
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 239

Abstract
Assessing software security involves steps such as code review,

risk analysis, penetration testing and fuzzing. During the fuzzing

phase, the tester‟s goal is to find flaws in software by sending

unexpected input to the target application and monitoring its

behavior. In this paper we introduce the AutoFuzz [1] -

extendable, open source framework used for testing network

protocol implementations. AutoFuzz is a „smart‟, man-in-the-

middle, semi-deterministic network protocol fuzzing framework.

AutoFuzz learns a protocol implementation by constructing a

Finite State Automaton (FSA) which captures the observed

communications between a client and a server [5]. In addition,

AutoFuzz learns individual message syntax, including fields and

probable types, by applying the bioinformatics techniques of [2].

Finally, AutoFuzz can fuzz client or server protocol

implementations by intelligently modifying the communication

sessions between them using the FSA as a guide. AutoFuzz was

applied to a variety of File Transfer Protocol (FTP) server

implementations, confirming old and discovering new

vulnerabilities.
Key words:

Automated Fuzzing, Software Security, Vulnerability Detection

1. Introduction

1.1 Background

Flaws in the implementations of network protocols are

some of the most serious security problems. One such flaw

could allow a malicious user to attack vulnerable systems

remotely over the Internet. Approximately 85% of all

vulnerabilities reported by the National Vulnerability

Database [15] in the last 3 years can be exploited

remotely.

A fuzzer is a tool used to discover implementation flaws

by sending the target implementation unusual inputs in

hopes of producing unexpected behavior. A protocol

fuzzer can be classified as 'smart' or 'dumb' depending on

its knowledge of the network protocol implemented by its

targets. A 'dumb' fuzzer sends random inputs to its target.

It has no knowledge of the communication protocol

implemented by the target. „Dumb‟ fuzzers are easy to

develop and are immediately applicable to any protocols

clients or servers. However, 'dumb' fuzzing is measured to

be 50% less effective than 'smart' fuzzing [11]. One

example of a 'dumb' fuzzer is ProxyFuzz [17]. ProxyFuzz

is a man-in-the-middle non-deterministic network fuzzer.

It randomly changes the network traffic [17] between a

connected client and server. Fuzzers of the second type,

'smart' fuzzers, have a pre-programmed understanding of

the protocol implemented by the targets they fuzz. They

typically understand the protocol‟s state machine,

messages syntax and field types and use this to efficiently

fuzz deep into target implementation code. Peach is an

example of a „smart‟ fuzzer [16]. Disadvantages of „smart‟

fuzzers include their reliance on the availability of a

protocol‟s specification documents and the degree to

which a target implementation conforms to the published

specification. In addition, „smart‟ fuzzers require manual

adaptation to customize them for each new protocol they

are to apply to. Therefore, its application to new protocols

is labour intensive and tedious.

1.2 Previous Work

A number of attempts have been made to automatically

extract protocol specifications for „smart‟ fuzzers

[2][4][5]. In [5] the automatic extraction of the protocol‟s

specification is based on synthesizing an abstract

behavioral model of a protocol implementation. The

behavioral model is realized as a Finite State Automaton

(FSA) constructed from the recorded conversations

between a client and a server. The FSA represents, in a

succinct way, the key states and transitions of a protocol

implementation and can be used to systematically guide

the flaw detection process. The main algorithm proposed

in [5] for synthesizing an abstract behavioral model of a

protocol implementation is based on passive synthesis

with partial FSA reduction. Given a large collection of

network traces the algorithm constructs and minimizes a

FSA. The construction of a FSA relies on an abstraction

function. An abstraction function is a simple function used

to map similar messages to a unique abstract

representation. For example, SMTP client requests can be

Serge Gorbunov and Arnold Rosenbloom

serge.gorbunov@utoronto.ca, arnold@cs.toronto.edu

Department of Mathematical and Computational Sciences,

University of Toronto Mississauga,

Mississauga, Ontario, Canada L5L 1C6

AutoFuzz: Automated Network Protocol

Fuzzing Framework

mailto:serge.gorbunov@utoronto.ca
mailto:arnold@cs.toronto.edu

240 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

abstracted to their first four characters. That is, messages

„mail from: test@test.com‟ and „mail from:

account@test.com‟ are abstracted to „mail‟. Also, SMTP

server replies can be abstracted to their first three

characters. For example, messages “550 Permission

denied”, “221 Bye!” and “230 User anonymous logged

in” are abstracted to “550”, “221” and “230”

respectively. The tester must supply two abstraction

functions, one for the input messages to the target being

fuzzed, the other for the output messages. In [4], the

authors focus on automated protocol specification

extractions by constructing the protocol‟s FSA and

determining message types. However, their technique of

FSA construction is substantially different from the

technique presented in [5]. Their final system can be used

to extract protocol specifications. However, to the best of

our knowledge, neither of the systems [4] nor [5] is

available publically for future development or research. In

[2], the authors try to determine fields of individual

protocol messages by using bioinformatics algorithms. In

order to determine message fields, similar message

samples are aligned using multiple string alignment

algorithms and their consensus sequences are analyzed to

understand the beginning and the end of fields in the

message [2]. Their open-source tool can be used to

determine message fields for a collection of protocol

messages.

1.3 The New Fuzzing Framework

This paper introduces the AutoFuzz. This open source

fuzzing framework is a „smart‟, man-in-the-middle fuzzer.

For simplicity in the discussion that follows we assume

that AutoFuzz is used to fuzz the server side of a network

protocol implementation. More specifically, the messages

coming from the client to the server are denoted as input

messages, and the messages coming from the server to the

client are denoted as output messages. However, AutoFuzz

can be applied with equal effectiveness to fuzz the client

side. First, AutoFuzz extracts specifications of a network

protocol implementation from conversations recorded by

acting as a man-in-the-middle between server/client

sessions. As in [5] AutoFuzz constructs a FSA which

captures the sampled conversations, and so, understands

the protocol at a high level. AutoFuzz can be extended to

understand any protocol by importing appropriate

abstraction functions. Then, using the techniques

presented in [2], AutoFuzz finds the fields of individual

messages. In addition, it derives the type information of

the variable data fields of individual messages, and so,

understands the protocol at a lower level. More

specifically, for each message of the sampled

conversations, AutoFuzz associates a Generic Message

Sequence (GMS) that is used to capture the syntax

information of the message. A GMS is a representation of

a message that separates static from variable data fields

and associates variable data fields with type and length

information. By using GMSs, AutoFuzz eliminates the

need for protocol specific fuzzing functions as required by

[5]. Fuzzing functions can now be performed on GMS

representations instead of individual messages and be

based on the derived type or length information of the

static or variable data fields. AutoFuzz can also be

extended with new fuzzing functions. Finally, AutoFuzz

intelligently fuzzes server or client network protocol

implementations acting as a man-in-the-middle and using

the constructed FSA as a guide during the vulnerability

detection process. AutoFuzz was successfully applied to

several File Transfer Protocol (FTP) implementations

where it found both existing and new vulnerabilities.

2. Framework Overview

2.1 Main Components

The main components of AutoFuzz are (1) AutoFuzz

Graphical User Interface (GUI), (2) Proxy Server, (3)

Protocol Specifications Extractor and (4) Fuzzing

Engine. We elaborate on each below.

(1) AutoFuzz GUI allows testers to easily interact with

the fuzzer and control its actions. It is constructed using

the JAVA Swing library [13]. To visualize a protocol‟s

FSA AutoFuzz uses JUNG graphing library [14].

(2) Proxy Server. AutoFuzz works as a proxy server

between a client and a server. It records and modifies the

application level traffic to extract protocol specifications

and perform fuzzing operations. The proxy server is based

on the JAVA Socks server [6], but has been modified to

allow direct manipulation of the application level traffic.

Server AutoFuzz Client

Modified input

Output Output

Original input

Figure 1. AutoFuzz Proxy Model

(3) Protocol Specifications Extractor. The specifications

extractor extracts the FSA of a network protocol

implementation from a sample of communication sessions

between a client and a server. AutoFuzz can understand

any application level protocol implementation after

appropriate input/output abstraction functions are imported

in it. It also extracts GMSs using the algorithm outlined in

the Generic Message Sequence Construction section to

understand to the syntax of individual messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 241

(4) Fuzzing Engine. The fuzzing engine modifies the

communication traffic between a server and a client by

applying fuzzing functions. We elaborate more on how the

traffic is modified in the Fuzzing Algorithm Section. The

current set of fuzzing functions contains both deterministic

and non-deterministic functions. Deterministic functions

insert preprogrammed data into the GMSs such as large

strings, maximum/minimum integer values and others.

Non-deterministic functions randomly skip static or

variable data fields of GMSs, take random transitions in

the FSA and insert random data into the GMSs. The

fuzzing engine can be extended with new fuzzing

functions. All actions during the fuzzing process are

recorded in the logs files. This allows testers to determine

the state in the communication and the exact input

message modifications that were performed during the

unexpected application behavior.

2.2 Process Work Flow

The process flow involved in fuzzing using AutoFuzz is

presented in Figure 2.

Step 1: Protocol traces are recorded using AutoFuzz‟s

built-in proxy server. The traces can manually be edited by

the tester, exported or imported at any point of time.

Step 2: Protocol‟s behavior model is constructed based on

the passive synthesis with partial Finite State Automaton

(FSA) reduction proposed in [5].

Step 3: Individual message syntax is extracted and stored

in GMS. We extend the use of the abstraction function

from [5] to generate clusters of input messages for GMS

construction. Hence, each cluster represents a collection of

similar input messages. The detailed algorithm is

presented in Generic Message Sequence construction

section. Intuitively, given the abstraction function for the

input messages, similar input messages are clustered

together using this abstraction function. Next, sequence

alignment algorithms are applied to generate GMS for

each cluster. Finally, we traverse the protocol‟s FSA and

associate each transition with the appropriate GMS.

Step 4: Fuzzing functions are applied by modifying live

communication sessions between the client and the server.

The fuzzing engine is responsible for assigning a fuzzing

function. Which fuzzing function is performed is

determined by the current state in the FSA, input message

and which functions have already been applied. The

complete algorithm is presented in the fuzzing algorithm

section.

1. Collect large
number of traces

2. Construct and
minimize FSA

3. Construct
Generic Message

Sequences

4. Perform fuzzing
functions on each

transition in the FSA

Figure 2. AutoFuzz Fuzzing Processes

3. Generic Message Sequence Construction

We present a complete algorithm used to extract Generic

Message Sequences (GMSs). Remember, GMS is a

representation of a message that separates static from

variable data fields and associates variable data fields with

type and length information. A cluster is denoted as a

collection of similar messages. Step 1: Similar messages

are clustered together using a new clustering technique.

Step 2: Multiple sequence alignment algorithm described

in [2] is performed on each cluster. Step 3: GMS is

constructed for each cluster. Step 4: Each transition in the

protocol‟s FSA is associated with the corresponding GMS.

Step1: First, we present a new technique used to cluster

similar messages. Remember, that for simplicity, we

denote all messages coming from the client to the server as

input messages, and all messages coming from the server

to the client as output messages.

Define a set of input messages as . Let

 denote the abstraction function on the input

messages. The algorithm returns clusters of similar input

messages using the function. More

specifically, for all , define as follows:

 The algorithm returns

 .
Consider the following set of sample input messages of

the Simple Mail Transfer Protocol (SMTP). Let

For any input message in , let return its

first four characters. Applying the algorithm on this

example it returns a set of two clusters where

and

 .
Step 2: After input messages are clustered we perform

multiple sequence alignment algorithm on each cluster

proposed in [2]. For each cluster the algorithm returns a

list of aligned messages. Alignment of the input messages

is performed using the Needleman-Wunsch algorithm [8]

based on the progressive alignment technique.

For example, applying the algorithm on the cluster ,

presented in Figure 3, we obtain three aligned input

messages presented in Figure 4. The result is three input

messages that have the same length where “-” represents a

sequence gap.

242 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

m a i l f r o m : < a n o n y m o u s @ d o m a i n . c a >

m a i l f r o m : < s a m p l e @ p c . r u >

m a i l f r o m : < t e s t @ t e s t . c o m >
 Figure 3. Sample SMTP Input Messages

m a i l f r o m : < a n o n y m o u s - - - - - @ d o m a i n . c - a >

m a i l f r o m : < - - - - - - - - s a m p l e @ - - - - p c . - r u >

m a i l f r o m : < - - - - - - t e s - - - - t @ - - t e s t . c o m >
 Figure 4. Aligned Sample SMTP Client Requests. “-“ represents

sequence gap.

Step 3: Next, we construct a Generic Message Sequence

(GMS) for each cluster. On the implementation level a

GMS is an array list of message blocks, where a block

corresponds to either static or variable data field.

First, we identify the beginning and the end of the static

and variable data fields. Intuitively the algorithm looks at

characters at the same position across all messages and, if

all characters are the same, it marks that position as static

position in the resulting GMS, otherwise variable position.

Consecutive static and variable positions in the GMS are

denoted as static and variable data fields, respectively.

More formally, define
 as a set

of aligned messages where for all , is

an input message and for all , is its

 ‟th character. Define for all as the

 ‟th symbol in the GMS. We define as follows:

The algorithm returns .
Note, should be replaced by some unique character not

seen otherwise in any of the sequences. Consecutive s

in the resulting GMS correspond to variable data fields.

Applying the algorithm on the aligned SMTP input

messages presented in Figure 4, we obtain the GMS

presented in Figure 5.

m a i l f r o m : < µ µ µ µ µ µ µ µ s µ µ µ µ µ @ µ µ µ µ µ µ . µ µ µ >
 Figure 5. The intermediate GMS obtained from 3 SMTP messages

presented in Figure 4.

Next, for each variable data field, identified as consecutive

 s in the GMS, we associate the type information by

looking over each character at those positions in the

aligned sequences and checking which type set they

corresponds to. The final GMS applied to our example is

presented in Figure 6.

m a i l f r o m : < £ £ £ £ £ £ £ £ s £ £ £ £ £ @ £ £ £ £ £ £ . £ £ £ >
 Figure 6. The final GMS obtained from 3 SMTP messages presented

in Figure 4. Consecutive “£” s correspond to alpha-numeric variable data
fields.

Step 4: Finally, we traverse the protocol‟s FSA,

abstracting each message at a transition and assigning it

the corresponding GMS. We now have the protocol‟s FSA

generated from the large sample of network traces where

with each transition has a specific GMS assigned.

4. Fuzzing Algorithm

Once the network protocol specifications are extracted by

constructing its FSA and GMSs, the fuzzing is started. In

addition to the FSA and associated GMSs the fuzzing

engine is loaded with an extendable list of fuzzing

functions. Initially, the fuzzing engine sets its state to the

root of the protocol‟s FSA. It then monitors the input

traffic, making appropriate transitions and applying

fuzzing functions. The abstract version of the algorithm is

presented in Figure 7.

Note, that the current implementation does not compare

the server output messages to the modified responses

against the associated transition in the FSA. Ideally, the

output messages should be compared to the output

messages associated with the transition in the FSA to

determine whether a specific type of an unexpected

behavior has occurred. For that, the FSA should be aware

of the typical negative server responses, such as invalid

syntax.

5. Experimental Results

We applied AutoFuzz to extract protocol specification of

the File Transfer Protocol (FTP) and fuzz multiple FTP

server implementations. This section provides an overview

of FTP, describes the setup environment and our findings.

5.1 File Transfer Protocol

File Transfer Protocol (FTP) is an application level

protocol used on the Transmission Control

Protocol/Internet Protocol (TCP/IP) networks for file

exchange. The original specifications of FTP were

proposed in 1971 [3], but have been modified many times

since then. Most commonly, the FTP is implemented as

follows. First, a client connects to the server on port 21,

called the control port. The client requests, including the

login process, are sent using this socket in ASCII. When

the client requests to transfer data, a new socket is

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 243

typically opened on port 20 with the server. Port 20 is

called the data connection port.

Most client requests to the FTP server consist of a four

letter message type followed by the actual message.

Commands CWD, RWD, MKD and PWD are the only

three letter message type commands [10]. The server

responses are also in ASCII with first three digits

corresponding to a status code following by an optional

message.

5.2 Setup Environment

Step 1: We write and import the abstraction functions for

the FTP server implementations. All input messages

coming from the client to the server are abstracted to its

first four characters, except for the messages beginning

with CWD, RWD, MKD and PWD, which are abstracted

to its first three characters. All output messages coming

from the server to the client are abstracted to its first three

characters.

Step 2: We install an FTP server implementation that will

be fuzzed, such as Firezilla FTP Server [12].

Step 3: We setup a proxifier to redirect all traffic of

Windows ftp.exe client to AutoFuzz proxy server. (Note,

since AutoFuzz works as a proxy server between the

server and the client, the client connections must be

encapsulated in SOCKS5 sessions [7]. One can run a

Proxifier [18] on a process to encapsulate its traffic in

SOCKS5 protocol and redirect it to a specific SOCKS5

proxy server.)

Step 4: Next, we run AutoFuzz and start its proxy server.

Step 5: We manually connect to the FTP server using

ftp.exe client and perform common FTP requests. For

example, we connect to the server using different login

credentials, download and upload different files, create

and remove directories. Each session is identified as a

separate network trace. In total, we record 23 network

traces.

Step 6: We build the FSA corresponding to the network

traces, which is presented in Figure 8. We also construct

GMSs and associate them with the appropriate FSA

transitions (Figure 9).

Step 7: We start the fuzzing engine. Finally, we run a

small FTP client, written in JAVA, to automatically

perform multiple sessions with the server and execute

various requests, while AutoFuzz automatically follows

the fuzzing algorithm presented in Figure 9.

Fuzzing Algorithm Flowchart

Input: Protocol‟s FSA with each transition associated with

a GMS

BEGIN

Load the fuzzing
functions

Read the input
message from the
client to the server

Does the current state have a
transition for the abstract

representation of the input?

Modify the input
message by applying

the next fuzzing
funciton

Send the input
message to the

server

Update the current
state

YES

YES

NO

Reset the current
state to the root of
the protocol’s FSA?

Set the current
state to the root of
the protocol’s FSA

YES

NO Is the fuzzer turned
ON?

END

NO

Figure 7. Fuzzing Algorithm Flowchart. The fuzzer is turned on/off by

the tester. The tester also sets when the current state should be reset to the

root of the protocol‟s FSA.

244 IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

0

1

2

3

4

5

USER

PASS

PORT

STOR

RETR

NLST

QUIT

U
SE

R

CW
D

XRM
D

XPW
D

XM
KD

DELE

DELEXMKDCWD

PORT

Figure 8. FTP Finite State Automaton constructed from 23 network

traces.

State

ID

Input Abstract

Representation

GMS

0 USER USER

1 PASS PASS

2 PORT PORT

192,168,192,1

2 XRMD XRMD

2 XMKD XMKD

3 STOR STOR test.txt 2,1 4,

4 QUIT QUIT

4 XMKD XMKD

4 DELE DELE

4 CWD CWD

5 USER USER

Figure 9. FTP Generic Message Sequences. Consecutive corresponds

to a variable data field of any type. Consecutive corresponds to a

variable data field of a Long Integer.

5.3 Results

We applied AutoFuzz to automatically fuzz three different

FTP server implementations: Firezilla FTP Server 0.9.34,

Open and Compact FTP Server 1.2 and Wing FTP Server

3.5.2 [12][9][19]. We were unable to find any unexpected

behavior instances of Firezilla or Wing FTP servers, but

were able to find numerous unexpected behavior instances

of Open and Compact FTP Server 1.2. A first set of

unexpected behavior instances involves crashing Open and

Compact FTP Server by sending arbitrary long strings

prior to the authentication on USER, PASS and PORT

commands, and sending „\r\n‟ string prior to or after

authentication at any state of the server. The first denial of

service attack was already known to the public, while the

second attack was new. Another set of unexpected

behavior instances involves arbitrary command execution

on the server prior to authentication. This attack is even

more dangerous since a malicious user does not need to

know how to write any shellcode to completely gain

control over the server. This attack was also unknown. The

developers of Open and Compact FTP Server 1.2 were

notified of both vulnerabilities.

6. Conclusion and Future Work

This paper presented a new framework intended to

automatically extract specifications of network protocol

implementations and test it for implementation flaws. We

explained how the framework extracts protocol

specifications by learning its behavior model and

constructing a corresponding FSA. The framework also

extracts individual message syntax allowing abstracting

the set of fuzzing functions to apply to any protocol

implementation. The framework was applied to multiple

FTP server implementations and succeeded in finding old

and new vulnerabilities.

There is still a lot of work to be done towards creating a

fully automated fuzzing system. Our framework can be

extended by incorporating new abstraction and fuzzing

functions. It can also be extended by implementing

additional fuzzing models. For example, the proxy server

can be improved to automatically replay previously

recorded traffic. In addition, the framework should be

tested on other than ASCII protocol implementations and

compared with other fuzzing tools. Different automated

solutions aiming to replace the abstraction function should

be considered, such as use of similarity scoring techniques

of sequence alignment algorithms.

In addition, the framework can be used as a start towards

automated honeypot construction. That is, using our

framework it is possible to automatically extract protocol

specifications which can be incorporated with a separate

tool that uses these specifications to mimic real protocol

implementations, hence interacting with potential

attackers.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010 245

References

[1] AutoFuzz: Automated Network Protocol Fuzzing Framework.

http://autofuzz.sourceforge.net/

[2] M. A. Beddoe, Network Protocol Analysis Using Bioinformatics
Algorithms. Available: http://www.4tphi.net/~awalters/PI/pi.pdf.

[3] A.K. Bhushan, “Request for Comments: 114”, Network Working

Group, 1971. Available: http://www.faqs.org/rfcs/rfc114.html.
[4] P. M. Comparetti, G. Wondracek, C. Kruegel, E. Kirda, “Prospex:

Protocol Specification Extraction”, Proceedings of the 2009 30th

IEEE Symposium on Security and Privacy, p.110-125, May 17-20,
2009.

[5] Y. Hsu, G. Shu and D. Lee, “A Model-based Approach to Security

Flaw Detection of Network Protocol Implementation”, IEEE ICNP,

2008.

[6] JAVA SOCKS Server. http://jsocks.sourceforge.net/.

[7] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas and L. Jones,
“Request for Comments: 1928”, Network Working Group, 1996.

Available: http://www.ietf.org/rfc/rfc1928.txt.

[8] S. B. Needleman and C. D. Wunsch. “A general method applicable
to the search for similarities in the amino acid sequence of two

proteins.” Journal of Molecular Biology, 48:444-453, 1970.

[9] Open & Compact FTP Server. http://sourceforge.net/projects/open-
ftpd/.

[10] J. Postel and J. Reynolds, “Request for Comments: 959”, Network

Working Group, 1985. Available:
http://www.faqs.org/rfcs/rfc959.html.

[11] A.Takanen , J. DeMott and C. Miller, "Fuzzing for Software

Security Testing and Quality Assurance", Artech House, Inc.,
Norwood, MA, 2008

[12] The Firezilla Project. http://filezilla-project.org/.

[13] The JAVA Swing Library.

http://java.sun.com/javase/6/docs/api/javax/swing/package-

summary.html.

[14] The Java Universal Network/Graph Framework (JUNG).
http://jung.sourceforge.net/.

[15] The National Vulnerability Database. http://web.nvd.nist.gov.
[16] The Peach Project. http://peachfuzzer.com/.
[17] The ProxyFuzz Project. http://theartoffuzzing.com/.

[18] Windows Proxifier. http://www.proxifier.com/

[19] Wing FTP Server. http://www.wftpserver.com/.

Serge Gorbunov is working towards B.S. at

the University of Toronto Mississauga,

specializing in Information Security. He

worked at IBM Canada lab as a Software

Developer Intern during summer of 2009 and

has been a member of the Canadian Honeynet

Project since May of 2009.

Arnold Rosenbloom is a Senior Lecturer at

the Department of Mathematical and

Computational Sciences, University of

Toronto at Mississauga, home of the UofT

Information Security Program. His interests

range from Information Security to Web

Programming, from Computational

Complexity to first year pedagogy.

http://autofuzz.sourceforge.net/
http://www.4tphi.net/~awalters/PI/pi.pdf
http://www.faqs.org/rfcs/rfc114.html
http://jsocks.sourceforge.net/
http://www.ietf.org/rfc/rfc1928.txt
http://sourceforge.net/projects/open-ftpd/
http://sourceforge.net/projects/open-ftpd/
http://www.faqs.org/rfcs/rfc959.html
http://filezilla-project.org/
http://java.sun.com/javase/6/docs/api/javax/swing/package-summary.html
http://java.sun.com/javase/6/docs/api/javax/swing/package-summary.html
http://jung.sourceforge.net/
http://web.nvd.nist.gov/
http://peachfuzzer.com/
http://theartoffuzzing.com/
http://www.proxifier.com/
http://www.wftpserver.com/

