
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

103

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

 Architecture and Weight Optimization of ANN Using Sensitive
Analysis and Adaptive Particle Swarm Optimization

Faisal Muhammad Shah† , Md. Khairul Hasan†† , Mohammad Moinul Hoque††† and Suman Ahmmed††††

†,††,††† Department of Computer Science and Engineering Ahsanullah University of Science and Technology, Dhaka, Bangladesh

††††Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh.

Abstract

 This paper presents an optimized architecture and weights of
three layered ANN designing method using sensitivity analysis
and adaptive particle swarm optimization (SA–APSO). The
optimized ANN architecture determination means to look for near
minimal number of neurons in the ANN and finding the efficient
connecting weights of it in such a way so that the ANN can
achieve better performance for solving different problems. The
proposed algorithm designs the ANN into two phases. In the first
phase it tries to prune the neurons from ANN using sensitivity
analysis to achieve the near minimal ANN structure and therefore
it tries to optimize the weight matrices for further performance
enhancement by adaptive particle swarm optimization. In the SA
phase the authors use impact factor and correlation coefficients for
pruning lower salient neurons. Initially it tries to prune the
neurons having less impacts in the performance of ANN based on
their impact factor values. Therefore it tries to lessen more
neurons through merging the similar neurons in the ANN using
correlation coefficient among the neuron pairs. In the optimization
part it applied adaptive particle swarm optimization to optimize
the connecting weight matrices to attain better performance. In the
optimization by APSO, a special type of PSO, the authors’ use
training and validation fitness functions to emphasis on avoiding
overfitting and more adapted with ANN, and to achieve effective
weight matrices of ANN. To evaluate SA–APSO, it is applied on
the dataset of Regional Power Control Center of Saudi
Electricity Company, Western Operation Area (SEC-WOA) to
do short term load forecasting (STLF). Results show that the
proposed SA-APSO is able to design smaller architecture and
attain excellent accuracy.

Key words:
Artificial neural networks, overfitting, correlation coefficients,
particle swarm optimization.

1. Introduction

 Architecture designing of an artificial neural network
(ANN) is a very important area as the performance of an
ANN largely depends on its effective structure. When
applications become more complex, the structures

presumably become larger. Moreover, larger structures
increase the numbers of parameters and lose the
generalizations ability. The determination of optimized
ANN architectures means to decide the number of layers
along with their respective neurons and to get the
optimized connecting weights among the neurons of
consecutive layers. It is well known that a three layered
ANN, consists of an input, a hidden, and an output layer,
can solve all kinds of linear and non linear problems.
Therefore, in this research the number of layers is taken as
three and the number of neurons and values of connecting
weights will be determined by the sensitivity analysis and
adaptive particle swarm optimization (SA–APSO)
approach. Usually the numbers of input and output
neurons are determined by the sizes of input and output
vectors of dataset and architecture designing means to
determine the number of hidden neurons and optimization
of weights mean to optimize the values of weight matrices.

The problem of designing a near optimal ANN
architecture for a given application is a tricky question for
the researchers. However, this is an important issue since
there are strong biological and engineering evidences to
support its’ functions. So, the information processing
ability of an ANN is majorly depends on its architecture
[1-4]. The fact is that both the large and small networks
exhibit a number of advantages and disadvantages. On the
one hand, a larger-sized network may be trained quickly; it
can more easily avoid local minima and more accurately
fit the training data. However, it may be inefficient
because of its high computational complexity, many
degrees of freedom and poor performance in
generalization due to over-fitting. On the other hand, a
smaller network may save the computational costs and
have good performance in generalization. However, it may
learn very slowly or may not learn the data set at all. Even
it is known, there is no guarantee that the smallest feasible
network will converge to the correct weights during
training because the network may be sensitive to the initial
settings and more likely to be trapped in local minima [5-
6]. To design an appropriate architecture for the solution
of a given task is always an open challenge [1] [3-4].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

104

There have been many attempts to design ANN
architectures automatically: such as various pruning [1-2]
[4-7], constructive [8-9], and evolutionary (using
optimization and their hybrid) [10-14] algorithms.
Roughly speaking, a constructive algorithm starts with a
minimal sized network (i.e., a network with a minimal
number of layers, neurons, and connections) and starts to
add layers, neurons, and connections gradually in the
training period. In contrast, a pruning algorithm does the
opposite, i.e., it starts with larger sized network and
gradually deletes unnecessary layers, neurons, and
connections during training period.

Sensitivity analysis [1-8] approach is used to identify the
effective elements in ANN and discarding the redundant
part from ANN. In [4] the authors propose a pruning
algorithm using sensitive analysis and cross validation.
Here they identified lower salient weights/neurons by their
sensitivity and checks cross validation to maintain the
generalization property before pruning anything. In [7] the
authors propose sensitive analysis using standard
deviation and correlation coefficient to determine salient
neurons, but they did not apply any optimization approach
to attain better weight matrices of ANN.

Adjusting weights to train a feed-forward multilayer
ANN has been one of the earliest applications of PSO.
The advantage of PSO [10] is it usually computationally
inexpensive, easily implementable, and does not require
gradient information of an objective function. Besides it
uses evolving approach to explore more search spaces for
finding better solution. In [11] the authors shown that in
ANN, the PSO can make convergence the weight
matrices faster with respect to back propagation
algorithm. Moreover, the success of back propagation
sometimes depends on choosing its initial weights and
bias values, where as PSO does not depend on those. It
is also stated that the concept of the PSO can be
incorporated into back propagation algorithm to improve
its global convergence rate. In [12] the authors applied
PSO to evolve the structure of an ANN. Both the
architecture and the weights of ANNs are adaptively
adjusted according to the quality of the neural network.
Some hybrid approach of PSO is also used in ANN
designing in [13-14].The authors in [16] use ANN and
PSO for STLF but there is no architecture determination
for ANN.

In this paper the authors propose a hybrid algorithm using
sensitivity analysis and optimization technique to design
ANN automatically. In the sensitivity analysis (SA) part,
impact factor and correlation coefficients among the
neurons are used to reduce the hidden neurons from ANN.

Therefore to get better weight matrices adaptive particle
swarm optimization (APSO) is applied on ANN. Thus the
proposed SA-APSO attains optimized ANN architecture.
Since impact factor is a good tool to determine the
saliency on neurons so it can identify the lower salient
neurons to prune, besides correlation coefficient among
the neuron pairs indicate the similarity among neurons pair
so it is possible to share the load after merging of both.
Both pruning steps recheck the performance so that it does
not degrade. Since PSO has the property to explore more
search spaces in determining the solution and adaptive
approach is considered here therefore APSO can
determine the optimized weight matrices for attaining
better performances and avoiding overfitting.

2. PROPOSED ALGORITHM

The proposed SA–APSO algorithm is for designing an
optimized three layered ANN. It does it in two steps,
initially it looks for pruning the hidden neurons as much
as possible to reduce the size of the ANN without
degrading performance, and after getting the structure it
focuses to optimize its weight matrices to enhance the
performances of ANN. In the first phase of pruning it
determines the saliency of each hidden neuron using
impact factor, therefore it tries to prune less salient
neurons. At the time of each neuron pruning, it tries to
provide proper replacements to avoid degrading its
performance Afterwards SA-APSO tries to find out the
similar contributory neuron pairs. Similarity among a pair
of neurons is measured by correlation coefficients
(positive or negative) among those two neurons. It is
obvious that two similar neurons might bear similar
properties and their contribution in the ANN might be
similar. Therefore it might be possible to share their
contribution by a single neuron formed from that pair.
This is the main philosophy of merging similar paired
neurons. The authors try to put proper replacements at the
time of each merging operation. Besides after each
pruning or merging operation the performance of the ANN
is measured so that the performance of ANN does not
degrade. After pruning phase, SA-APSO starts
optimization of weight matrices. In this phase it uses PSO
approach for exploring more solution spaces so that better
candidate solution can be generated and selected gradually.
In this phase adaptive approach is applied to update and
generate candidate solutions so that only better performed
weight matrices will be selected. The detail steps of the
proposed SA–APSO algorithm are furnished below:

Step 1(Initialization): Create a fully connected initial
ANN architecture. The number of neurons in the input
and output layers are same as the size of the input and
output vectors of the problem datasets. The numbers of
hidden neurons are taken arbitrarily. All the weights

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

105

are initialized randomly within a certain range and the
biases are assigned to a fixed real value.
Step 2(Training): Train the ANN by using back
propagation (BP) algorithm until the error E reduces to
a certain value. The dataset is divided into two
different sets like training and validation datasets.
Training dataset is used to train the ANN. Validation
dataset is used for determining the interim
performance and stopping criteria.The training ends
when the training error is still decreasing and the
validation error starts to increase. Error E is calculated
as follows:

(())∑∑
==

−=
On

o
oo

n

np

ad
n

E
p

1

2

1 2
11 (1)

where, pn and no are the total number of input

patterns and output neurons, respectively. od and oa
are the desired and actual outputs, respectively.
Step 3(Pruning): Compute the impact factor (ImF) of

each hidden neuron using

22Im ijii wF σ∑= (2)

where denotes the connecting weight from ith
neuron of the hidden layer to the jth neuron in the
output layer and is the sample variance of the ith
hidden neuron’s output values for all input patterns. If
the impact factor of hidden neurons remains very low
i.e., under certain threshold value ()trσ , identify those
as low information bearing neurons and try to prune
them on by one with proper replacement, otherwise go
to next step 4. SA–APSO always checks the ANN
performance after each neuron pruning, if the error
remains within acceptable range it moves for more
pruning otherwise it sends for retraining to reduce the
error under acceptable range. In spite of retraining if
the error does not come down within acceptable limit
SA–APSO retrieves the latest pruned neuron and goes
to next step.

Step 4(Merging): In this step SA–APSO tries to merge
similar neuron pairs. Compute correlations among
hidden neuron pairs in an ANN. Both positive and
negative correlations are considered in similarity
finding. The pairs having high correlations and higher
than a threshold value were marked as the element
of set M and were selected for merging. Therefore SA–
APSO starts to merge paired neurons one by one
providing proper replacements. In spite of
replacements, if the errors exceed accepted range then

the ANN send for retraining. If the retraining
becomes successful and error declines within
expected range then continue other merging steps
in a similar way. But if the retraining could not
succeed i.e., error does not reduced under
accepted range, then restore the last merge
operation and stop further merging and go to next
step.

Step 5(Optimization of connecting weights): In this
step SA–APSO starts for finding optimized weight
matrices using adaptive particle swarm optimization.
Here more solution spaces generated using standard
PSO approach. Therefore it tried to select the best
candidate solution that can produce better
performance and can avoid local minima. To update
the parameters (pbest and gbest) of PSO here the
authors proposed an adaptive approach so that SA–
APSO can attain better solution and maintaining
generalization property. To select any updated solution,
it uses two different fitness functions to get better
solution and avoiding overfitting. Thus this step
determines the optimized weight matrices of ANN.

Step 6(Final ANN architecture): Deliver the ANN
architecture designed by SA–APSO.

The major components of the SA–APSO algorithm are
described in the follows.

A. Pruning by Impact Factor

After training the ANN, SA–APSO find out the ImF
value for each hidden neuron to using (2). Therefore
it identifies the neurons having lower ImF value
under certain threshold value. SA–APSO considers
those as less salient neurons who have lower ImF
value. Lower ImF value indicates lower and
consistent value delivers by that neuron. Therefore
the authors attempt to prune the hidden neuron
having lowest ImF value with proper replacements.
Since it deals with fully connected ANN, so SA–
APSO adds replacement value to the output neurons
biases according to (3) to compensate the
contribution of pruned hidden neuron.

j
o

jk

o

k

o

k xtt WWW ,0,0,)()1(+=+ (3)

Here,)(
0,

tWo

k , the biases of the output neurons, where
0 represents biases, k represents output neurons i.e.,

{k = 1, 2…On}, j
o

jk xW , , is the average weighted
value feeds from the jth pruned hidden neuron to the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

106

kth output neuron.)1(0, +tW o

k , denotes updated bias
values of the output layered kth neurons.

 Generally, a hidden neuron with small ImF value
indicates that it delivers almost constant output value
to the neurons in the succeeding layer. As a result one
can easily replace the contributions of those neurons
by providing the additional values in the biases of
output neurons according to (3). Besides if any
pruning causes to raise error above tolerable range
then the ANN send for retraining to reduce the errors.
If retraining successful then it again go for further
pruning otherwise it restore its last pruned neuron and
ends this module.

B. Merging by Correlation Coefficients

Correlation defines a relationship between two given
sides, so when it is between two hidden neurons it
refers the relationship among them. If any two
neurons exhibit correlated responses (either identical
or opposite) over the whole input patterns, there is a
possibility that these two neurons are closely related
in their natures. The idea behind the merging is that
since the contribution of each neuron in a correlated
pair is similar in nature, so it might be expected that
those can be shared the contribution of each other.
When the merging of a hidden neuron pair is
performed SA–APSO always try to provide proper
replacements so that the error remains lower.
Similarities (correlation) among any two neurons are
measured as follows:

ii yx
HH

HHCov
σσ

ρ
.

),(21
, 21

= (4)

Here,
21 ,HHρ represents the correlation among H1 and

H2 neurons.
ixσ and

iyσ are standard deviations of

the outcomes of H1 and H2.),(21 HHCov denotes the
covariance among those, which is determined as:

))((1),(
1

21 yyxx
n

HHCov i

n

i
i −−= ∑

=

 (5)

where xi and yi are the output values of H1 and H2
respectively. The mean output values of H1 and H2 are
expressed by x and y respectively.
After identifying the similar neuron pair SA–APSO
starts merging from the most similar neurons and the
connecting weights for the new merged neuron will be
changed as follows:

Let Hm be the merged neuron that will be produced by
merging H1 and H2 neurons. Thus the connecting

weights from input neurons to Hm will be updated as
follows:

2

2
21

1
11

1

hh
hm
m

www +
= ,

2

2
22

1
12

2

hh
hm
m

www +
= ,

…..
2

2
2

1
1

h
i

h
ihm

mi
ww

w
+

= (6)

The new weight from input neuron I1 to Hm will be
the average of the connecting weights between I1 to
H1 and H2. Similarly connecting weights from all
input neurons to Hm is updated.

To update the connecting weights from Hm to output
neurons will be updated as:

)(1
12

1
11

1
1

ooo
m www += ,)(2

22
2

21
2

2
ooo

m www += , …

)(21
ok
k

ok
k

ok
km www += (7)

where
1

1
o
mw is updated connecting weight from Hm to

output neuron O1. 1
11
ow and 1

12
ow are the previous

connecting weights between H1 and H2 to O1.
Similarly the connecting weights from Hm to others
output neurons are updated in the same way.
In spite of these replacements of any merge operation
raises errors then SA–APSO sends for retraining to
decrement the errors. If retraining successful then it
looks for more merging to shorten the ANN size. But
if the retraining fails to reduce the error increases after
merging, SA–APSO restores last merging to maintain
better performance. Thus merging operation is applied
to prune the hidden neurons without degrading
performance.

C. Optimization of Weights by APSO

Particle Swarm Optimization is a heuristic approach
first proposed in 1995 by Kennedy and Eberhart [10]
as an evolutionary computational method developed
for dealing with the optimization of continuous and
discontinuous function decision making. The PSO
algorithm is based on the biological and sociological
behavior of animals such as schools of fish and flocks
of birds searching for their food. PSO imitates this
behavior by creating a population with random search
solution and each potential solution is represented as a
particle in a population (called swarm In standard
PSO algorithm, particles are generated and updated
following (8)–(9), where each particle tries to adjust
its velocity according to best positions ever visited
that is stored in its memory called personal best

)(pbest and according to the best previous position
attained by any particle in its neighborhood called
global best)(gbest trying to search for a better
position. Thus, particles communicate with each other

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

107

and share their information among each other during
their searching.

[] [])()()()1(2211 txgbestcrtxpbestcrtwtv iiii −+−+=+ (8)

)1()()1(++=+ tvtxtx iii (9)

Here w is an inertia weight, which provides a
balance between the local and global exploration,

iv and)1(+tvi are current and modified velocities

of that iteration, respectively. 1c and 2c are positive
numbers, used to control the particle’s movement at
each iteration. They represent cognitive and social
components, respectively. 1r and 2r are uniform

distribution numbers in the range [0, 1].)(txi and

)1(+txi are the current and modified position for
each iteration, respectively. N denotes the number of
particles.

The authors found that an ANN can be
represented as the set of four weight matrices. The
initial weight matrices set is consider as the initial
particle in the optimization process which was
provided by the ANN. Thus the initial particle)(kx
can be represented as:

},,,{ okhkhokihkk bbwwx = (10)

 Here oikhik ww , matrices are input-hidden and hidden-

output layered weight matrix sets. okhk bb , denote the
bias matrices of hidden and output layer neurons
respectively. k and kx denote index of particle and

thk particle respectively.

The following steps occurred in APSO weight
optimization process:

Step 1: APSO receives the initial particle from
ANN in the form of (10). It also assigns the pbest
and gbest parameters similar to the initial particle.

It initiates the other parameters w , 1c , 2c and N ,
where N is the number of candidate particles
generated from each particle during exploration.
Therefore it generates the number of candidate
particles from the initial particle using (8) and (9).

Step 2: Compute the two fitness function (training
and validation fitness), ivit FF , , for each particle

i ,where Ni ..1= . The fitness functions are
similar to the error E defined in (1).

Step 3: To update pbest , if a particle)(thi can
perform better (in terms of both fitness values) with
respect to its current pbest value i.e., if ptit FF <

and pviv FF < then update pbest by the new

position of thi particle.
Step 4: To update gbest , find the thk particle
whose validation fitness is best among the
candidate particles. Since APSO tries to avoid
overfitting, therefore to update gbest , it
considers vF as the basic criteria.

Step 4.1: Compare the thk particle with current
gbest in the same way i.e., if gtkt FF < and

gvkv FF < then update gbest by the thk particle

otherwise gbest remains unchanged in this iteration.
 Step 5: If stopping criterion meet go to next step
otherwise go to step 1 for further exploration
 Step 6: Deliver the final ANN architecture
produced by SA–APSO.

3. Results

Discussion The simulation program has run on Intel(R)
Core(TM) 2 Duo 2.66GHz CPU, 2.96 GB RAM,
Microsoft Windows XP OS and MatLab version 7.6.
Initially it tries to select a proper ANN structure and then
trained by BP. Therefore evaluate the output of ANN for
STLF. In the training phase 75% of data are used as
training dataset and remaining 25% dataset are used as the
validation dataset. Tan-sigmoid function is used as the
transfer function for hidden layer nodes and the purelin
function is used for output layer nodes. Every time the
number of candidate particles generated from each particle
is N , which is 20. Initialize the APSO parameters w , 1c

and 2c as 1.0, 1.5 and 0.5 respectively. w was started
from 1.0 and gradually decreases to 0.4 uniformly. The
maximum number of iterations, m, is taken as 300;

1r and 2r were generated randomly following distribution
ranges between [0, 1]. The initial velocity ranges of
particles are assigned between [-1, +1] randomly. The
threshold values of ImF and correlation vary from 0.10 to
0.25 and 0.65 to 0.90 respectively. The initial hidden
neurons are taken as 8.
Since in the benchmark dataset the number of input and
output neurons are determined by the vector size of dataset
and only hidden neurons need to be determined in
designing ANN, therefore in this research the similar
approach is applied. To do this the authors initially
determine the input and output neurons for the STLF of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

108

SEC-WOA dataset. Since short term load forecasting
(STLF) is doing here for a single hour so output neuron
becomes one. For determining input neurons, after certain

performance analysis the authors found there have been
three major criteria those are responsible STLF: Load of
same hour of previous day, temperature of same day, and
humidity of the same day. Table I shows that the data
consists of Temperature (Temp.), Humidity (Hum), load
before 24 hours (LB_24), and the actual load value (Load)
for different hours. Since this research deals STLF, after
some data analysis, it was found that over a period of one
year data was sufficient to train the ANN. Dataset from
July 2006 to June 2007 was used as training dataset and
data of July 2007 was taken as testing dataset. Training
dataset was divided into two parts - training and validation.
query.

The performance of the ANN is measured in terms of
Mean Absolute Percentage Error (MAPE) that can be
defined as:

)(/))()((100
1

iActualiForecastiActual
D

MAPE
D

i
∑
=

−=

(11)

Where, D is the number of testing dataset, Actual and
Forecast indicates the actual load given in the dataset and
forecasted load.

MAPE is considered as the fitness of value of the
candidate solutions. Table II shows the performance of
proposed SA–APSO. It also compares with ANN in terms
of MAPE, minimum error rate (MIN), maximum error rate
(MAX), and standard deviation (SD). Tst_01 to Tst_10
denote ten individual test performances for dated July 01,
2007. For all cases SA–APSO performs better than only
ANN. Table II shows average MAPE using ANN is
2.849%. However, the average MAPE is only 2.021% for
SA-APSO. Average accuracy improved by 0.82%. Table
II shows the performances of different stages of SA–
APSO. It shows initial performance of ANN, after pruning

by ImF ANN, after ImF and merging ANN, and finally
after optimization made by SA–APSO.To demonstrate the
architecture determination process of SA–APSO, Table III

shows the number of hidden neurons in each stage and
their corresponding performances. For all cases SA–APSO
becomes successful to reduce the size and improve the
performances.

Fig.1 shows graphical depiction of comparison of 24 hours
load profile among the actual load and forecasted loads for
July 01, 2007 by different techniques. It is clear from the
graph that results of SA–APSO are far better than ANN
technique; it is clearly visible that the proposed technique
has not only captured the trend of the load profile but its
forecasted values are very near to the actual load values.

To exhibit the robustness performance of SA–APSO the
authors tested to do STLF for the month of July, 2007.
Table IV shows the MAPE comparison of day by day
forecasted STLF for both ANN and SA–
APSO.

 Table I: Sample Data set used in SA_APSO

Hours
July 01, 2007 August 02, 2007

Temp.
(oC)

Hum.
 (%)

LB_24
(MW)

Load
(MW)

Temp.
(oC)

Hum.
 (%)

LB_24
(MW)

Load
(MW)

1 36 43 8336 8249 35 66 8249 8122
2 34 88 8469 8377 35 72 8377 8261
3 33 95 8504 8492 35 80 8492 8312
.. ..

21 35 69 8304 8331 33 80 8331 8332
22 35 71 8319 8338 33 80 8338 8254
23 35 72 8280 8249 34 77 8249 8123
24 35 71 8233 8092 34 76 8092 8015

Fig 1: Comparison with actual load with ANN and SA-APSO

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

109

 Table II: STLF PERFORMANCE OF ANN AND SA–APSO ON JULY 01, 2007

MAPE

 Tst_01 Tst_02 Tst_03 Tst_04 Tst_05 Tst_06 Tst_07 Tst_08 Tst_09 Tst_10 Avg.

ANN 3.612 2.637 2.084 2.712 2.866 3.640 2.650 3.040 2.735 2.515 2.849

Pruned by ImF 3.226 1.692 1.437 1.574 2.710 1.667 1.817 2.384 2.152 2.291 2.095

After Merging 3.183 1.692 2.048 1.574 2.710 1.667 1.817 1.944 2.060 2.291 2.099

SA–APSO 3.085 1.560 1.938 1.859 2.423 1.606 1.792 1.9079 2.051 1.989 2.021

MIN

ANN 0.699 0.699 0.166 0.410 0.341 0.074 0.031 0.5669 0.0549 0.796 0.384

Pruned by ImF 0.398 0.398 0.011 0.132 0.068 0.035 0.376 0.3932 0.110 0.075 0.200

After Merging 0.020 0.020 0.066 0.132 0.068 0.035 0.376 0.028 0.014 0.075 0.083

SA–APSO 0.158 0.158 0.124 0.240 0.319 0.079 0.407 0.001 0.037 0.231 0.175

MAX

ANN 9.065 9.065 5.319 5.875 7.274 9.620 6.425 6.795 6.197 4.886 7.052

Pruned by ImF 8.795 8.795 3.68 4.271 5.921 4.774 4.622 4.933 5.277 4.535 5.560

After Merging 9.263 9.263 5.868 4.271 5.921 4.774 4.622 5.305 3.469 4.535 5.729

SA–APSO 8.495 8.495 5.711 4.108 5.008 4.281 4.482 5.194 3.451 4.292 5.352

STD

ANN 2.458 2.458 1.459 1.638 1.962 2.678 1.789 2.024 1.840 1.135 1.944

Pruned by ImF 2.460 2.460 0.931 1.116 1.834 1.294 1.193 1.209 1.569 1.404 1.547

After Merging 2.699 2.699 1.611 1.116 1.834 1.294 1.193 1.632 0.887 1.404 1.637

SA–APSO 2.470 2.470 1.497 1.146 1.446 1.129 1.141 1.551 0.877 1.199 1.493

 Table III: STLF PERFORMANCE ON HIDDEN NEURONS OF ANN AND SA–APSO ON JULY 01, 2007

 Tst_01 Tst_02 Tst_0
3

Tst_0
4

Tst_0
5

Tst_0
6

Tst_0
7

Tst_0
8

Tst_0
9

Tst_1
0 Avg.

Initial
ANN

No of Hidden
Neurons 8 8 8 8 8 8 8 8 8 8 8

Training Error 0.007 0.010 0.007 0.008 0.007 0.015 0.012 0.011 0.013 0.013 0.011

Testing Error 3.612 2.636 2.083 2.711 2.865 3.64 2.650 3.040 2.735 2.515 2.849

Pruned by
ImF

No of Hidden
Neurons 7 5 4 6 7 6 6 6 7 5 5.9

Training Error 0.008 0.008 0.009 0.011 0.008 0.008 0.007 0.008 0.008 0.008 0.009

Testing Error 3.226 1.692 1.436 1.573 2.709 1.667 1.817 2.384 2.152 2.290 2.095

After
Merging

No of Hidden
Neurons 5 5 2 6 6 6 6 4 5 5 5

Training Error 0.007 0.008 0.007 0.011 0.008 0.008 0.007 0.008 0.007 0.008 0.008

Testing Error 3.183 1.692 2.048 1.573 2.709 1.667 1.817 1.944 2.060 2.290 2.098

SA–APSO

No of Hidden
Neurons 5 5 2 6 6 6 6 4 5 5 5

Training Error 0.007 0.008 0.007 0.011 0.008 0.008 0.007 0.008 0.007 0.008 0.008

Testing Error 3.084 1.559 1.937 1.858 2.422 1.605 1.791 1.907 2.051 1.989 2.021

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

110

The following three diagrams Fig. 2-4, are based on the
load forecasting results of July 1, 2007.

In Fig. 2, the dashed and the doted curves represent the
percentage of errors occurred by applying ANN and SA–
APSO methods respectively. ANN produces an average
error of 2.043 % with a maximum error of 6.295 %.
Whereas the proposed SA–APSO’s average error is
2.015 % and the maximum error is 6.248 %. In Fig. 3, the
dashed and the doted curves represent the absolute
percentage error distributions occurred by applying ANN
and SA–APSO methods respectively. The SA–APSO
curve shows that 60 % of the time the error is within 2%
whereas the error is within 35 % in case of only ANN In
Fig. 4, the curve shows how the error decreases in each
iteration of SA–APSO exploration.

4. Conclusion

In this paper, a hybrid approach SA–APSO is used to
design ANN architectures. SA–APSO can reduce the size
of the ANN successfully as it tries to replace proper
compensations at the time of each pruning or merging.
Combination of both impact factor and correlation
coefficient has ensured to reduce the size of ANN as much
as possible and attain near optimal ANN. Besides the
optimization of weight matrices by adaptive particle
swarm optimization is a real addition in designing ANN.
Through this optimization process the authors demonstrate
that the optimization of weight matrices possible even on a
trained ANN. Therefore this approach may be applied to
get better performance of a trained ANN. In the adaptive
PSO the authors consider two types of fitness for each
candidate solution which is a real contribution in PSO for
dealing ANN. This approach may be extended to apply on
other classification benchmark dataset to show its
effectiveness. In future the authors will try to show the
performance of this approach for different classification
benchmark datasets and other optimization problems. In
its current implementation, SA-APSO has a few user-
specified parameters although this is not unusual in the
field. These parameters, however, are not very sensitive to
moderate changes.ne of the future improvements to SA-
APSO would be reduce the number of parameters or make
them adaptive. In addition, the use of a different
significance criterion in the merging operation of SA-
APSO would also be an interesting future research topic.

References

[1] M.M. R. Reed, “Pruning Algorithms- A survey,” IEEE
Trans. on Neural Networks, vol. 4, pp. 740 – 747, 1993.

[2] A.P. Engelbrecht, “A New Pruning Heuristic Based on
Variance Analysis of Sensitivity Information,” IEEE Trans.
on Neural Networks, vol. 12, pp. 1386 – 1399, 2001.

Table IV: MAPE COMPARISON OF ANN AND SA–APSO FOR

JULY, 2007
Date Day ANN SA-APSO

July 01,07 Wed 2.291 1.989
July 02,07 Thu 3.077 2.932
July 03,07 Fri 1.530 1.446

..

July 29,07 Wed 8.434 8.467
July 30,07 Thu 4.889 4.713
July 31,07 Fri 2.708 2.544

Avg. 3.041 2.951
Best 0.999 0.935

Worst 8.434 8.467

Fig. 2: Error comparison of ANN and SA-APSO

Fig. 3: Absolute Percentage Error Distributions

Fig. 4: Improvement of NN training error using PSO

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

111

[3] C. Xiang, Q. Ding and T. H. Lee, ”Geometric Interpretation
and Architecture Selection of MLP,” IEEE Trans. on
Neural Networks, vol. 16, pp. 84 – 96, 2005.

[4] D. Sabo and X. H. Yu, “A new pruning algorithm for
neural network dimension analysis,” IEEE International
Joint Conference on Neural Networks, IJCANN 2008, pp.
3313 – 3318, Jun. 2008.

[5] H. Lee and C.H. Park, “A Pruning Algorithm of Neural
Networks using Impact Factor Regularization,” proc. of the
9th International Conference on Neural Information
Processing (ICONIP), vol. 5, pp. 2605 – 2609, 2002.

[6] D. S. Yeung and X. Q. Zeng, “Hidden neuron pruning for
multilayer perceptrons using a sensitivity measure,“ proc.
of the First International Conference on Machine Learning
and Cybernetics, Beijing, pp. 1751 – 1757, 2002.

[7] Suman Ahmmed, Md. Saifur Rahman, Md. Monirul Islam
“ADCSP – A New Approach for Designing Artificial
Neural Networks”, Proceedings of 9th International
Conference on Computer and Information Technology,
ICCIT ‘06, pp. 408– 413, Dec., 2006.

[8] T. Ash, “Dynamic neuron creation in back-propagation
networks,” Connection Science, vol. 1, pp. 365-375, 1989.

[9] M.A. Costa, A. Braga and B.R de Menezes, ”Constructive
and Pruning Methods for Neural Network Design,” proc. of
the VII Brazilian Symposium on Neural Networks, 2002,
pp.49 – 54, 2002.

[10] J. KeANNedy and R. C. Eberhart, “Particle swarm
optimization,” Proceedings of IEEE Int. Conf. Neural
Networks, vol. 4, pp. 1942–1948, Nov., 1995.

[11] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of
particle swarm optimization and back propagation as
training algorithms for neural networks,” proc. of the 2003
IEEE Swarm Intelligence Symposium, pp. 110 – 117, 2003.

[12] C. Zhang, H. Shao, and Y. Li, “Particle Swarm
Optimization for Evolving Artificial Neural Network,”
IEEE International Conference on Systems, Man and
Cybernetics 2000, vol. 4, pp. 2487 – 2490, 2000.

[13] B. Liu, L. Wang, Y. Jin, and D. Huang, “Designing neural
networks using hybrid particle swarm optimization,”
Advances in Neural Networks, vol. 3496, pp 391-397, 2005.

[14] T. X. Lun, L. Y. Guo, and Z. Ling, ”A hybrid particle
swarm algorithm for the structure and parameter
optimization of feedforward neural networks,” Advances in
Neural Networks, vol. 4493, pp 213-218, 2007.

[15] L. Prechelt, “Some notes on neural learning algorithm
benchmarking,” Neurocomputing, vol. 9, pp. 343 – 347,
1995.

[16] S. Ahmmed, D. M. F. Rahman, M. H. Khairul, A. Y. Saber,
M. Z. Rahman, “Computational Intelligence Approach to
Load Forecasting - a Practical Application for the Desert of
Saudi Arabia,” 12th International Conference on Computers
and Information Technology, 2009, ICCIT’09, pp. 290 –
296, 21 – 23 December, 2009.

Faisal Muhammad Shah was born in
Faridpur City, Bangladesh, on
Novembor 18, 1980. He received the
B.Sc. degree in Computer Science and
Engineering from Ahsanullah
University of Science and Technology,
Dhaka, Bangladesh, in 2002 and the
M.Sc. degree in Computer Science and
Engineering from United International
University, Dhaka, Bangladesh in 2010.

He is currently working as a faculty of the Computer Science and
Engineering Department, Ahsanullah University of Science and
Technology. His research interests include computational
intelligence, neural networks, optimization and their applications.

Md. Khairul Hasan was born in
Rajshahi City, Bangladesh, on
December 27, 1976. He received the
B.Sc. degree in Computer Science and
Engineering from Ahsanullah
University of Science and Technology,
Dhaka, Bangladesh, in 2000 and the
M.Sc. degree in Computer Science and
Engineering from United International
University, Dhaka, Bangladesh in 2010.
He is currently working as a faculty of

the Computer Science and Engineering Department, Ahsanullah
University of Science and Technology. His research interests
include computational intelligence, neural networks,
optimization and their applications.

Suman Ahmmed received the B.Sc.
and M.Sc. degrees from the
Computer Science and Engineering
Department at Bangladesh
University of Engineering and
Technology, Dhaka, Bangladesh, in
1997 and 2006, respectively. He is
currently an Assistant Professor of
Computer Science and Engineering
and the Director of Student Affairs at
United International University,

Dhaka, Bangladesh. His research interests are load forecasting,
optimization, neural networks, and optimization.

