
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

26

Manuscript received September 5, 2010
Manuscript revised September 20, 2010

An Efficient Materialized View Selection Approach for Query
Processing in Database Management

Mr. P. P. Karde1, Dr. V. M. Thakare2

1Department of Information Technology, HVPM’s College of Engineering & Technology, Amravati-444 605 (M.S), India
2Post Graduate Department of Computer Science, SGB, Amravati University, Amravati (M.S) , India

Abstract:
Quick response time and accuracy are important factors in the
success of any database. In large databases particularly in
distributed database, query response time plays an important
role as timely access to information and it is the basic
requirement of successful business application. A data
warehouse uses multiple materialized views to efficiently
process a given set of queries. The materialization of all views
is not possible because of the space constraint and maintenance
cost constraint. Materialized views selection is one of the
crucial decisions in designing a data warehouse for optimal
efficiency. Selecting a suitable set of views that minimizes the
total cost associated with the materialized views is the key
component in data warehousing. Materialized views are found
useful for fast query processing. This paper gives the results of
proposed tree based materialized view selection algorithm for
query processing. In distributed environment where database is
distributed over the nodes on which query should get executed
& also plays an important role. This paper also proposes node
selection method for fast materialized view selection in
distributed environment. It is found that the proposed
methodology performs well as compare to other materialized
view selection strategies.
Keywords:
Cost of query, Data warehousing, Materialize views, Net
benefit, Storage cost, View maintenance, View selection,

1. Introduction

A basic requirement for the success of a data warehouse
is the ability to provide decision makers with both
accurate and timely consolidated information as well as
fast query response times. For this purpose, a common
method that is used in practice for providing higher
information and best response time is the concept of
materialized views, where a query is more quickly
answered. One of the most important decisions in
designing data Warehouse is selecting views to
materialize for the purpose of efficiently supporting the
decision making. The view selection problem defined is
to select a set of derived views to materialize that
minimizes the sum of total query response time &
maintenance of the selected views. So the goal is to
select an appropriate set of views that minimizes total
query response time and also maintains the selected
views [1, 25]. The decision “what is the best set of views

to materialize?” must be made on the basis of the system
workload, which is a sequence of queries and updates
that reflects the typical load on the system. One simple
criterion would be to select a set of materialized view
that minimizes the overall execution time of the
workload of queries.
A view is defined as a function from a set of base tables
to a derived table and the function is recomputed every
time the view is referenced. On the other hand, a
materialized view is like a cache i.e., a copy of data that
can be accessed quickly. Utilizing materialized views
that incorporate not just traditional simple SELECT-
PROJECT-JOIN operators but also complex online
analytical processing operators play crucial role to
improve the OLAP query performance. Materialized
views are useful in applications such as data
warehousing, replication servers, data recording systems,
data visualization and mobile systems [2, 3, 4]. In certain
situation, it is more profitable to materialize a view than
to compute the base tables every time the view is queried.
Materializing a view causes it to be refreshed every time
a change is made to the base tables that it references. It
can be costly to rematerialize the view each time a
change is made to the base tables that might affect it. So
it is desirable to propagate the changes incrementally i.e.,
the materialized view should be refreshed for
incremental changes to the base tables. In the last few
years, several view maintenance methods have been
designed and developed to obtain an efficient
incremental view maintenance plan [5]. In this paper a
methodology has been presented. First is tree based
materialized view selection, in which views are selected
at the time of query processing. Second is node selection,
in which the nodes are selected in the distributed
environment for the execution of faster query
performance. In next section various recent past work
that has been carried out in the field of materialized view
selection and their utilization for the query processing
are stated. The proposed algorithm and its
implementation details are explained in Section 4 The
experiment results that are obtained after the
implementation of algorithm are stated and discussed in
Section 5. The work that has been carried out is
concluded in last section.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

27

2. Materialized View Management &
Selection

2.1 Materialized View Management Tasks

The motivation for using materialized views is to improve
performance but the overhead associated with materialized
view management can become a significant system
management problem. The common materialized view
management activities include: identifying which
materialized view to create; indexing the materialized view;
ensuring that all materialized views and materialized view
indexes are refreshed properly each time the database is
updated; checking which materialized views have been
used; determining how effective each materialized view has
been on workload performance; measuring the space being
used by materialized views; determining which existing
materialized views should be dropped; archiving old detail
and materialized view data that is no longer useful [6,28].

2.2. Materialized View Selection

The view selection problem is to choose a set of views to
materialize in order to achieve the best query
performance for a given query workload. Typically view
selection is under a space constraint, and / or a
maintenance cost constraint [7, 8, 28]. Unlike answering
queries using views that need to handle adhoc queries, in
view selection scenarios, the queries are known. Hence,
most view selection algorithms start from identifying
common sub-expressions among queries. These common
sub expressions serve as the candidates of the
materialized views. One fundamental practical issue with
view selection is that there are many possibly competing
factors to be considered during the view selection phase,
such as view selectivity, query complexity, database size,
query performance, update performance etc.

Fig. 1. View Materialization Process.

Fig. 1 shows the logical diagram of view materialization
process. Here, the methodology determines what kind of
views will be beneficial under situations like- selectivity,
complexity and database size considering the view
maintenance cost.

3 Related Work

In case of 0-1 Programming Algorithm [10] it considers
all possible plans for each query to generate a single
optimal view processing plan by applying 0-1 integer
programming techniques. This works with all the
possible join plan trees, therefore it can definitely get the
best view processing plan in terms of query access
frequency. In A* Heuristic Algorithm [11] , an AND-OR
view graph and disk space constraints S is given, to
deliver a set of views M that has an optimal query
response time such that the total maintenance cost of M
is less than by satisfying the constraint S. A* algorithm
searches for an optimal solution in search graph.
Harinarayan et al. [12] presented a greedy algorithm for
the selection of materialized views so that query
evaluation costs can be optimized in the special case of
“data cubes”. However, the costs for view maintenance
and storage were not addressed in this piece of work.
Yang et al. [13] proposed a heuristic algorithm which
utilizes a Multiple View Processing Plan (MVPP) to
obtain an optimal materialized view selection, such that
the best combination of good performance and low
maintenance cost can be achieved. However, this
algorithm did not consider the system storage constraints.
Himanshu Gupta and Inderpal Singh Mumick [14]
developed a greedy algorithm to incorporate the
maintenance cost and storage constraint in the selection
of data warehouse materialized views. “AND-OR” view
graphs were introduced to represent all the possible ways
to generate warehouse views such that the best query
path can be utilized to optimize query.
Ziqiang Wang and Dexian Zhang [15] proposed a
modified genetic algorithm for the selection of a set of
views for materialization. The proposed algorithm is
superior to heuristic algorithm and conventional genetic
algorithm in finding optimal solutions. Kamel Aouiche et
al. [16] proposed a framework for materialized view
selection that exploits a data mining technique
(clustering), in order to determine clusters of similar
queries. They also proposed a view merging algorithm
that builds a set of candidate views, as well as a greedy
process for selecting a set of views to materialize.

The distributed model is quickly becoming the preferred
medium for file sharing and distributing data over the
Internet. A distributed network consists of numerous
peer nodes that share data and resources with other peers

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

28

on an equal basis. Unlike traditional client-server models,
no central coordination exists in a distributed system;
thus, there is no central point of failure. Distributed
networks are scalable, fault tolerant, and dynamic, and
nodes can join and depart the network with ease. The
most compelling applications on distributed systems to
date have been file sharing and retrieval. For example,
P2P systems such as Napster [17] and KaZaA [18] are
principally known for their file sharing capabilities, for
example, the sharing of songs, music, and so on.
Furthermore, researchers have been interested in
extending sophisticated infrared (IR) techniques such as
keyword search and relevance retrieval to distributed
databases.
It has been observed that in most typical data analysis
and data mining applications, timeliness and interactivity
are more important considerations than accuracy; thus,
data analysts are often willing to overlook small
inaccuracies in the answer, provided that the answer can
be obtained fast enough. This observation has been the
primary driving force behind the recent development of
approximate query processing techniques for aggregation
queries in traditional databases and decision support
systems [19, 20]. Numerous approximate query
processing techniques have been developed: The most
popular ones are based on random sampling, where a
small random sample of the rows of the database is
drawn, the query is executed on this small sample, and
the results are extrapolated to the whole database. In
addition to simplicity of implementation, random
sampling has the compelling advantage that, in addition
to an estimate of the aggregate, one can also provide
confidence intervals of the error, with high probability.
Broadly, two types of sampling-based approaches have
been investigated: 1) pre-computed samples, where a
random sample is pre-computed by scanning the
database and the same sample is reused for several
queries and 2) online samples, where the sample is
drawn “on the fly” upon encountering a query. So the
selection of these random samples in distributed
environments for query processing is addressed in [21].
An efficient implementation of materialized sample view
is difficult. The primary technical contribution is given in
[22] in terms of index structure called the Appendability,
Combinability, and Exponentiality (ACE) Tree, which
can be used for efficiently implementing a materialized
sample view. Such a view, stored as an ACE Tree, has
the following characteristics:

1. It is possible to efficiently sample (without
replacement) from any arbitrary range query
over the indexed attribute at a rate that is far
faster than is possible by using techniques
proposed by Olken [23] or by scanning a
randomly permuted file. In general, the view
can produce samples from a predicate involving

any attribute having a natural ordering, and a
straightforward extension of the ACE Tree can
be used for sampling from multidimensional
predicates.

2. The resulting sample is online, which means
that new samples are returned continuously as
time progresses and in a manner such that at all
times, the set of samples returned is a true
random sample of all of the records in the view
that match the range query. This is vital for
important applications like online aggregation
and data mining.

3. Finally, the sample view is created efficiently,
requiring only two external sorts of the records
in the view and with only a very small space
overhead beyond the storage required for the
data records. Note that although the
materialized sample view is a logical concept,
the actual file organization used for
implementing such a view can be referred to as
a sample index, since it is a primary index
structure for efficiently retrieving random
samples.

The basic structure of ACE tree is given in the Figure 1.
Ii;j refers to the jth internal node at level i. The root node
is labeled with a range I1;1:R = [0 – 100], signifying that
all records in the data set have key values within this
range. The key of the root node partitions I1;1:R into
I2;1:R = [0 – 50] and I2;2:R = [51 – 100]. Similarly,
each internal node divides the range of its descendents
with its own key.

Figure 1: Basic structure of ACE tree.

The ranges associated with each section of a leaf node
are determined by the ranges associated with each
internal node on the path from the root node to the leaf.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

29

For example, consider the path from the root node down
to leaf node L4, the ranges that we encounter along the
path are 0-100, 0-50, 26-50, and 38-50. Thus, for L4,
L4:S1 has a random sample of records in the range 0-100,
L4:S2 has a random sample in the range 0-50, L4:S3 has
a random sample in the range 26-50, whereas L4:S4 has
a random sample in the range 38-50.
A number of parameters, including users query
frequencies, base relation update frequencies, query costs,
should be considered in order to select an optimal set of
views to be materialized. Heuristic Algorithm (HA) [24]
will set materialized views such that the total cost for
query processing and view maintenance is minimal by
comparing the cost of every possible combination of
nodes. HA algorithm determines multiple view
processing plans regardless of their query cost. HA may
include the best processing plan because HA only works
with the optimal plans.

4. Proposed Methodology and
Implementation Details

In distributed database environment database is present
on various nodes. It may happen that same copy of
database is present on multiple nodes. Therefore query
execution on each and every node will be cumbersome
and time consuming in distributed environment. This
becomes more complicated when materialized views are
created for the distributed database. The maintenance and
selection of materialized views for query execution is
challenging task. Two proposed algorithms are presented
for handling the problem of materialized view
maintenance and selection.
The first algorithm is for generation and maintenance of
materialized view. The tree based approach is used for
creating and maintaining materialized views. Initially all
records are arranged in ascending order of their key
values. Then the middle record is selected as root
element of tree. The records are then split till the
threshold doesn’t reach so that the leaf of tree should
contain the number of records that will be present in
materialized view. Then the materialized view will be
created for each leaf node indirectly, each leaf represent
materialized that has to be created and maintain. The
materialized view is selected as per the query the records
for which the query is intended the materialized view for
those records will be selected for the processing. This
minimizes the total execution cost for query processing.
The selective approach can also be used for creating the
materialized views that minimizes the storage cost.
The second algorithm is for node selection. This
algorithm decides the nodes in the distributed
environment for which materialized view should be
created, updated or to be maintained. The random walk

algorithm is used as base for designing the node selection
algorithm and gossip protocol is used to find the best set
of the nodes.

Algorithm 1: Tree Based Materialized View
Creation and Maintenance
 r: Threshold for number of records that should
be kept in materialized view
Inputs:
 R: Total records in database
 m: Number of nodes to visit
Output:
 S: Set of Materialized views
Begin
1. Arrange R in an ascending order of their key

values
2. Select middle record as a root node
3. For all the records in databases available on m
4. If number of records in leaf < r

4.1 Split the number of records in equal set
5. Else create materialized view for the records

which are present in leaf node.
6. Add the materialized view in view set
End

Algorithm 2: For Node selection
M: Total number of nodes in network
 m: Number of nodes to visit
 j: jump size for randomly selecting nodes
 t: max tuples to be processed per node

Inputs:
Q: Query with selection condition
Sink: Node where query is initiated

Output: Query result to Sink (node where query is
initiated)
Begin
1. Check number of active nodes
2. If number of nodes = 1

2.1. Execute query on that node
3. Else randomly select the nodes
4. Curr = Sink; Hops = 1;
5. While (Hops < j * m) {
6. If (Hops % j)
7. Visit (Curr);
8. Hops ++;
9. Curr = random adjacent node

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

30

10. }
11. Visit (Curr){
12. If (# tuples of Curr) <= t){
13. Execute Q on all tuples
14. Else
15. Execute Q on t randomly sampled tuples
16. }
17. Return result to Sink
18. Compute Processing time
19. Return this result to Sink
End
The total cost for materializing views can computed
using the following strategy. The proposed algorithm
considers query processing cost (for selection,
aggregation and joining), view maintenance cost, storage
cost, net benefit and storage effectiveness for computing
the total cost. The cost is calculated in terms of block
size B. The query processing cost in terms of block
access is equal to size of materialized view Vi. [1, 12,
25]

 CB (Vi) = S(Vi)
The query cost involving the joining of n dimensional

tables with view Vi is given by
Cj(Vd1, Vd2,…, Vdn , Vi) = (S(Vd1) + S(Vd1) *S(Vi)) +
 (S(Vd2) + S(Vd2) *S(Vi)) + …..+ (S(Vdn) +
 S(Vdn) *S(Vi))

To process user’s query qi, which requires not only
selection and aggregation of the view, but also the
joining of view with other dimension tables, the query
cost Cq(qi) is given by
Cq(Vi) = CB (Vi) + Cj(Vd1, Vd2,…, Vdn , Vi) =
 S(Vi) + (S(Vd1) + S(Vd1) *S(Vi)) + (S(Vd2) +
 S(Vd2) *S(Vi)) + …. + (S(Vdn) + S(Vdn) *S(Vi))

Thus the total Query cost Total (Cqr) for processing r
user queries is given by

The re-computation of each view requires selection

and aggregation from its ancestor view Vai, and their
joining with n dimension tables. Therefore the
maintenance cost is given by

Cm(Vi) = CB (Vai) + Cj(Vd1, Vd2,…, Vdn , Vai) =
 S(Vi) + (S(Vd1) + S(Vd1) *S(Vai)) + (S(Vd2) +

S(Vd2) *S(Vai)) + .. + (S(Vdn) + S(Vdn) *S(Vai))
If there are j views which are materialized, the total

maintenance cost Total (Cm) for these materialized views
is given by

The cost for storing materialized views depends on

the availability of hard disk space. The storage factor U
represents the estimated ratio of the storage capacity
required by the data warehouse to the availability of hard
disk space it is given by
 U = (Total (Cstore) + (1+Q) * Y *Sa) / Total available
storage capacity

Where ‘(1+Q) * Y * Sa’ estimates the total increase
in storage capacity for accommodation of new data
during processing or creation of materialized views. Here
Q is the estimated increase rate in data volume per year
within data warehouse, Y is the estimated processing
cycle of the data warehouse, and Sa is the storage space
required to store added new data and their materialized
data.

The storage cost of view in terms of data block B is
given by

Cstore (Vi) = U * S (Vi)
In most of the today’s systems storage space doesn’t

matter because large amount of hard disk space is
available with less prize so in proposed algorithm
implementation the value of U=1. Therefore the total
storage cost is calculated as

Cstore (Vi) = S(Vi)
The net benefit and the storage effectiveness can be

calculated to determine an optimal set of materialized
views. The net benefit of materializing view calculated
as follows [1, 26, 27]
Net Benefit = Benefit – Maintenance cost –Storage cost

Here, Vni represents one of the descendent views of

Vi and m is the total number of descendent views. Ct
represents the cost of accessing materialized view.
Therefore, the net benefit for materialized view can be
calculated as Net () = - Cm (Vi) - Cstore (Vi)

The storage effectiveness of views is given by ni =
Net () / S ().

Consider Total(Call) is the total cost for processing
user’s queries when no views are materialized in the data
warehouse. When the materialized views are used then
total cost is given by

Ctotal = Total(Call) -

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

31

5. Experimental Results and Discussion

The experimental results are carried out on different
databases. BMC, Northwind, Electricity, Web searches
and All words databases are used to carry out the
experiments using proposed method. The subset of
typical user queries is shown in Table 1. This computes
the view created for the given query, query frequency,
number of records in the view and the size of query in
bytes The total cost is calculated on the basis of query
processing , maintenance and storage cost for the three
materialized view strategies the all-virtual-views method,
the all-materialized-views method and the proposed
materialized-views method.
Table 2 represents the calculation results, from which
following observations can be stated: The all-virtual-
views method requires the highest cost of query
processing with no view maintenance and storage costs
are incurred. The all-materialized-views method can
provide the best query performance but highest cost of
view maintenance since this method requires the
minimum query processing cost. However, its total
maintenance and storage expenses are the highest. The
proposed-materialized-views method requires a lower
query processing cost than the all-materialized-views
method, also its total cost is also minimized.
Table 3 gives the total cost of query on the different
views by considering the parameters storage cost,
maintenance cost & Net benefit as it is given in the
proposed work. The net benefit and the storage
effectiveness can be calculated to determine an optimal
set of materialized views. The net benefit of
materializing view calculated as follows
Net Benefit = Benefit – Maintenance cost –Storage cost
Different graphs are also presented, Graph1 represents
the Execution Time versus Databases which is given in
milliseconds where different databases plots with the
help of proposed methodology & observed that the
proposed method takes minimum time for execution than
the without Materialized view.

Table 1: Subset of user queries

User Queries
Quer

y
freq.

View
s

Number of
Records in
Summary

view Table

Size
(in
Byt
es)

SELECT SR, DO, AREA,
CUSTOMER,

EMTBRANCH,
PRINCIPAL, MODEL,

CNCCONTROL,
MACHINESR,

DELYON, STARTON,
COMMON,

COMMANBY,
WARRENTYUPTO,

REMARKS,
TARGETDT

FROM BMC ORDER

2
BM
C

View
4387 289.

00

BY DO;

SELECT
DIVISIONSTATE,

RESIDENTIAL,
COMMERCIAL,
INDUSTRIAL,

TRANSPORTATION,
ALLECTORS

FROM
ELEPRICEPERUSER

ORDER BY
ALLSECTORS;

1

ELE
PRI
CE

PER
USE

R
View

4660 310.
00

SELECT URL, DATE
FROM SEARCHES

ORDER BY DATE;
1

SEA
RCH
ES

View

3000 156.
00

SELECT PRODUCTID,
NAME, DEALER,
PURCHASEDATE,

QUANTITY,
MANUFACTURINGDAT

E,
SOLD, PRODUCTGRPID

FROM
PRODUCTDETAILS

GROUP BY
PRODUCTID;

1

PRO
DUC

T
DET
AIL

S
View

5564 380.
00

Table 2: The query processing, maintenance and storage cost for three
materialization strategies

Strategy Query
Processing

Cost

Maintenance
Cost

Storage
cost

Total
Cost

All- virtual-
views

16230 0 0 16230

All-
materialized -

views

1026 2689 1135 4850

Proposed-
materialized-

views

986 2380 380 3746

The total cost computation is given in Table 3 as per the
cost computation strategy described in proposed work.

Table 3: Cost evaluation of materialized view in terms of number of
blocks.

Views Total
(Call)

Benef
it

Stora
ge

Cost
Cstore
(Vi)

Mainten
ance
Cost

Cm(Vi)

Net
Benefit

Net

To
tal
Co
st

(Ct

otal)

BMC

View

150456 10345

8

289 1784 101385 49

07

1

ELEPRI

CEPER

USER

View

103290 88930 310 2116 86504 16

78

6

SEARC 90345 82350 156 584 81610 87

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.8, August 2010

32

HES

View

35

PRODU

CTDET

AILS

View

123504 94356 380 2380 91596 31

90

8

Graph 1: Execution Time (ms) versus Databases.

0

50

100
Using Proposed
MV
Without MV

The execution time taken by the proposed materialized
view algorithm and without using materialized view for
various databases is shown in Graph 1. The execution
time is given in terms of milliseconds. The comparison
of implemented proposed method is given with CEMS
(cost effective approach for Materialized View Selection)
and Optimized CEMS on the basis of execution time in
Graph 2 and Graph 3.
Graph2 reprents the comparison between the CEMS
method and proposed methodology. Graph plots between
the Execution time verses Database size & it is identified
that the proposed method takes a minimum time for
exection

Graph 2: Execution Time (Sec) vs. Database Size (KB)

0
10
20
30
40
50
60

0.5 1 1.5 2 2.5 3

CEMS

Proposed
Algorithm

In graph 3, the execution time taken by the proposed
materialized view algorithm The execution time is given
in terms of milliseconds. Here the comparison is
implemented using the proposed method with Optimized
CEMS (cost effective approach for Materialized View
Selection) on the basis of execution time and it is
observed that proposed method requires a minimum time
for execution & this minimizes the total cost of query for
processing [25,26]

Graph 3: Execution Time (Sec) vs. Database Size (KB)

0

20

40

60

0.5 1 1.5 2 2.5 3.5

Optimized CEMS

Proposed Algorithm

5. Concluding Remarks:
The materialized view is most beneficial for improving
query performance as it stores pre-computed data. But all
of the views or queries are not candidates for
materialization due to the view maintenance cost. The
selection of views to materialize is the important issues
in data warehouse. In this article we have outlined a
methodology whether the views created for the execution
of queries is beneficial or not by considering the various
parameters: cost of query, cost of maintenance, net
benefit & storage space. We have presented proposed
methodology for selecting views to materialize so as to
achieve the best combination good query performance.
These algorithms are found efficient as compared to
other materialized view selection and maintenance
strategies. The total cost, composed of different query
patterns and frequencies are evaluated for three different
view materialization strategies: 1) all-virtual-views
method, 2) all materialized-views method, and 3)
proposed materialized-views method. The total cost
evaluated from using the proposed materialized-views
method is proved to be the smallest among the three
strategies. Further, an experiment was conducted to
record different execution times of the proposed strategy
in the computation of a fixed number of queries and
maintenance processes. Again, the proposed
materialized-views method requires the shortest total
processing time which minimizes the total cost of query
processing.

References:

[1] Gorettiv K.Y. Chan, Qing Li and Ling Feng, “Optimized
Design of Materialized Views in a Real-Life Data
Warehousing Environment,” Internation Journal of
Information Technology Vol.7, No 1 Sept 2008.

[2] S.Chaudhuri and U. Dayal, “An Overview of Data
Warehousing and OLAP Technology,” SIGMOD
Record, vol. 26, no. 1, pp. 65-74, 1997.

[3] S Chen and E.A. Rundensteiner, “GPIVOT: Efficient
Incremental Maintenance of Complex ROLAP Views,”
21st International Conference on Data Engineering
(ICDE’05), pp. 552-563, 2005.

[4] A.N.M.B. Rashid and M.S. Islam, “Role of Materialized
View Maintenance with PIVOT and UNPIVOT

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

33

Operators,” IEEE International Advance Computing
Conference (IACC’09), Patiala, India, pp. 951-955,
March 6-7, 2009.

[5] S.R. Valluri, S. Vadapalli, and K. Karlapalem, “View
Relevance Driven Materialized View Selection in Data
Warehousing Environment,” Proceedings of the 13th
Australian Database Conference (ADC2002), Melbourne,
Australia, vol. 5, pp. 187-196, 2002.

[6] H. Gupta, “Selection of Views to Materialize in a Data
Warehouse,” Proceedings of ICDT, pp. 98-112, 1997.

[7] H. Gupta, “Selection of Views to Materialize in a Data
Warehouse,” Proceedings of ICDT, pp. 98-112, 1997.

[8] H. Gupta and I.S. Mumick, “Selection of Views to
Materialize under a Maintenance Cost Constraint,”
Proceedings of ICDT, pp. 453-473, 1999.

[9] R. Chirkova, A.Y. Halevy, and D. Suciu, “A Formal
Perspective on the View Selection Problem,” Proceedings
of VLDB, pp. 59–68, 2001.

[10] J.Yang, K. Karlapalem and Q. Li, “Algorithms for
materialized view design in data warehousing
environment,” Proceedings of Twenty Third Intl. Conf. on
Very Large Data Bases, pp.136-145, Aug 1997.

[11] Gang Gou, Jeffery Xu Yu and Hongjun Lu, “A* Search:
An Efficient and Flexible Approach to Materialized View
Selection”, IEEE Trans. on Systems, Man and Cybernetics
– Part C: Appl. And Reviews, Vol. 36, No. 3, May 2006.

[12] Gupta, H. & Mumumick, I., “Selection of Views to
materialize in a Data warehouse”, IEEE transactions on
Knowledge & Data Engineering, vol: 17, no:1, pp:24-43,
2005.

[13] J.Yang, K. Karlapalem, and Q.Li. “A framework for
designing materialized views in datawarehousing
environment”. Proceedings of 17th IEEE International
conference on Distributed Computing Systems, Maryland,
U.S.A., May 1997.

[14] H. Gupta. “Selection of Views to Materialize in a Data
Warehouse”. Proceedings of International Conference on
Database Theory, Athens, Greece 1997.

[15] Ziqiang Wang and Dexian Zhang, “Optimal Genetic View
Selection Algorithm Under Space Constraint”,
International Journal of Information Technology, vol. 11,
no. 5, pp. 44 - 51,2005.

[16] K. Aouiche, P. Jouve, and J. Darmont. “Clustering-based
materialized view selection in data warehouses”, In
ADBIS’06, volume 4152 of LNCS, pages 81–95, 2006.

[17] Napster Homepage, http://www.napster.com,
[18] Kazaa Homepage, http://www.kazaa.com, 2006.
[19] B. Babcock, S. Chaudhuri, and G. Das, “Dynamic Sample

Selection for Approximate Query Processing,” Proc. 22nd
ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’03), pp. 539-550, 2003.

[20] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks
in Peerto-Peer Networks,” Proc. IEEE INFOCOM ’04,
2004.

[21] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, and
Vana Kalogeraki, “Efficient Approximate Query
Processing in Peer-to-Peer Networks,” IEEE Trans on
Knowlwgde and Data Engg., Vol. 19, No. 7, Jul 2007.

[22] Shantanu Joshi and Christopher Jermaine, “Materialized
Sample Views for Database Approximation,” IEEE Trans
on Knowledge and Data Engg., Vol. 20, No. 3, Mar 2008.

[23] F. Olken, “Random Sampling from Databases,” PhD
dissertation, 1993.

[24] C.H. Choi, J. X. Yu and G. Gou, “What difference
heuristic make: maintenance cost view selection
revisited,” Proceedings of the third Intl. Conf. on
Advances in Web-Age Information Management,
Springer-Verlag.pp.313-350, Jan 2002.

[25] B.Ashadevi and R.Subramanian, “ Optimized Cost
Effective Approach for Selection of Materialized views in
Data Warehousing”, International Journal of Computer
Science and Technology, Vol.9 No.1 ,April 2009.

[26] Ashadevi and R.Subramanian, “A Cost Effective
Approach for Materialized Views Selection in Data
Warehousing Environment”, IJCSNS International Journal
of Computer Science and Network Security, vol.8
No.10,October2008.

[27] K.Y.Can, Qing Li ,Lin Fen, “Design and Selection of
Materialized Views in a Data warehousing Environmnet :
A Case Stude”.

[28] A.N.M. Bazlur Rashid and M. S. Islam , “An Incremental
View Materialization Approach in ORDBMS”,
International Conference on Recent Trends in Information,
Telecommunication and Computing 2010

Mr. Pravin P.Karde was born in
Amravati, Maharstra in 1975. He
received the Post Graduate Degree
(M.E.) in Computer Science &
Engineering from S.G.B. Amravati
University, Amravati in the year 2006
& pursuing the Ph.D degree in
Computer Science & Engineering.
Currently he is working as an Assistant

Professor & Head in Information Technology Department at
H.V.P.M’s College of Engineering & Technology, Amravati.
His interest is in Selection & Maintenance of Materialized
View.

Dr. V.M. Thakare was born in Wani,
Maharashtra in 1962. He was worked
as Assistant Professor for 10 Years at
Professor Ram Meghe Institute of
Technology & Research, Badnera and
P.G.Department of Computer Science,
S.G.B. Amravati University, Amravati.
Currently he is working as Professor
& Head in Computer Science from last

9 years, Faculty of Engineering & Technology, Post Graduate
Department of Computer Science, SGB Amravati University,
Amravati. He has published 86 papers in various National &
International Conferences & 20 papers in various International
journals. He is working on various bodies of Universities as a
chairman & members. He has guided around 300 more students
at M.E / MTech, MCA M.S & M.Phil level. He is a research
guide for Ph.D. at S.G.B. Amravati University, Amravati. His
interest of research is in Computer Architecture, Artificial
Intelligence and Robotics, Database and Datrawarehousing &
mining.

