form of (10). It also assigns the pbest  
and gbest  parameters similar to the initial particle. 

It initiates the other parameters w , 1c , 2c  and N , 
where N is the number of candidate particles 
generated from each particle during exploration. 
Therefore it generates the number of candidate 
particles from the initial particle using (8) and (9). 
 
Step 2: Compute the two fitness function (training 
and validation fitness), ivit FF , , for each particle 

i  ,where Ni ..1= . The fitness functions are 
similar to the error E defined in (1). 

Step 3: To update pbest , if a particle )( thi  can 
perform better (in terms of both fitness values) with 
respect to its current pbest  value i.e., if ptit FF <   

and pviv FF <   then update pbest  by the new 

position of thi  particle. 
Step 4: To update gbest , find the thk particle 
whose validation fitness is best among the 
candidate particles. Since APSO tries to avoid 
overfitting, therefore to update gbest  , it 
considers vF  as the basic criteria. 

Step 4.1: Compare the thk  particle with current 
gbest   in the same way i.e., if  gtkt FF <   and 

gvkv FF <  then update gbest  by the thk  particle 

otherwise gbest  remains unchanged in this iteration. 
 Step 5: If stopping criterion meet go to next step 
otherwise go to step 1 for further exploration 
 Step 6: Deliver the final ANN architecture 
produced by SA–APSO.  

3. Results 

Discussion The simulation program has run on Intel(R) 
Core(TM) 2 Duo 2.66GHz CPU, 2.96 GB RAM, 
Microsoft Windows XP OS and MatLab version 7.6. 
Initially it tries to select a proper ANN structure and then 
trained by BP. Therefore evaluate the output of ANN for 
STLF. In the training phase 75% of data are used as 
training dataset and remaining 25% dataset are used as the 
validation dataset. Tan-sigmoid function is used as the 
transfer function for hidden layer nodes and the purelin 
function is used for output layer nodes. Every time the 
number of candidate particles generated from each particle 
is N , which is 20. Initialize the APSO parameters w , 1c  

and 2c  as 1.0, 1.5 and 0.5 respectively. w  was started 
from 1.0 and gradually decreases to 0.4 uniformly. The 
maximum number of iterations, m, is taken as 300; 

1r and 2r were generated randomly following distribution 
ranges between [0, 1]. The initial velocity ranges of 
particles are assigned between [-1, +1] randomly.  The 
threshold values of ImF and correlation vary from 0.10 to 
0.25 and 0.65 to 0.90 respectively. The initial hidden 
neurons are taken as 8. 
Since in the benchmark dataset the number of input and 
output neurons are determined by the vector size of dataset 
and only hidden neurons need to be determined in 
designing ANN, therefore in this research the similar 
approach is applied. To do this the authors initially 
determine the input and output neurons for the STLF of 
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SEC-WOA dataset. Since short term load forecasting 
(STLF) is doing here for a single hour so output neuron 
becomes one. For determining input neurons, after certain  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

performance analysis the authors found there have been 
three major criteria those are responsible STLF: Load of 
same hour of previous day, temperature of same day, and 
humidity of the same day. Table I shows that the data 
consists of Temperature (Temp.), Humidity (Hum), load 
before 24 hours (LB_24), and the actual load value (Load) 
for different hours. Since this research deals STLF, after 
some data analysis, it was found that over a period of one 
year data was sufficient to train the ANN. Dataset from 
July 2006 to June 2007 was used as training dataset and 
data of July 2007 was taken as testing dataset. Training 
dataset was divided into two parts - training and validation. 
query. 

The performance of the ANN is measured in terms of 
Mean Absolute Percentage Error (MAPE) that can be 
defined as:  

)(/))()((100
1

iActualiForecastiActual
D

MAPE
D

i
∑
=
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(11) 

Where, D  is the number of testing dataset, Actual and 
Forecast indicates the actual load given in the dataset and 
forecasted load.  
 
MAPE is considered as the fitness of value of the 
candidate solutions. Table II shows the performance of 
proposed SA–APSO. It also compares with ANN in terms 
of MAPE, minimum error rate (MIN), maximum error rate 
(MAX), and standard deviation (SD). Tst_01 to Tst_10 
denote ten individual test performances for dated July 01, 
2007. For all cases SA–APSO performs better than only 
ANN. Table II shows average MAPE using ANN is 
2.849%. However, the average MAPE is only 2.021% for  
SA-APSO. Average accuracy improved by 0.82%. Table 
II shows the performances of different stages of SA–
APSO. It shows initial performance of ANN, after pruning 

by ImF ANN, after ImF and merging ANN, and finally 
after optimization made by SA–APSO.To demonstrate the 
architecture determination process of SA–APSO, Table III  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
shows the number of hidden neurons in each stage and 
their corresponding performances. For all cases SA–APSO 
becomes successful to reduce the size and improve the 
performances. 
 
Fig.1 shows graphical depiction of comparison of 24 hours 
load profile among the actual load and forecasted loads for 
July 01, 2007 by different techniques. It is clear from the 
graph that results of SA–APSO are far better than ANN 
technique; it is clearly visible that the proposed technique 
has not only captured the trend of the load profile but its 
forecasted values are very near to the actual load values. 
 
To exhibit the robustness performance of SA–APSO the 
authors tested to do STLF for the month of July, 2007. 
Table IV shows the MAPE comparison of day by day 
forecasted STLF for both ANN and SA–
APSO.

 
 

 
                           Table I: Sample Data set used in SA_APSO 

Hours
July 01, 2007 August 02, 2007 

Temp.  
(oC) 

Hum.
 (%) 

LB_24 
(MW) 

Load
(MW)

Temp. 
(oC) 

Hum.
 (%)

LB_24  
(MW) 

Load 
(MW) 

1 36 43 8336 8249 35 66 8249 8122 
2 34 88 8469 8377 35 72 8377 8261 
3 33 95 8504 8492 35 80 8492 8312 
..        .. 

21 35 69 8304 8331 33 80 8331 8332 
22 35 71 8319 8338 33 80 8338 8254 
23 35 72 8280 8249 34 77 8249 8123 
24 35 71 8233 8092 34 76 8092 8015 

Fig 1: Comparison with actual load with ANN and SA-APSO 
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                             Table II: STLF PERFORMANCE OF ANN AND SA–APSO ON JULY 01, 2007 

MAPE 

  Tst_01 Tst_02 Tst_03 Tst_04 Tst_05 Tst_06 Tst_07 Tst_08 Tst_09 Tst_10 Avg.

                        

ANN 3.612 2.637 2.084 2.712 2.866 3.640 2.650 3.040 2.735 2.515 2.849

Pruned by ImF 3.226 1.692 1.437 1.574 2.710 1.667 1.817 2.384 2.152 2.291 2.095

After Merging 3.183 1.692 2.048 1.574 2.710 1.667 1.817 1.944 2.060 2.291 2.099

SA–APSO 3.085 1.560 1.938 1.859 2.423 1.606 1.792 1.9079 2.051 1.989 2.021

MIN 

ANN 0.699 0.699 0.166 0.410 0.341 0.074 0.031 0.5669 0.0549 0.796 0.384

Pruned by ImF 0.398 0.398 0.011 0.132 0.068 0.035 0.376 0.3932 0.110 0.075 0.200

After Merging 0.020 0.020 0.066 0.132 0.068 0.035 0.376 0.028 0.014 0.075 0.083

SA–APSO 0.158 0.158 0.124 0.240 0.319 0.079 0.407 0.001 0.037 0.231 0.175

MAX 

ANN 9.065 9.065 5.319 5.875 7.274 9.620 6.425 6.795 6.197 4.886 7.052

Pruned by ImF 8.795 8.795 3.68 4.271 5.921 4.774 4.622 4.933 5.277 4.535 5.560

After Merging 9.263 9.263 5.868 4.271 5.921 4.774 4.622 5.305 3.469 4.535 5.729

SA–APSO 8.495 8.495 5.711 4.108 5.008 4.281 4.482 5.194 3.451 4.292 5.352

STD 

ANN 2.458 2.458 1.459 1.638 1.962 2.678 1.789 2.024 1.840 1.135 1.944

Pruned by ImF 2.460 2.460 0.931 1.116 1.834 1.294 1.193 1.209 1.569 1.404 1.547

After Merging 2.699 2.699 1.611 1.116 1.834 1.294 1.193 1.632 0.887 1.404 1.637

SA–APSO 2.470 2.470 1.497 1.146 1.446 1.129 1.141 1.551 0.877 1.199 1.493
 

 
                     Table III: STLF PERFORMANCE ON HIDDEN NEURONS OF ANN AND SA–APSO ON JULY 01, 2007 

  Tst_01 Tst_02 Tst_0
3 

Tst_0
4 

Tst_0
5 

Tst_0
6 

Tst_0
7 

Tst_0
8 

Tst_0
9 

Tst_1
0 Avg. 

Initial 
ANN 

No of Hidden 
Neurons 8 8 8 8 8 8 8 8 8 8 8 

Training Error 0.007 0.010 0.007 0.008 0.007 0.015 0.012 0.011 0.013 0.013 0.011 

Testing Error 3.612 2.636 2.083 2.711 2.865 3.64 2.650 3.040 2.735 2.515 2.849 

Pruned by 
ImF 

No of Hidden 
Neurons 7 5 4 6 7 6 6 6 7 5 5.9 

Training Error 0.008 0.008 0.009 0.011 0.008 0.008 0.007 0.008 0.008 0.008 0.009 

Testing Error 3.226 1.692 1.436 1.573 2.709 1.667 1.817 2.384 2.152 2.290 2.095 

After 
Merging 

No of Hidden 
Neurons 5 5 2 6 6 6 6 4 5 5 5 

Training Error 0.007 0.008 0.007 0.011 0.008 0.008 0.007 0.008 0.007 0.008 0.008 

Testing Error 3.183 1.692 2.048 1.573 2.709 1.667 1.817 1.944 2.060 2.290 2.098 

SA–APSO 

No of Hidden 
Neurons 5 5 2 6 6 6 6 4 5 5 5 

Training Error 0.007 0.008 0.007 0.011 0.008 0.008 0.007 0.008 0.007 0.008 0.008 

Testing Error 3.084 1.559 1.937 1.858 2.422 1.605 1.791 1.907 2.051 1.989 2.021 
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The following three diagrams Fig. 2-4, are based on the 
load forecasting results of July 1, 2007. 

 

 

 

 

 

 

In Fig. 2, the dashed and the doted curves represent the 
percentage of errors occurred by applying ANN and SA–
APSO methods respectively. ANN produces an average 
error of 2.043 % with a maximum error of 6.295 %. 
Whereas the proposed SA–APSO’s average error is 
2.015 % and the maximum error is 6.248 %. In Fig. 3, the 
dashed and the doted curves represent the absolute 
percentage error distributions occurred by applying ANN 
and SA–APSO methods respectively. The SA–APSO 
curve shows that 60 % of the time the error is within 2% 
whereas the error is within 35 % in case of only ANN In 
Fig. 4, the curve shows how the error decreases in each 
iteration of SA–APSO exploration. 

4. Conclusion 

In this paper, a hybrid approach SA–APSO is used to 
design ANN architectures. SA–APSO can reduce the size 
of the ANN successfully as it tries to replace proper 
compensations at the time of each pruning or merging. 
Combination of both impact factor and correlation 
coefficient has ensured to reduce the size of ANN as much 
as possible and attain near optimal ANN. Besides the 
optimization of weight matrices by adaptive particle 
swarm optimization is a real addition in designing ANN. 
Through this optimization process the authors demonstrate 
that the optimization of weight matrices possible even on a 
trained ANN. Therefore this approach may be applied to 
get better performance of a trained ANN. In the adaptive 
PSO the authors consider two types of fitness for each 
candidate solution which is a real contribution in PSO for 
dealing ANN.  This approach may be extended to apply on 
other classification benchmark dataset to show its 
effectiveness. In future the authors will try to show the 
performance of this approach for different classification 
benchmark datasets and other optimization problems. In 
its current implementation, SA-APSO has a few user-
specified parameters although this is not unusual in the 
field. These parameters, however, are not very sensitive to 
moderate changes.ne of the future improvements to SA-
APSO would be reduce the number of parameters or make 
them adaptive. In addition, the use of a different 
significance criterion in the merging operation of SA-
APSO would also be an interesting future research topic.   
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