
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

255

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

The Game of Sudoku-Advanced Backtrack Approach

Abhishek Majumder, Abhay Kumar, Nilu Das and Nilotpal Chakraborty

Department of Information Technology
Assam University, Silchar, Assam, India

Summary
Sudoku is a puzzle game played on a grid that consists of 9 x 9
cells each belonging to three groups: one of nine rows, one of
nine columns and one of nine sub grids (sometimes called
regions). The game of Sudoku is basically based on Latin
squares. The Sudoku was incepted in the year 1979 and was first
published in the Dell Magazines as “Number Place” in the year
1984. The term Sudoku means a single number. The game begins
with numbers already printed in some cells. The player must fill
in the empty cells with the numbers 1 to 9 such that each column,
row and region contains that number exactly once. There are
several Sudoku applications that have already been developed by
many programmers around the globe. In this paper, we give an
overview of the work that we have performed on the
development of the game of Sudoku that generates a 9 x 9 puzzle
grid with various difficulty levels. The application also enables
users to input their own puzzle and to be solved by the computer.
The developed application also includes advanced features such
as save, load and fast input validation. The solving algorithm of
the developed Sudoku application has also been compared to
some existing Sudoku applications for analysis.
Key words:
Sudoku, Backtracking Algorithm, NP-complete.

1. Introduction

“Sudoku” is a challenging numeric puzzle that trains our
logical mind!! There’s no math involved in it-we just need
to solve the numeric puzzle with reasoning and logic. It is
a game that one finds himself addicted into.
Solving a Sudoku puzzle requires no math, not even
arithmetic [1]-[9]. Even so, the game poses a number of
intriguing mathematical problems.
Ironically, despite being a game of numbers, Sudoku
demands not an iota of mathematics of its solvers. In fact,
no operation—including addition or multiplication—helps
in completing a grid, which in theory could be filled with
any set of nine different symbols (letters, colors, icons and
so on).
Nevertheless, Sudoku presents mathematicians and
computer scientists with a host of challenging issues.
Sudoku puzzles, and their variants, have become
extremely popular in the last decade, and can now be
found daily in most major newspapers. In addition to the

countless books of Sudoku puzzles, there are many guides
to Sudoku strategy and logic.
Unlike the three-dimensional Rubik’s cube, a Sudoku
puzzle is a flat, square grid. Typically it contains 81 cells
(nine rows and nine columns) and is divided into nine
smaller squares containing nine cells each; call them sub
grids or regions. The game begins with numbers already
printed in some cells. The player must fill in the empty
cells with the numbers 1 to 9 that each column, row and
region contains that number exactly once. Thus repetition
of a number is strictly abandoned. Each puzzle has one
unique solution.

2. Definitions

Table 1 depicts the meaning of different terms used in this
paper is given in is this paper

Table 1: Definitions
Term Definition
Cell A single square in the puzzle
Box A group of 3X3 cells
Grid A group of 3X3 boxes

Column A column of 9 cells
Row A row of 9 cells

Given
value

A value (between 1-9) that was already
assigned to cell at the start of a game, which

cannot be changed

Valid
input

A value that can be inserted into a cell
without violating the rule of the game at time

when the value is inserted. Does not mean
the value inserted is the correct value for the

game
Possible
values Lists of valid inputs for a cell

3. Approach Taken

3.1 Generating a Sudoku Puzzle

Generating a Sudoku puzzle is the task of choosing a
subset of cells of the Sudoku grid to contain hints to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

256

enable the solver to calculate a solution for the puzzle. To
be satisfactory for human solvers, the solution implied by
the hints should be unique, so it is desirable to generate
proper puzzles. Basically, there are two different methods
to create a proper Sudoku puzzle: Incremental generation,
which assigns numerals to one cell after another until
sufficient hints are given for the puzzle to have a unique
solution. Decremental generation removes numerals from
the cells of a full Sudoku grid for as long as desired or
possible in order for the solution to stay unique. Figure 1
and 3 shows the flow chart and the algorithm respectively
that represents the procedure for generating the puzzle.

Figure 1: Flow chart for generating Sudoku Grid

3.2. Solving Sudoku puzzle

Although the initial goal for the work was just to
implement a simple pen and paper version of Sudoku on
the computer without the computer actually solving the
puzzle for user. It would be nice to have the solver in case
the user is stuck and wants to find an answer although
now-a-days there are many online solving tips and solvers
[10]-[19] are available. It is also interesting to find out
what kind of algorithms works well with different type of
puzzles.
Here we have followed a backtracking algorithm to solve
the puzzle. However, there are two main reasons why this
is not desirable: Backtracking in general takes too much
time and it is not fitting to judge the difficulty of a Sudoku
puzzle. Still, we have followed this process based on the
facts that it is easier than the other methods (such as
constraint programming, Brute force etc.) and there are
only a few Sudoku applications that were based on
backtracking algorithm. Figure 2 and 4 shows flow chart

and the algorithm respectively for the approach we have
used to solve the Sudoku puzzle.

�

Figure 2: Flow Chart for solving Sudoku Grid

Figure 3: Algorithm for generating Sudoku puzzle

1. Initialize String s[], mark[][], mark_row[][],

mark_col[], maze[][]

2. Initialize genpuzzle(level){

1. String ans=null;

2. Intialize count=0, cells=13, min=0,

max=cells+(24-10*level);

3. While(true)

1. Initialize all arrays to 0

2. While (count<=cells)

1. Generate random values for val, row,

 col, through Random() function.

2. Decide region through row, col

3. Insert value into grid according to

 the rule and mark corresponding

 row, col and region

 4. If (solvable)

 1. String ret[]=getstrings(ans, level)

 2. Return ret;

 5. Else backtrack

 6. End if

3. End while

4. Return array;

4. End while

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

257

Figure 4: Algorithm for solving Sudoku puzzle

3. Implementation and Results Analysis

It is known that the Sudoku is an NP-complete class of
problem and moreover all its applications are of heuristic
in nature. The algorithms mentioned in the last section are
implemented using java swing UI component and java
[20]-[23] as a basic programming language on windows7
platform. Experiments are carried out to calculate the time
required to solve a given Sudoku puzzle considering
sample puzzles. The same set of sample puzzles are also
solved by using Sudoku solver v 2.0 and Sudoku solver v
1.01 [24] and the required solving time are also recorded.
We compared our algorithm with the above mentioned
solvers with respect to the time taken to solve the puzzle.
Here we observe that the solver developed by us takes
significantly lesser time as compared to the other two
solvers. The comparison among these three algorithms
with respect to time is shown in the form of a performance
graph in figure 5. Here the applications are tested over

computers having Intel Pentium Core 2 Duo processor and
2GB of RAM.

Figure5: Performance Graph

4. Conclusion and Future work

In this paper we presented a backtracking algorithm for
generating and solving a Sudoku puzzle. We have
implemented the algorithm using java and also compared
it with two other existing application softwares. The
comparison result reveals that the application program
developed by us performs better than Sudoku solver v 2.0
and Sudoku solver v 1.01.
Future work will be enhancement of the Sudoku solver
algorithm to increase its efficiency. Also comparison of
the application program with the other existing Sudoku
solver remains as a future work.

Acknowledge

We present our sincere acknowledgement to all the faculty
members, non-teaching staffs and all the students of
Department of Information Technology, Assam University,
Silchar for their inspiration and support.

References
[1] Jussien, Narendra; A to Z Sudoku; 1st edition; ISTE ltd.

Publications.
[2] D. Berthier, The Hidden Logic of Sudoku, 2nd ed., Lulu,

Morrisville, NC,2007.
[3] http://www-imai.is.s.u-

tokyo.ac.jp/~yato/data2/MasterThesis.pdf.
[4] www.sciam.com/the_science _behind_sudoku.pdf
[5] www.sudopedia.com
[6] www.sudoku.com
[7] www.project.com/sudoku
[8] www.siliconindia.com/sudoku-tutorials.htm
[9] en.wikipedia.org/wiki_sudoku

1. initialize getanswer (string s[])

2. define variables mark_row[][], mark_col[][],

mark[][], maze[][], top, rr, cc, val, region;

3. for (i=0;i<=81;i++)

1. if (cell is not empty)

 1. copy and store the val in maze and set the

 corresponding flags in other row, col, mark and

 set the corresponding flags;

2. end if

4. end for

5. while(true)

1. if(cell is empty)

 1. while(++val!=10 && val is not conflicting)

 1. insert the val

 2. end while

2. end if

3. if (val<10)

 1.val=0;

4. if (cc!=9){cc++;}

5. elseif (rr!=9){rr++;}

6. else{ top--; reset top and corresponding value;}

7. end if

6. end while

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

258

[10] http://sudoku_puzzle.net/countlessfree
[11] http://www.sudoku.frihost.net/dlDir/en/2/sudoku
[12] http://www.sudoku.smike.ru/sudoku
[13]
[14] www.sudokuessentials.com/sudoku_tips
[15] www.angusj.com/sudoku/hints.php
[16] www.killersudokuonline.com/tips
[17] http://sudoku9981.com/softdown/sudoku
[18] http://sudokusolver.com/sudoku/solver
[19] http://www.mjsoft.nm.ru/sudoku
[20] http://sudoku.klass.nl/sudokujavaSolverApplet
[21] http://www.java.sun.som/j2ee/tutorials
[22] http://www.javasoftware.informer.com/download-java-

code-sudoku-puzzle
[23] http://www.dailySudoku.co.uk/sudoku/links
[24] http://www.all_freeware.com/result/sudoku/code/java
[25] http://www.download.com/

Abhishek Majumer received the B.E
Degree in Computer Engineering from
NIT Agartala and M.Tech degree in
Information Technology from Tezpur
Central University in the year 2006 and
2008 respectively. Currently he is
working as Assistant Professor in the
Department of Information Technology,
Assam University, Silchar, India. His
areas of interest are Mobile Computing,

Analysis of Algorithms and Distributed Systems.

Abhay Kumar is a student of B.Tech in
I.T., Department of Information
Technology, Assam University, Silchar,
India. His field of interest includes
Computer Networks, Java Programming,
and Operating Systems etc.

Nilu Das is a student of B.Tech in I.T.,
Dept of Information Technology, Assam
University, Silchar, India. His area of
interests includes Java programming,
software development etc.

Nilotpal Chakraborty is a student of
B.Tech in I.T., Dept of Information
Technology, Assam University, Silchar,
India. His area of interests includes
Computer Networks, software
Development, Operating Systems and
Web Development.

