
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

275

Manuscript received August 5, 2010
Manuscript revised August 20, 2010

Analyze Database Optimization Techniques

Syedur Rahman1 , A. M. Ahsan Feroz2, Md. Kamruzzaman3 and Meherun Nesa Faruque4

1Jaxara IT Limited, Dhaka, Bangladesh
2M&H Informatics, Dhaka, Bangladesh
3Jaxara IT Limited, Dhaka, Bangladesh
4M&H Informatics, Dhaka, Bangladesh

Summary
Data Management has emerged as the most significant factor in
today's world of computing. Applications as diverse as weather
satellite feedback to military operation details employ huge
databases that store graphics images, texts and other formats of
data. The primary challenge in maintaining this information is to
access them in an efficient manner. Database optimization
techniques have been derived to address this issue that may
otherwise limit the performance of a database to an extent of
vulnerability. In this paper we therefore discuss the aspects of
performance optimization related to data access in transactional
databases. Furthermore, we analyze the effect of these
optimization techniques.
Key words:
Database, Optimization, Database performance

1. Introduction

Due to modern information technology, which produces
ever more powerful computers every year, it is possible
today to collect, store, transfer, and combine huge amounts
of data at very low costs. Thus an ever increasing number
of companies and scientific institutions can afford to build
up large archives of documents and other data like
numbers, tables, images, and sounds. However, exploiting
the information contained in these archives in an
intelligent way turns out to be fairly difficult and it
becomes harder to work with these data when it starts to
enhance. It will be almost impossible to handle or access
this large amount of data if we don’t do all our database
operations in optimized way. When a database based
application performs slowly, there is a 90% probability
that, the data access routines of that application are not
optimized, or, not written in the best possible way. In this
paper we will discuss Data access performance
optimization in transactional (OLTP) SQL Server
databases and will also analyze the performance of a very
large database with and without our suggested
optimization. Though the optimization techniques are
suggested for transactional (OLTP) SQL Server databases
but most of the techniques are roughly the same for other
database platforms.

2. Optimization Techniques

2.1 Indexing in the table column in the database

We need to create primary key in every table of the
database. When we create a primary key in a table, a
clustered index tree is created and all data pages
containing the table rows are physically sorted in the file
system according to their primary key values. Each data
page contains rows which are also sorted within the data
page according to their primary key values. So, each time
we ask any row from the table, the database server finds
the corresponding data page first using the clustered index
tree and then finds the desired row within the data page
that contains the primary key value. Following is how an
index tree looks like:

Figure.1: Index tree structure

This is called a B+ Tree (Balanced tree). The intermediate
nodes contain range of values and direct the SQL engine
where to go while searching for a specific index value in
the tree starting from the root node. The leaf nodes are the
nodes which contain the actual index values. If this is a
clustered index tree, the leaf nodes are the physical data
pages. If this is a non-clustered index tree, the leaf nodes
contain index values along with clustered index keys
(Which the database engine uses to find the corresponding
row in the clustered index tree). Usually, finding a desired
value in the index tree and jumping to the actual row from
there takes an extremely small amount of time for the
database engine. So, indexing generally improves the data
retrieval operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

276

Here we worked on millions of data with some complex
query and got the results in seconds.

 Figure.2: Comparison graph between “With Indexing” and “Without
Indexing”.

2.2 Appropriate covering indexes

If we know that our application will be performing the
same query over and over on the same table, we should
consider creating a covering index on the table. A covering
index, which is a form of a composite index, includes all
of the columns referenced in SELECT, JOIN, and
WHERE clauses of a query. Because of this, the index
contains the data we are looking for and SQL Server
doesn't have to look up the actual data in the table,
reducing logical and/or physical I/O, and boosting
performance. On the other hand, if the covering index gets
too big (has too many columns), this could actually
increase I/O and degrade performance. So we have to be
very careful to create the covering indexes.
Here we worked on millions of data with some complex
query and got the results in seconds.

Figure.3: Comparison graph between “With Covering Index” and
“Without Covering Index”.

2.3 Move TSQL codes from application into the
database server

Moving the SQLs from application and implementing
these using stored procedures/ Views/ Functions/ Triggers
will enable us to eliminate any duplicate SQLs in our
application. This will also ensure reusability of our TSQL
codes. Implementing all TSQLs using the database objects
will enable us to analyze the TSQLs more easily to find
possible inefficient codes that are responsible for slow
performance. Also, this will let us manage our TSQL
codes from a central point. Doing this will also enable us
to re-factor our TSQL codes to take advantage of some
advanced indexing techniques. Also, this will help us to
write more “Set based” SQLs along with eliminating any
“Procedural” SQLs that we might have already written in
our application. Despite the fact that indexing will let us
troubleshoot the performance problems in our application
in a quick time, following this step might not give us a real
performance boost instantly. But, this will mainly enable
us to perform other subsequent optimization steps and
apply different other techniques easily to further optimize
our data access routines.
Here we worked on millions of data with some complex
query and got the results in seconds.

Figure.4: Comparison graph between “SQL Query” and “Store
Procedure”.

2.4 Organize the file groups and files in the database

When an SQL Server database is created, the database
server internally creates a number of files in the file
system. Every database related object that gets created
later in the database are actually being stored inside these
files. An SQL Server database has following three kinds of
files:
•.mdf file: This is the primary data file. There could be
only one primary data file for each database. All system
objects resides in the primary data file and if a secondary

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

277

data file is not created, all user objects (User created
database objects) also takes place in the primary data file.
•.ndf file: These are the secondary data files, which are
optional. These files also contain user created objects.
•.ldf file: These are the Transaction log files. These files
could be one or many in number. It contains transaction
logs.
Database files are logically grouped for better performance
and improvement of administration on large databases.
When a new SQL Server database is created, the primary
file group is created and the primary data file is included in
the primary file group. Also, the primary group is marked
as the default group. As a result, every newly created user
objects are automatically placed inside the primary file
group (More specifically, inside the files in the primary
file group). If our database has a tendency to grow larger
(Say, over 1000 MB) in size, we can (and should) do a
little tweaking in the file/file group organizations in the
database to enhance the database performance. Here are
some of the best practices we can follow:
•The primary file group must be totally separate and
should be left to have only system objects and no user
defined object should be created on this primary file group.
Also, the primary file group should not be set as the
default file group. Separating the system objects from
other user objects will increase performance and enhance
ability to access tables in the case of serious data failures.
•If there are N physical disk drives available in the system,
then we should try to create N files per file group and put
each one in a separate disk. This will allow Distributing
disk I/O loads over multiple disks and will increase
performance.
•For frequently accessed tables containing indexes we
should put the tables and the indexes in separate file
groups. This would enable to read the index and table data
faster.
•We should put the transaction log file on a different
physical disk that is not used by the data files. The logging
operation (Transaction log writing operation) is more
write-intensive, and hence, it is important to have the log
on the disk that has good I/O performance.
Here we worked on millions of data with some complex
query and got the results in seconds.

2.5 Apply partitioning in the big fat tables

Table partitioning means nothing but splitting a large table
into multiple smaller tables so that, queries has to scan less
amount data while retrieving. That is “Divide and
conquer”. When we have a large (In fact, very large,
possibly having more than millions of rows) table in our
database we should consider portioning this table to
improve performance. Suppose we have a table containing
10 millions of rows.

Figure.5: Comparison graph between “Organized File Group” and
“Unorganized File Group”.

For easy understandability, let’s assume that, the table has
an auto-increment primary key field (Say, ID). So, we can
divide the table’s data into 10 separate portioning tables
where each partition will contain 1 million rows and the
partition will be based upon the value of the ID field. That
is, First partition will contain those rows which have a
primary key value in the range 1-1000000, and, Second
partition will contain those rows which have a primary key
value in the range 1000001-2000000 and so on.
Here we worked on millions of data with some complex
query and got the results in seconds.

Figure.6: Comparison graph between “Table with Partition” and “Table
without Partition”.

2.6 Identify inefficient TSQLs, re-factor and apply
best practices

Knowing the best practices is not enough at all. The most
important part is we have to make sure that we follow the
best practices while writing TSQLs. Some TSQL Best
practices are described here:
•We should not use “SELECT *” in SQL Query because
then unnecessary columns may get fetched that adds
expense to the data retrieval time and the Database engine

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

278

cannot utilize the benefit of “Covered Index” hence, query
performs slowly.
•We should not use COUNT() aggregate in a subquery to
do an existence check because when we use COUNT(),
SQL Server does not know that we are doing an existence
check. It counts all matching values, either by doing a
table scan or by scanning the smallest nonclustered index.
But if we use EXISTS, SQL Server knows you are doing
an existence check. When it finds the first matching value,
it returns TRUE and stops looking.
•We should try to avoid joining between two types of
columns because when joining between two columns of
different data types, one of the columns must be converted
to the type of the other. The column whose type is lower is
the one that is converted. If we are joining tables with
incompatible types, one of them can use an index, but the
query optimizer cannot choose an index on the column that
it converts.
•We should try to avoid the use of Temporary Tables
unless really required. Rather, try to use Table variables.
Almost in 99% case, Table variables reside in memory;
hence, it is a lot faster. But, Temporary tables reside in
“TempDb” database. So, operating on Temporary table
requires inter db communication and hence, slower.
•We should try to avoid deadlock. We should always
access tables in the same order in all our stored procedures
and triggers consistently and keep our transactions as short
as possible. Also should touch as few data as possible
during a transaction and should never, ever wait for user
input in the middle of a transaction.
•We should write TSQLs using “Set based approach”
rather than using “Procedural approach”. The database
engine is optimized for set based SQLs. Hence, procedural
approach (Use of Cursor, or, UDF to process rows in a
result set) should be avoided when large result set has to
be processed. By using inline sub queries to replace User
Defined Functions and by using correlated sub queries to
replace Cursor based codes we can get rid of “Procedural
SQLs”
•We should use Full Text Search for searching textual data
instead of LIKE search as Full text search always
outperforms the LIKE search. Full text search will enable
us to implement complex search criteria that can’t be
implemented using the LIKE search such as searching on a
single word or phrase, searching on a word or phrase close
to another word or phrase, or searching on synonymous
forms of a specific word.
•We should try to use “UNION” instead of “OR” in the
query. If distinguished result is not required we better use
“UNION ALL” because “UNION ALL” is faster than
“UNION” as it does not have to sort the result set to find
out the distinguished values.
Here we worked on millions of data with some complex
query and got the results in seconds.

 Figure7.: Comparison graph between “With Best Practices” and
“Without Best Practices”.

3. Experimental evaluation and performance
study

In this section we present a performance comparison of a
really huge database with millions of data. We did these
experiments both ways, without any kind of optimization
and with all our suggested optimizations.
Finally we worked on millions of data with few very
complex query and store procedures. At first we didn’t use
any kind of optimization and then later we used all the
suggested optimization techniques discussed above in our
query and store procedure. Here X – axis indicates the
number of data and Y – axis indicates the execution time
of the query and store procedure in seconds.

Figure.8: Comparison graph between “With all our suggested
optimizations” and “Without any kind of optimization”.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

279

4. Conclusion

Here in this paper we have suggested very few
performance optimization techniques in transactional
(OLTP) SQL Server databases. Optimization is a
“Mindset”, rather than an automatic occurrence. In order
to optimize our database performance, first we have to
believe that, optimization is possible. Then we need to
give our best effort and apply knowledge and best
practices to optimize. The most important part is, we have
to try to prevent any possible performance issue that may
take place later, by applying our knowledge before or
along with our development activity, rather than trying to
recover after the problem occurs.

References
[1] Michael J. Hernandez, "Database Design for Mere Mortals",

A Hands-On Guide to Relational Database Design,
Addison-Wesley Professional, ISBN-10: 0201694719,
ISBN-13: 978-0201694710, December 19, 1996.

[2] Clare Churcher, "Beginning Database Design: From Novice
to Professional", Apress, ISBN-10: 1590597699, ISBN-13:
978-1590597699, January 15, 2007.

[3] C.J. Date, "An Introduction to Database Systems", Addison
Wesley, ISBN-10: 0321197844, ISBN-13: 978-0321197849,
August 1, 2003.

[4] E. F. Codd, "The relational model for database management:
version 2", Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, ISBN:0-201-14192-2, 1990.

[5] C. J. Date, "Foundation for Future Database Systems: The
Third Manifesto", Addison-Wesley Professional, ISBN-10:
0201709287, ISBN-13: 978-0201709285, 2000.

[6] http://www.websitedatabases.com/database-index.html
[7] http://www.simple-talk.com/sql/learn-sql-server/using-

covering-indexes-to-improve-query-performance/

Syedur Rahman received the B.S.
degree in Computer Engineering
from North South University in 2007.
During 2007-2008, he stayed in
North South University (NSU) as a
Teacher Assistant and as a Lab
Instructor. From 2009 he is working
as a Software Engineer in Jaxara It
Limited (An USA based Software

Company), Bangladesh.

A.M. Ahsan Feroz received the B.S.
degree in Computer Science and
Information Technology from Islamic
University of Technology (IUT) in 2007.
During 2007-2008, he worked as a
research assistant on a research based
firm. From 2009 he is working as a
Software Engineer in M&H Informatics
(An IMS Health Company), Bangladesh.

Md. Kamruzzaman received the B.Sc.
degree in Computer Science and
Engineering from Khulna University in
2005. After graduation, he joined
EVOKNOW Bangladesh Ltd. and
worked there as a Software Engineer for
one year. Afterwards he joined United IT
Global Net as a Software Engineer and
stayed for about 8 months. Currently he

is working as a Senior Software Engineer in Jaxara IT Limited
(An USA based Software Company), Bangladesh.

Meherun Nesa Faruque accomplished
the degree of Bachelor of Computer
science in 2007 from BRAC University.
She has worked as Junior Systems Analyst
in a Project named RIRA under Maxwell
Stamp (PLC) from 2007-2009. She is
working as Software engineer at IMS
health (Dhaka office) from 2009.

