
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

161

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

Mining Software Repositories – A Comparative Analysis

Sunday O. Olatunji, Syed U. Idrees, , Yasser S. Al-Ghamdi, Jarallah Saleh Ali Al-Ghamdi
King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia

Abstract
Despite of many Mining Software Repositories (MSR) tools in use, it is a relatively new research domain, which forms the
basis of classifying various tools and comparing them. In this paper we present a comparative analysis of different tools for
MSR, based on some existing and new criteria proposed in this paper. This will assist in determining an appropriate tool
that performs the best for a given type of application and to use it directly, instead of relying on the usual trial-and-error
approach. This work has several purposes; it acts as a formative evaluation mechanism for tool designers (by quickly
understanding and comparing different tools), as an assessment tool for potential tool users (by simply going through the
comparative analysis chart to know at a glance, the essential components needed to be incorporated into the intended tool)
and as a comparative milestone so that MSR tool researchers can easily differentiate amongst a pool of tools, thereby
identifying other new research avenues. The tabular presentation furthers the work by providing a quick index to the reader
and a means for quick analysis of the desired tool.
Key word: Mining, Software, Repositories

1. INTRODUCTION

In most projects collaborative documents or artifacts are
collected and archived in software repositories: For open
source projects, communications between the developers
are stored in mailing lists, newsgroups, and personal
archives. Changes to the source code of software are
recorded in version archives such as CVS. Failures and
feature requests are submitted to and discussed in the issue
tracking systems such as Bugzilla. Explicit knowledge
such as documentation and design documents are
published on the websites and the likes. Recently a new
research area evolved, that mines these software
repositories. Several tools have been developed to
facilitate mining software repositories. In this paper, we
will present a comparative analysis of some MSR tools
[AHME 04].
We utilized a comparative analysis criteria derived from a
framework for the comparison proposed in [STOR 05] and
[DANI 05] for different MSR tools and now suggest
additional criteria to compare some new tools as an
extension of the earlier cited paper. This comparative
analysis is further enhanced by using a tabular
presentation to provide a quick glance index to the reader
and a means for quick analysis of the desired tools [DANI
05]. The whole of this paper is organized as follows:

 Section 1 contains the general introduction to the
work and the organization of the entire paper into sections.

 Section 2 provides background information and
brief literature survey of researches on MSR.

 Section 3 consists of the proposed comparative
analysis along with the methodology adopted.

 Section 4 concludes the research work and
suggests possible future work.

2. BACKGROUND

Mining Software Repositories is an active research area
that utilizes Data Mining techniques to software projects’
historical data in order to better understand the software
development. This understanding can assist us in guiding
and enhancing the software development process and
methods.
Software projects accumulate a wealth of information over
projects’ lives, which can shed light on software
engineers’ coding habits that would cause defects or
indicate a developer’s special proficiency. It would allow
us to improve change management and locate change
patterns throughout source code files.
For software projects, data that is of interest for MSR are
collected, either casually in:

• Mailing Lists
• Newsgroups
• Personal Archives, etc.

Or systematically in version archives like:

• Issue Tracking Systems (Examples of such
systems are Bugzilla, GNATS for issue tracking,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

162

and CVS, Rational ClearCase for source control
and version tracking)

Mining Software Repositories’ active research areas
include [PROC 05]:

• Approaches, applications, and tools for software
repository mining

• Quality aspects and guidelines to ensure quality
results in mining

• Proposals for exchange formats, meta-models
and infrastructure tools to facilitate the sharing of
extracted data and to encourage reuse and repeatability

• Models for social and development processes that
occur in large software projects

• Search techniques to assist developers in finding
suitable components for reuse

• Techniques to model reliability and defect
occurrences

• Analysis of change patterns to assist in future
development

• Case studies on extracting data from repositories
of large long lived projects

• Other interesting and novel applications of mined
data

3. METHODOLOGY

We present our chosen criteria for comparing MSR tools
followed by the actual comparison [STOR 05] that forms
the basis of our research work.

3.1 COMPARISON CRITERIA

Following nine are the criteria, upon which the
comparison of our MSR tools would base:

• Intent
• Information
• Presentation
• Interaction
• Effectiveness

The above five criteria have been used to compare some
MSR tools in a recent research [STOR 05] while in
[DANI 05] the following one is touched along with the
extension of the first two criteria of the earlier cited
research:

• Infrastructure

However, we enhance the work by not only comparing
various new tools in the light of the above six criteria, but

also show a comparative analysis of these new tools on the
basis of out newly proposed three more criteria. Together
with the usage of different tools and different criteria, our
contribution is easily reflected. The three new criteria we
proposed are:

• Input data required
• Language dependency
• Availability

In all, these criteria serve to provide a quick glance index
to the reader and a means for quickly finding more
information about a tool when needed. We discuss these in
brief now:

3.1.1 Intent

“Intent” is all about who are the expected users of the tool
(Role), time and cognitive support [STOR 05].
(i) Role: This dimension identifies who will use the tool.
Roles include managers, developers, testers, maintainers,
documenters, reverse engineers, reengineers and
researchers.
(ii) Time: Tools may be classified on the basis of time, as
to be past, present or future depending on whether it
provides information about activities occurring in the
distant or near past, present, or future.
(iii) Cognitive Support: Cognitive Support describes how
a tool can help improve human cognition [WALE 03]. The
questions that various roles can ask about developer
activities can be roughly classified into four categories,
which are authorship, rationale, chronology, and artifacts.

3.1.2 Information

“Information” describes the specific sources that the tool
mines and the type of analysis it makes. This dimension is
elaborated in more detail as it is most relevant to MSR
[STOR 05].

(i) Change Management: Configuration management
tools provide support for building systems by selecting
specific versions of software artifacts [GRUN 01].
Version control tools contribute to software projects
through software artifact management, change
management and team work support [WU 04]. Change
management is an important data source because it
provides traceability: it records who performed a given
change, and when it was performed. The capabilities of
the change management system will determine the type of
information that can be extracted.

(ii) Program Code: MSR tools are classified into two
categories based on how they treat the file (i.e. source
code). These are:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

163

a) Programming-Language-Agnostic tools (which
treat the file as a unit and make no effort to understand its
contents)

b) Programming-Language-Aware tools (these
tools attempt to do some fact extraction from the source
code). The PLA tools are further classified based on the
language supported, syntactic analysis and semantic
analysis as follows:

• The Language Supported: Given the differences

in syntax and grammar, tools that are language-specific
can only understand a fixed set of programming languages.
Thus MSR tools can be classified based on the language
supported

• Syntactic Analysis: In this type of analysis the
extractor does not need to understand what the code does,
only its syntax. Examples of this analysis are the removal
of comments from the source code (to be able to
distinguish if the changes affected actual source code or
only its documentation), and extraction of the main
entities of the code (such as packages, classes, methods,
functions, etc.)

• Semantic Analysis: This analysis requires an
understanding of the intent of the source code and can be
done dynamically (by running the software under well
defined test-cases) or statically (by processing the source
code)

(iii) Defect Tracking: Many larger software projects rely
on tracking tools to help with the management of defects
and change requests. Such systems often store metadata
about who is assigned a task and track the task’s
completion. In some cases a defect management tool is
also used as a way to track activities and changes in
requirements.

(iv) Correlated Information: The type of analysis and
correlation can be classified into two broad categories:

a) Within the Data Source: This type of analysis
uses data from one data source only and attempts to
correlate different data entities within it

b) Between the Data Sources: In this type, tools
correlate entities from two different data sources.

(v) Informal Communication: Email is undoubtedly the
most widely used form of computer-mediated
communication, and distributed software development
projects rely on it extensively. In the early days of open-
source software, a project mailing list used to be one of
the first, and often the only, communication and
coordination mechanism used by development teams
[CUBR 99], but email remains an essential component of
distributed development process.

(vi) Local History: Schneider et al. describes how local
interaction histories can be mined to support team
awareness [SCHN 04]. They proposed that sharing local
interactions among team members can benefit the
following activities:

• Coordinating team member activities such as
undo, identifying refactoring patterns and
coordinating refactoring operations

• Mining browsing patterns to identify expertise
• Project management

3.1.3 Presentation

“Presentation” refers to how the tool or the proposed tool
presents the extracted and derived information to the
various user roles [STOR 05]:
(i) Form: The tool may present awareness information
using a combination of text, hypertext or graphics.
(ii) Kinds of Views: Many tools provide awareness
information in the form of annotations on existing views
in a software environment. They may use visual variables
or icons to emphasize the owner, state or history of a
software artifact.

• Statistical Views (bar charts, histograms, etc.)
provide comparison and analysis of human
activity information

• Graph Views can also be used to display
relationships between human and software
artifacts

• Special Views customized; provided by some
tools, to provide cognitive support for particular
information seeking or understanding tasks (e.g.
a special view is a matrix view which may be
used to show trends and evolution patterns)

•
(iii) Techniques: Whether the tool provides annotations
on existing views or specialized views, they will both use
some visual variables such as color, position, size,
transparency and map those to appropriate human activity
attributes. Animation or motion can also be used
effectively. Finally, we consider tools which rely on either
user or tool-generated abstractions in communicating
awareness information.

3.1.4 Interaction

“Interaction” refers to the interactivity and life of the tools
[STOR 05]:

(i) Batch / Live: An important consideration is whether
the tool operates offline or online [FROE 04]. Some
offline tools require that the users write scripts to batch
queries on a repository of information. The tool then

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

164

displays the queried information using static graphs. Other
tools are online and provide updated displays of the
information to the users on demand.

(ii) Customization: Effective interaction to suit particular
user needs will normally require a high degree of
customization. This characteristic addresses whether the
available views can be further manipulated and to what
extent they can be customized. Saving customizations and
sharing customizations across team members may also be
important.

(iii) Query mechanism: Some tools require special
purpose languages to specify queries. Others allow the
user to visually specify the queries through the use of
specialized filter widgets (e.g. double sliders, checkboxes,
etc.) or by interacting with the visualization directly (such
as selection or brushing).

(iv) View Navigation: How the user navigates the
displayed information is important, especially for tools
with specialized views. Successful navigation requires that
the user maintains orientation so that they know where
they are and can decide where to go next. The use of an
overview for detailed views can be used to provide
orientation and to directly support navigation in the
information space. Navigation can alternatively be
supported by a zoom-able user interface and hypertext.
Another important consideration is that the user may need
to compare two views side-by-side. The facility to see
multiple views at once provides cognitive support [WALE
03] as it reduces the memory load on the user and
redistributes some of the required cognition from the user
to the tool. To improve the usefulness of multiple views,
views should be coupled.

3.1.5 Effectiveness

“Effectiveness” captures the feasibility of the proposed
approach, whether it has been evaluated and whether it has
been deployed:

(i) Status: Some researchers propose approaches that have
not yet been implemented. This characteristic captures
robustness of the tool and checks whether the system has
been partially or fully implemented. Tool availability is
also important so that other tool designers and researchers
can evaluate it. The interoperability issue is also very
important [FROE 04]. For scalability we must consider if
the tool supports large software projects. If the technique
does not appear to scale, it may
be the implementation which does not scale rather than the
technique.

(ii) Cost: The adoption of any tool has a cost associated
with it. Economic Cost is a key concern, in addition to
other costs such as the cost of installing the tool, learning
how to use it and the costs incurred during its usage.

(iii) Evaluation: A tool that has been formally evaluated
and compared to other approaches will more likely be
adopted than one that has not. It is very common for these
tools to be evaluated by the designers through informal
case studies. The complexity and size of the software in
the case study is very important to consider. When a new
tool has been evaluated with users other than the tool
designers (i.e. in user studies), coincidence in the tool's
benefits will be further increased. If the tool has been
deployed and subsequently adopted, then the tool has been
evaluated through its usage. The rate of adoption can be an
important indicator of the usefulness of a tool. However,
lack of adoption does not necessarily imply that the tool is
not effective as adoption is affected by many forces.

Infrastructure
“Infrastructure” addresses any special needs that the tool
has. It addresses the environment needed to support the
tool. We further categorize our criteria as [DANI 05]:

(i) Required Infrastructure: This category lists any
requirement the tools have, such as a given operating
system, an IDE such as Eclipse, a Web server and client, a
database management system, etc.

(ii) Online / Offline: These tools can be classified
depending upon whether the software repository is
required during its operation. For instance, some tools
mine a software repository ahead of time while others
query the repository as a result of a user request.

(iii) Storage Backend: If the tool operates offline, this
category is used to describe how it stores its required data.
Examples of backend that are commonly used include
SQL backend and XML or a proprietary format.

Input Data Required
This is an important criterion when a particular tool is
considered. It indicates to a new user what data he/she
must have in order to be able to use the tool [GRIG 07].
Generally the tools require CVS transactions, text
documents, etc. as input.

Language Dependency
The theoretical part of each tool is its independence from
the language used (either programming or natural).
However, a variety of tools are language dependent,
restricting the usage, e.g. an English-language dependent

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

165

tool cannot be used for a system whose requirements are
written in French or Italian [GRIG 07].

Availability
The availability of the MSR tools is a very important issue
for new users or the one who tries to compare different
tools. Most of the existing ones are publicly available, so
that people can use them easily.

3.2 COMPARATIVE ANALYSIS OF MSR TOOLS

We present in this section the actual comparative analysis
of different MSR tools using the comparison criteria
presented earlier. The tools evaluated here are by no
means exhaustive rather the tools presented here are a
representative set of available tools.

SOFTCHANGE

Intent: The main goal of SOFTCHANGE is to help
programmers, their managers and software evolution
researchers in understanding how a software product has
evolved since its conception. With respect to the time,
SOFTCHANGE concentrates only on the past. In terms of
cognitive support, it allows one to query about who made
a given change to a software project (authorship), when
(chronology) and whenever available, the reason for the
change (rationale). The artifacts that SOFTCHANGE
tracks are files and some types of entities in the source
code (such as functions, classes, and methods) [STOR 05].
Information: SOFTCHANGE extracts and correlates three
main sources of information: the version control system
(CVS), the defect tracking system (Bugzilla) and the
software releases. SOFTCHANGE reconstructs some of
the information that is never recorded by CVS (such as
recreating commits) and it does syntactic analysis of the
source code. The analysis is static and it supports C/C++
and Java. SOFTCHANGE also attempts to correlate
information between CVS and Bugzilla using defect
numbers [STOR 05].
Presentation: SOFTCHANGE is composed of a hypertext
component and a graphical component. The hypertext
component allows the users to navigate, search and
inspect, for a given change, who made it and when, the
files were modified, why the change occurred and when
applicable, the defect that was fixed. The graphical
component provides two types of views:

(1) It calculates statistics and presents them in
histograms where the horizontal axis is usually
time, and therefore provides an overview of the
evolution of the project

(2) It provides graphs that show files, authors and
their interrelationships (such as which files have
been modified together, or which authors modify

which files). Figure 1 shows this in detail [STOR
05].

(3)

Figure1: A graph created by SOFTCHANGE

Interaction: SOFTCHANGE’s hypertext interface allows
the user to freely navigate and search the information
space. The graphical views in SOFTCHANGE are
generated in batch mode and the user is allowed to specify
some parameters for their creation [STOR 05].

Effectiveness: SOFTCHANGE has been used by its
authors in studies of software evolution and in the analysis
of global software development practices in large open
source projects. No formal user testing has been
performed. It is available on request [STOR 05].

Infrastructure: SOFTCHANGE is an offline tool that
uses an SQL database for its storage needs. Its mining is
done without any special requirements beyond access to
the software repository. Since SOFTCHANGE could
retrieve a very large amount of data, it was recommended
that it operate on a local copy of the repositories (rather
than query the repositories using the Internet, consuming
their bandwidth and computer resources). SOFTCHANGE
has two different front ends; Web- Based and Java
application [STOR 05].

Input Data Required: The input data for SOFTCHANGE
is in the form of an extraction from the metadata from
CVS and Bugzilla. It then performs the correlation to the
collected data [STOR 05].

Language Dependency: SOFTCHANGE is language-
dependent, restricting its usage. It is an English-language
dependent tool which cannot be used for a system whose

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

166

requirements are written in any other language other than
English [STOR 05].

Availability: SOFTCHANGE has two different front-ends
[URL 1]:

(1) Web-Based
(2) JAVA Application

HIPIKAT

Intent: HIPIKAT can be viewed as a recommender
system for software developers, which draws its
recommendations from a project’s development history
[CUBR 04]. The tool is in particular intended to help
newcomers to a software project. Therefore, in terms of
the time dimension, it is concentrated on the past.
Cognitive support is largely limited to answering
questions about rationale and artifacts. In terms of user
roles, HIPIKAT is targeted almost exclusively at
developers and maintainers [DANI 05].

Information: HIPIKAT is designed to draw as many
information sources as possible and identify relationships
between documents both of same and different types. The
information sources that are currently supported by
HIPIKAT are Version Control System (CVS), Issue
Tracking System (Bugzilla), Newsgroups and Archives of
Mailing Lists, and the Project Web Site. All four of these
sources are typically present in large open-source software
projects. HIPIKAT is programming language-agnostic.
The only information that it collects from files in the
version control system is versioning data, such as author,
time of creation and check-in comment. HIPIKAT
correlates information across sources using a set of
heuristics, such as matching for bug-id in version check-in
comment to link file revisions in CVS and bug reports in
Bugzilla. These heuristics are based on observations of
development practices in open source projects like
Mozilla. Another method that HIPIKAT uses to find
documents that are related is by textual similarity [DANI
05].

Presentation: HIPIKAT is a GUI-based tool. Figure 2
shows a snapshot after installation [URL 2].

Interaction: The basic user interface of HIPIKAT is very
simple, if it’s possible to make a query on something on
screen, there will be an option "Query Hipikat" in the
right-click menu. E.g. HIPIKAT knows about files in the
CVS. Therefore, a right-click on any versioned file in the
Navigator, Package Explorer, or CVS Repositories view,
even on a revision in the CVS Resource History view can
select "Query Hipikat" from the context menu, as can be
seen [URL 2].

Effectiveness: HIPIKAT also has a Bugzilla Search tab
added to the Eclipse Search pane. The users can enter a
bug ID or keywords in the text field and, if desired, limit
the search by selecting particular attributes within the
middle section of the search pane. Pressing Enter or
clicking "Search" proceeds [URL 2].

Infrastructure: Repository mining in HIPIKAT works in
offline mode: HIPIKAT periodically checks project
repositories for recent changes and updates its model. The
model is stored in an SQL database. The front end is an
Eclipse plug-in, although in principle it could be
implemented for other environments, as long as it follows
the communication protocol with the HIPIKAT server
[DANI 05].

Figure 2: GUI-based HIPIKAT

Input Data Required: The only input data for HIPIKAT is
from the files in the CVS through versioning data, such as
author, time of creation and check-in comment [DANI 05].

Language Dependency: HIPIKAT is language-dependent,
restricting its usage. It is an English-language dependent
tool which cannot be used for a system whose
requirements are written in any other language other than
English [DANI 05].

Availability: HIPIKAT has a front-end in ECLIPSE Web-
Based, although in principle, it could be implemented for
other environments, too [URL 2].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

167

DYNAMINE

Intent: The name DYNAMINE comes from the
combination of Dynamic Analysis and Mining revision
histories. DYNAMINE is a tool for discovering
application-specific code change patterns and detecting
their violations in large software systems where it is
proved that violations of coding rules are responsible for a
numerous number of errors. Violation of application
specific coding rules is called error patterns [BENJ 05].

Information: DYNAMINE can be applied in code
revision history such as CVS to find highly correlated
method calls as well as common bug fixes in order to
automatically discover application-specific coding
patterns. Potential patterns discovered through mining are
passed to a dynamic analysis tool for validation; finally,
the results of dynamic analysis are presented to the user.
DYNAMINE adapts dynamic analysis by looking for
pattern violations at runtime [BENJ 05].

Presentation: DYNAMINE when applied to new
applications involves mining and dynamic program testing
steps which are accessible to the user from within custom
ECLIPSE views. A diagram representing the architecture
of DYNAMINE is shown below in the Figure 3 [BENJ
05].

Figure 3: Architecture of DYNAMINE

Interaction: The DYNAMINE, a tool for learning
common usage patterns from the revision histories of large
software systems interacts through methods and calls by
virtue of which any method can learn both simple and
complicated patterns, scale to millions of lines of code and
can be used to find more than 250 pattern violations
[BENJ 05].

Effectiveness: The mining approach of DYNAMINE is
effective at finding coding patterns as it is the first tool
that combines revision history information with dynamic
analysis for the purpose of finding software errors [BENJ
05], specifically using the Eclipse views.

Infrastructure: DYNAMINE can be setup to be used
dynamically to discover usage patterns at run time or

statically to discover in historical data. In static setup,
applying DYNAMINE requires passing through pre-
processing step, then an optimization is applied to reduce
time and eliminate noise and then actual data mining is
applied. DYNAMINE’s Eclipse plug-in is used to present
mining results to the user [BENJ 05].

Input Data Required: For a given source file revision, a
transaction is a set of methods, calls to which are inserted.
These together serve as the input to the DYNAMINE
[BENJ 05].

Language Dependency: DYNAMINE is language-
independent, allowing its wide-spread usage. It can be
used for any system whose requirements are written in any
other language other than English [BENJ 05].

Availability: The analysis of Eclipse and jEdit, two
widely-used, mature, highly extensible applications by
mining revision histories, to find dynamic valid patterns
shows that the use of DYNAMINE is still available for
cross-over projects between the areas of revision history
mining and bug detection [BENJ 05].

KENYON

Intent: KENYON objective is to facilitate and speed up
the software evolution research by providing a common
framework that can be used to extract facts and apply any
analysis method on any of the supported Source Control
Management (SCM) systems [BEVN 05].

Information: KENYON is designed to support reading
data from any SCM system; however it currently supports
CVS, Subversion and ClearCase SCM systems. After
KENYON automatically retrieves data from an SCM
system, data is written to the file system and then fact
extraction is done by subclasses specified by the user.
These subclasses are the means by which external,
analysis-specific, fact extraction tools interface with
KENYON [BEVN 05].

Presentation: KENYON allows researchers to store the
extracted facts in flexible data structures that can be easily
used to compare different research results. Regarding
time, KENYON reads historical data form SCM Systems
[BEVN 05].

Interaction: KENYON supports data sampling at specific
time interval and it can be set to perform sampling
periodically. Also, it can be used to process historical data
and it supports incremental update for processed data
therefore it can keep up with ongoing development
[BEVN 05].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

168

Effectiveness: KENYON also reads the database
configurations from the Object-Relational Mapping
properties’ file. KENYON saves the extracted facts into a
relational database using an Object Relational Mapping
(ORM) system [BEVN 05].

Infrastructure: KENYON works asynchronously, with
minimum interaction from the user. The main module, and
execution entry point is called the “Data Manager Class”
which calls configuration reading, fact execution, and
object storage methods. Configuration settings are
provided through configuration file which is a text file that
indicates the names of the data sources, settings selections
and third-party tools to be invoked on each configuration
[BEVN 05].

Input Data Required: KENYON supports multiple types
of data from different types of systems with varying sizes
and domains [BEVN 05].

Language Dependency: KENYON is language-
independent, allowing its wide-spread usage. It can be
used for any system whose requirements are written in any
language like Chinese, Japanese, English, etc. [BENJ 05].

Availability: KENYON is ideally available in a web-based
downloadable format to facilitate several common
processing platforms and provide effective and helpful
documentation o its intended audience [BEVN 05].

CHIANTI

Intent: CHIANTI is a plug-in for the Eclipse environment
and intended to assist programmers estimating the effect
of code change for Java programs. CHIANTI can be used
as a debugging tool by using it to isolate the change that
caused a test case to fail [XIAO 05].

Information: A Typical scenario of a CHIANTI session
begins with the programmer editing the current project,
extracting the latest stable version of this project from
CVS repository into the workspace. The programmer then
starts the change impact analysis launch configuration,
and selects these two projects of interest as well as the test
suite associated with these projects [XIAO 05].

Presentation: The CHIANTI shows all the tests in a tree
view and each affected test can be expanded to show its
set of affecting changes. Each affecting change is an
atomic change that can be expanded on demand to show
its prerequisite changes. By clicking on an atomic change
the Eclipse Java IDE opens the associated program
fragment. This quickly provides an idea of the different
threads of changes that have occurred [XIAO 05].

Interaction: CHIANTI is intended for interactive use,
however instead of comparing the current version with its
local history it requires two versions of a program which
are saved in two separate Java projects [XIAO 05].

Effectiveness: CHIANTI analyzes two versions of an
application and then decomposes the differences as a set
of atomic changes and report the change impact in terms
of test cases which is affected by the change, also for each
affected test CHIANTI also determines a set of affecting
changes that were responsible for the test’s modified
behavior [XIAO 05].

Infrastructure: CHIANTI is designed as an Eclipse plug-
in. It can be conceptually divided into three functional
parts.
The first part is responsible for deriving the set of atomic
changes from the two versions of the Java project.
The second part analyzes the affected tests and their
affecting changes by reading “test call graphs” for the
original and edited projects.
The third part is responsible of visualizing the results of
the change impact analysis. Then analysis results and both
atomic change information and call graphs are stored as
XML files [XIAO 05].

Input Data Required: CHAINTI requires calls from the
program written in Eclipse, a Java Plug-in [XIAO 05].

Language Dependency: CHAINTI is language-dependent
as it has been integrated closely with the Eclipse, a Java
Plug-in [XIAO 05].

Availability: After the experimentation results were made
accurate in 2002, it is also available over the web.

APFEL

Intent: APFEL is an Eclipse plug-in, and the word
APFEL means apple in Dutch and short for “A
Preprocessing Framework for Eclipse (and CVS)”.
Researchers and Software Engineers that use tools such as
HIPIKAT and eROSE can use the results of the analysis
form APFEL for further analysis. APFEL tokenizes source
[THOM 06].

Information: APFEL analyzes the changes on token level
and represents the syntactic properties of the token such as
type, name, context, and instance. Tokens such as method
calls, variable usage, exception handling, and important
class, can be used to distinguish changes from one version
to another [THOM 06].

Presentation: APFEL aims to provide a fine grained
analysis of the change in source code stored in CVS
archive [THOM 06].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

169

Interaction: APFEL processes one source file at a time
[THOM 06].

Effectiveness: Different types of changes are
distinguished by APFEL, such as modification / addition /
deletion of an element. APFEL processes one source file
at a time [THOM 06].

Infrastructure: APFEL stores the results of the analysis in
a database, and it works as a plug-in for Eclipse, however,
every time Every time APFEL processes a CVS repository
it recreates the database. In order to use APFEL it requires
Eclipse to be running [THOM 06].

Input Data Required: APFEL requires calls from the
program written in Eclipse, a Java Plug-in [THOM 06].

Language Dependency: APFEL is language-dependent as
it has been integrated closely with the Eclipse, a Java
Plug-in [THOM 06].

Availability: Since APFEL is built upon the Eclipse
infrastructure for CVS and Java, it can also be found on
the [THOM 06].

3.3 TABULAR PRESENTATION OF
COMPARISONS

(Table 1) INDEX OF MSR TOOLS

SC SOFTCHANGE [DANI, 05]

HP HIPIKAT [DANI, 05]

DM DYNAMINE [BENJ, 05]

 INC Incremental

KY KENYON [BEVN, 05]

RD Relational Databases

ORM
Object Relational Mapping

Systems

HIB
Hibernate 2.1.6 (KY’s

current ORM System)

CH CHIANTI [XIAO, 05]

AP APFEL [THOM, 06]

(Table 2) LEGENDS

DVL Developers

MNT Maintainers

REE Reverse Engineers & Reengineers

MNG Managers

TST Testers

DOC Documenters

RSR Researchers

PS Past

PR Present

FU Future

AU Authorship

RA Rationale

CN Chronology

AR Artifacts

PLAG Programming Language Agnostic

PLAW Programming Language Aware

TLS The Language Supported

SYA Syntactic Analysis

DY Dynamically

SY Statically

SEA Semantic Analysis

WDS Within the Data Source

BDS Between the Data Source

EM Electronic Mails

ML Mailing Lists

CVS Version Control System

ITS Issue Tracking System (Bugzilla)

SR Software Releases

NWG Newsgroups

AML Archives of Mailing Lists

PWS The Project Website

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

170

(Table 3) COMPARISON OF MSR TOOLS BY INTENT CRITERION

Tools→ SC HP DM KY CH AP
R

ol
e

DVL
MNT
REE

MNG

TST

DOC

RSR

Ti
m

e

PS
PR

FU

C
og

ni
tiv

e
Su

pp
or

t

AU

RA

CN
AR

(Table 4) COMPARISON OF MSR TOOLS BY INFORMATION CRITERION

Tools → SC HP DM KY CH AP

Change
Management

Pr
og

ra
m

 C
od

e PL
A

G

PL
A

W

TLS
SYA DY

SY
SEA DY

SY

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

171

Defect Tracking
C

or
re

la
te

d
In

fo
rm

at
io

n WDS

BDS

In
fo

rm
al

C

om
m

un
ic

at
io

n

EM

ML

Local
History

In
fo

rm
at

io
n

So
ur

ce
s

Su
pp

or
te

d

CVS
ITS

SR
NWG
AML
PWS

(Table 5) COMPARISON OF MSR TOOLS BY PRESENTATION CRITERION

To
ol

s ↓

SC HP DM KY CH AP

Fo
rm

s

K
in

ds
 o

f
V

ie
w

s

Te
ch

ni
qu

es

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

172

(Table 6) COMPARISON OF MSR TOOLS BY INTERACTION CRITERION
To

ol
s ↓

SC HP DM KY CH AP

B
at

ch
 /

Li
ve

C
us

to
m

iz
ab

le

Q
ue

rie
s

INC

INC

N
av

ig
at

io
n

XML RD
ORM Hib

XML

OS-DB

(Table 7) COMPARISON OF MSR TOOLS BY EFFECTIVENESS CRITERION

To
ol

s ↓

SC HP XC DM KY CH AP

St
at

us

Ev
al

ua
tio

n

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

173

(Table 8) COMPARISON OF MSR TOOLS BY INFRASTRUCTURE CRITERION
To

ol
s ↓

SC HP DM KY CH AP

R
eq

ui
re

d
in

fr
as

tru
ct

ur
e

O
nl

in
e

O
ff

lin
e

INC

INC

St
or

ag
e

B
ac

ke
nd

SQL

XML RD
ORM Hib

XML

OS-DB

(Table 9) COMPARISON OF MSR TOOLS BY INPUT DATA REQUIRED, LANGUAGE DEPENDENCY &

AVAILABILITY CRITERA

Tools → SC HP DM KY CH AP

Input Data
Required

Extraction
of the

metadata
from CVS
& Bugzilla

From the
files in the

CVS
through

versioning
data

Transaction,
a set of

methods &
calls to be
inserted

Multiple
types of

data from
different
types of
systems

Calls
from the
program
written in
Eclipse

Calls from
the program
written in
Eclipse

Language
Dependent YES YES NO NO YES YES

Availability
Web-

based &
Java

Web-
based

Eclipse

Web-based
Eclipse &

jEdit

Web-
based

Web-
based

Web-based
Eclipse

infrastructure
for CVS and

Java

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

174

4. CONCLUSION

We presented a comparative analysis of different tools for
MSR, based on six existing criteria and three new
proposed criteria. These three new criteria were the
extensions to the previous ones. Tabular presentation has
improved the comparative analysis by providing a quick
glance index to the reader and a means for swift analysis of
the desired tools. This research work is advantageous in
that it helps individuals and tool designers to quickly
understand and compare different tools and assists users to
swiftly assess a potential tool rather than depending on
trial-and-error approach. Though the MSR tools evaluated
here are by no means exhaustive, yet they are a
representative set of available tools. MSR is still a new
research area yearning for more research work, particularly
as relates to the tools.

REFERENCES
[1] Ahmed E. Hassan, Mining Software Repositories to Assist

Developers and Support Managers, PhD. Thesis, School of
Computer Science, University of Waterloo, Waterloo,
Canada, 2004 aeehassa@plg.uwaterloo.ca

[2] Benjamin Livshits, Thomas Zimmermann, DynaMine:
Finding Common Error Patterns by Mining Software
Revision Histories, ESEC-FSE, ACM, September 2005

[3] J. Bevan, E. J. White head, Jr., S. Kim, and M. Godfrey,
Facilitating Software Evolution with KENYON, In the
proceedings of the 2005 European Software Engineering
Conference and 2005 Foundations of Software Engineering
(ESEC/FSE 2005), Lisbon, Portugal, pp. 177-186, 2005
Mining Software Repositories,
http://msr.uwaterloo.ca/msr2006

[4] D. Cubrani’c, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: A case study for software
development. In proceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 82–91, 2004.

[5] D. Cubrani’c and K. S. Booth. Coordinating open-source
software development. In 8th IEEE International Workshop
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Pages 61–65, 1999

[6] Daniel M. German, Davor Cubrani’c, Margaret Anne D.
Storey. A Framework for Describing and Understanding
Mining Tools in Software Development. This framework
msr.uwaterloo.ca/msr2005/papers/36.pdf

[7] FROEHLICH, J., AND DOURISH, P. 2004, Unifying
artifacts and activities in a visual tool for distributed
software development teams. In the Proceedings of the 26th
International Conference on Software Engineering (ICSE,
2004), 387-396

[8] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using SOFTCHANGE. In the
Proceedings of the 16th International Conference on
Software Engineering and Knowledge Engineering (SEKE
2004), pages 336–341, 2000

[9] Grigoreta Sofia Cojocar, Gabriela Serban. On Some Criteria
for Comparing Aspect Mining Techniques, Workshop 2007
March 12-13, 2007 Vancouver, British Columbia, Canada,
ACM

[10] J. C. Grundy. Software architecture modeling, analysis and
implementation with SoftArch. In the Proceedings of the
25th Hawaii International Conference on System Sciences,
Page 9051, 2001

[11] Proceedings of the 2nd International Workshop on Mining
Software Repositories, MSR 2005

[12] K. Schneider, C. Gutwin, R. Penner, and D. Paquette.
Mining a software developer’s local interaction history. In
proceedings of 1st International Workshop on Mining
Software Repositories, 2004

[13] M. A. Storey, D. Cubrani’c, D. M. German. On the use of
visualization to support awareness of human activities in
software development: a survey and a framework. In the
Proceedings of the 2nd ACM Symposium on Software
Visualization, 2005

[14] Sunghun Kim, Thomas Zimmermann, Miryung Kim,
Ahmed Hassan, Audris Mockus, Tudor Girba, Martin
Pinzger, E. James Whitehead, Jr., Andreas Zeller, TA-RE:
An Exchange Language for Mining Software Repositories.
MSR, May 22-23, 2006, Shanghai, China

[15] Fine-grained processing of CVS archives with APFEL,
Thomas Zimmermann, Saarland University, Saarbrücken,
OOPSLA Workshop on Eclipse Technology eXchange
Proceedings of the 2006 OOPSLA Workshop on Eclipse
Technology eXchange, Portland, Oregon, Pages: 16–20,
2006, ISBN:1-59593-621-1, ACM Press

[16] http://libresoft.urjc.es/Tools/SoftChange
[17] http://www.cs.ubc.ca/labs/spl/projects/hipikat/documentatio

n.html
[18] A. Walenstein. Observing and measuring cognitive support:

Steps toward systematic tool evaluation and engineering. In
the Proceedings of the 11th International Workshop on
Program Comprehension (IWPC, 2003), pages 185–195

[19] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse
engineering approach to support software maintenance:
Version control knowledge extraction. In the proceedings of
the 11th Working Conference on Reverse Engineering, pages
90–99, 2004

[20] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder,
Ophelia Chesley. CHIANTI: A Tool for Change Impact
Analysis of Java Programs. In the Proceedings of the 27th
International Conference on Software Engineering, 2005

[21] Zhang, Dhaval Sheth. Mining Software Repositories for
Model-Driven Development. Yuefeng Motorola, January /
February 2006, IEEE SOFTWARE

