
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

48

Manuscript received September 5, 2010
Manuscript revised September 20, 2010

A Software Approach for the Design of a Virtual Plant
Generator

Lucien Ngalamou† and Leary Myers††

†School of Engineering, Grand Valley State University, 301 W. Fulton, Grand Rapids, MI 49504

††University of the West Indies, Mona Campus, Kingston 7, Jamaica

Summary
This paper presents the design considerations of a Virtual Plant
Generator (VPG), which seeks to address the need for a
simplified, yet effective method to represent the virtual models of
control/automation processes, thus providing a mean by which
the control logic of a system can be visually emulated. This
method eliminates the need for testing control logic on actual
plant equipments, by replacing them with a virtual model
constructed using VPG. VPG is a component of a software tool
called Industrial Process Control Studio (IPCS) dedicated to
industrial process control and automation. IPCS is organized in
four major modules according to the criteria of modeling,
supervision, human-machine interfacing, and virtual
representation
Key words:
Virtual plant generator Virtual model, Emulation, Industrial
Process Control Studio

1. Introduction

In a broad sense a programmable logic controller (PLC)
can be defined as a microcomputer as well as a
microcontroller [1], [2]. They both comprise the same
basic components: an arithmetic and logic unit (ALU), a
control section, a local memory area, and input/ output
(I/O) ports. They are however usually less powerful than a
personal computer. Some common PLC applications are:

- batch processing and material handling in the
chemical industry,

- machining and test stand control,
- data acquisition in the manufacturing industry,
- wood and chip handling in the lumber industry,
- filling and packaging in the food industry, and
- furnace and rolling mill controls in the metal

industry [1], [3].
PLCs are now used to replace traditional relay-based
controllers that were commonly found in control industrial
processes as they offer more flexibility. The menu of
options that contribute to this flexibility include: the small
size of the PLC facilitates locality of controller with the
machine or the process being controlled, user friendly
computer software to allow specification of the control
process in the standard methods of programming [3]
whether Structured Text (ST), Function Block Diagram

(FBD), Instruction List (IL), Sequential Function Chart
(SFC), Ladder Diagram (LD) or other modern
programming constructs such as state diagrams,
networking in local area networks (LAN) which allows for
remote management of control processes through
communication ports and the standardization of hardware
interfaces for manufacturer interchangeability [1], [3], [4].
To effectively deploy PLCs in any process control or
automation endeavor, there is a requirement for the
integration of elements such as electronic circuits, sensors,
actuators, and software integrated development
environments (IDEs). An IDE generally consists of a
graphical user interface (GUI), a machine code
generator/interpreter, a simulator/debugger, and a loader.
The design of IDE tools for PLCs requires a good
knowledge of visual programming, software engineering,
and system programming [4], [5]. It might be interesting to
consider that a PLC or any other device to be used in a
control process should be seen as a resource and it is when
the control problem is clearly modeled that a choice of
PLC is made. Reasoning alone this line, a research project
was initiated that consists of analyzing and developing an
industrial process control tool for efficient deployment of
PLCs in single or distributed modes [23]. By deployment
we mean all the steps that consist of control specification,
model capture of the process using IEC programming
languages, formal verification, resource allocation, virtual
plant modeling, supervisory control, and code generation.
Process Automation may be conceptualized in terms of
above functional modules. Each of these modules is
responsible for the execution of some particular program
functionality, and collectively, they function as the
Industrial Control Studio. Figure 1 below is a block
diagram of the Industrial Process Control Studio, and
actually serves as a template for the actual implementation
of the control studio.
It is to be noted that all the modules provided for the
control studio consist of the following:

- Visual Plant Generator
- Formal Verification
- Schematic Generator
- Resource Allocation and Database
- Simulator and Real-time Debugger
- Report Generator

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

49

- Retargetable Code Generator
- IEC 61131-3 Model Capture
- Scada Module1,
- Human-machine Interface (HMI)
- XML Engine and Synchronizer.

Fig. 1. Block Diagram of the Industrial Process Control
Studio (IPCS) Tool

These modules are further organized in four major groups
according to the criteria of modeling, supervision, human
machine interfacing, and virtual representation.
The complete deployment of ICPS in a distributed control
environment uses concepts similar to the Lintoutch [12]
(Figure 2), which is an open source HMI software for
real-time monitoring of process automation. The
development of the following elements are considered:

- IPCS IDE (Integrated Development
Environment) is used to capture the model of
control problems and the deployment PLCs. Each
control model may have HMI, Scada, VPG, and
Simulation/Debugging Modules as part of a
project which can later be deployed to the IPCS
Server.

- IPCS Runtime downloads the deployed ICPS
Project, visualizes the screens, and sends user
generated changes to the IPCS Server. The
communication protocol used to exchange data
among IPCS Server and one or more IPCS
Runtimes is a custom made and documented
protocol built on top of TCP/IP.

- IPCS Server connects to the monitored systems
via special industrial protocols and sends changes
of the data to the IPCS Runtime. New
communication protocols be plugged to the IPCS
Server by developing new Server Plugins.

Fig. 2. IPCS Architecture

This paper analyses the design of the virtual plant
generator (VPG) module of the IPCS. The design and
implementation of VPG seeks to address the need for a
simple yet effective method of modeling
control/automation systems. In addition, the software must
also be time saving and cost effective to allow fast
simulation of PLC control logic code. These goals are
intended to be accomplished through the elimination of
testing control logic on actual industrial plant equipment.
Instead, the PLC control logic will be tested within a
virtual environment which is expected to give a general
understanding as to the validity of the control logic code.

A review of existing tools leads us to two main software:

- General Electric’s DataViews [5]
- Festo Didactic’s EasyVeep [6]

Although the two software systems do not possess exactly
what the VPG is intended to do, they have similar
attributes.

DataViews is a graphics solution for programmers
interested in developing their own Human Machine
Interface. It consists of customizable graphic development
tools that allow the creation of robust, dynamic graphics
within any application design. The integration of these
graphics within the application is done at a much shorter
time than it would take a programmer to program them
individually. Such time conservation allows programmers
to focus more on the overall application design. The
design of the Virtual Plant Generator is intended to
eliminate the need for having to design graphics but to
have the graphics readily available for control system
designs.

This eliminates the need for the use of extensive coding of
the system graphics design. However, the design only
permits the specifications of the control models that are

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

50

designed for the Generator. Such a design limits the
flexibility of the graphics but the intention is to build the
Generator to model abstract control systems so that there is
no need for the modeling of the objects to vary beyond
what they are programmed to do. As also outlined, the
Virtual Plant Generator is intended to allow for rapid
prototyping on programmable logic controllers hence the
elimination of graphics designs via coding would decrease
the amount of time spent on graphical model designs and
increase the time spent on performing other tasks relevant
to control system designs.

EasyVeep (Easy Visualized Equipment Emulation
Program) is a software package specifically designed to
aid in the programming of PLCs. It perhaps possesses the
closest similarity to the Virtual Plant Generator. It is
specifically designed to allow for control logic to model
defined control/automation systems. There are twenty
eight defined virtual control systems designed within it.
Operation of the software is conducted by utilizing
external hardware devices and control logic language tools.
The simulator allows for the PLC to control the virtual
environment within EasyVeep rather than a real control
system as it is designed for as supported by VPG.
EasyVeep can also be utilized to download more virtual
designs that have been conceived by FESTO [8]. Online
requests may also be made for ideas on more virtual
control system designs.

The rest of this paper is organized in four sections. Section
2 describes The design concept and implementation of
the Virtual Plan Generator followed by section 3, which
presents the testing. Section 4 deals with the conclusion
and future work.

2. Design Concepts and Implementation of VPG

2.1. Design Specification

The Virtual Plant Generator is intended to allow the design
of any abstract virtual control system. After the system
design, control logic code is expected to be conceived and
input to VPG, which then execute on the designed virtual
system. The operation of the code can then be verified
based on the system response. Virtual control systems are
not expected to function in unison when constructed.
Instead, the system is to be strictly based on control logic
being used to control it. Individual models are however,
expected to function on their own when simulated.
Actuators will not be expected to possess the ability of
being controlled automatically. Instead, they should be
manually controlled to indicate responses within the
system. This gives the programmer the opportunity to
interact with the system and so be able to determine
whether or not the system responds as is expected. The

designs of control/automation scenarios will be limited by
the models and the programmer’s imagination.
Programmers utilizing VPG will experience time saving
during the testing of control logic since the VPG will not
require any hardware interfaces to function. Instead, VPG
will function as a virtual PLC and environment, being able
to interpret control logic and simulate it within the
virtual plant designs.

The following features of the VPG are expected:

- Time Efficiency - Efficiency is sought through

the elimination of code within graphical model
designs and the elimination of external hardware
connections for operation.

- Cost Effectiveness - Reduced cost is expected as a
result that no hardware required for operation.

- Ease of use - Easy usage is considering during
the design of the GUI which is intended to be
user friendly.

- Increased Productivity - With good time efficiency,
more time can be available for design of control
logic or more control/automation system designs.

2.2. Design Considerations

2.2.1. Choosing the Software Tool

In deciding how to implement a prototype of the Virtual
Plant Generator, the choice of the most appropriate
software tool was made. This was done by considering
two software development tools: Macromedia Flash [18]
and Qt [19]. An overview of the research done into the
Macromedia Flash and QT will now be given to show the
viability of using these development tools for the
modeling of the virtual objects.

2.2.2. Considering Macromedia Flash

Macromedia Flash [19] is a development tool that is
geared mainly towards creating interactive web site
graphics. “Flash was originally just a vector animation
tool but is now one of the most advanced programs for
creating rich Internet applications to provide powerful user
experiences [14]”. The suitability of Flash for web
graphics lies in its ability to create animations with small
file sizes. These small file sizes are attributable to the
fact that it uses vector graphics. Vector graphics
can be scaled to any size without causing pixel alteration, a
flaw that is associated with the resizing of ordinary bitmap
graphics. Vector graphics are also very small in size, be-
cause they are generated mathematically. As an example,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

51

to draw a circle, Flash will only store the circle’s center
point and radius. Using this information it will compute
which pixels to draw in order to produce the circle. On the
other hand, bitmap (raster) graphics stores information
about every point (pixel) in an image. As a result the file
size for bitmap graphics is generally much larger than that
of vector graphics, and bitmaps tend to look jagged or
pixelated when scaled. Bitmaps are more appropriate for
photographic images that can’t be described easily with
vectors [15]. For the implementation of interactivity in the
application the use of a language known as Action Script
is necessary. “Action Script is the language you use to
add interactivity to Flash applications. You don’t have to
use Action Script to use Flash, but if you want to provide
basic or complex user interactivity, work with objects other
than those built into Flash (such as buttons and movie
clips), or otherwise turn a SWF file into a more robust user
experience, you’ll probably want to use Action Script
[16]”. In order for the modeling of the various objects of
an automation process to be achieved, with the use of
Macromedia Flash, the need for the use of the Action
Script language is imperative. Using Macromedia Flash
for the design VPG requires the use of two programming
languages will have to be utilized; one for the creation of
the GUI (Graphical User Interface) which will provide the
interfacing of the application with external parameters
(user’s files, signals), and the other language for the
modeling of the Virtual Plant objects.

2.2.3. Considering Qt

Qt [18] is a C++ framework for developing cross-platform
GUI applications. Qt allows programmers create
applications that will run on Windows, Mac OS X, Linux,
Solaris, HP-UX, and many other versions of Unix with
X11. The use of Qt on a single platform in no way
undermines its performance as the numerous features that
this development framework provides are quite capable of
competing with the more popular GUI development
applications. Among the uses of Qt include the creation of
sophisticated software systems, such as 3D animation tools,
digital film processing, electronic design automation
(for chip design), oil and gas exploration, financial
services, and medical imaging [17]. Among the benefits
that Qt provides are its single-source compatibility, its
feature richness, its C++ performance, the availability of
the source code, its documentation, and the high-quality
technical support. For the rendering of images, as needed
for the virtual representation of objects, Qt provides a very
powerful 2D Paint Engine that not only allows the creation
of various shapes and complex paths, but also allows the
drawing of popular picture files such as JPEG and PNG
files. With respect to the adding of interactivity to the
objects, the C++ style classes provided are more than
capable of creating structures that would control the

properties of the objects. As far as the animating of the
objects are concerned, the use of timer events has been
suggested in Qt literature as a viable solution for producing
animated displays.

2.2.4. Macromedia Flash versus Qt

In considering the merits of the two software tools
contrasted, it was ultimately decided that the use of the Qt
software development application was the most appropriate
choice for the modeling of the virtual objects and its
system. This was primarily due to the fact that the graphic
intensity required by the Virtual Plant Generator can be
produced using both of the above named tools, however,
the simplification that Qt provides by integration into the
target development language gives incentive for its use in
this project. This underscores the fact that the need to
learn additional languages will not be necessary as Qt is a
C++ based framework, and all the necessary programming
that needs to be done in order to complete the Virtual Plant
Generator can be conducted from one programming
environment.

2.2.5. Design Approach

The concept of animation is quite common to the design
of any animated film. It is based on sequentially
displays two-dimensional graphics with the effect of
creating motion. Such motion is popularly displayed as
video files. For the purpose of the VPG, the design of
animated graphics is done utilizing this animation method.
The general model picture is first designed within the
Adobe ImageReady Tool[?]. From here, the picture is
placed onto an empty picture window where Qt functions
are utilized to paint onto it. The painting occurs
sequentially to form the model picture and hence creates
various frames which are stored within a list of pictures.
This list is sequentially walked through to create
animation.

2.2.6. Data Coding for VPG

An extended and more elaborate use of the Virtual
Plant Generator is to represent the virtual model of
a control/automation process being supervised by a PLC
or a group of PLCs. In this regard the control logic of
the system is input directly into the application to
control the animated response of the Virtual Plant, instead
of the use of a control file.

There are two approaches to designing the Virtual Plant
Generator to operate on PLC control logic:

1) Designing the software to interpret PLC output
signals

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

52

2) Designing the software to interpret the logic code
input to the PLC

In making the decision as to which approach to take to
the data coding for VPG, taking into account the need
for a cost effective and time saving method, it was
concluded that the second choice was the most
appropriate. Interpreting control logic input to the PLC
allows the development of control logic without the need
for a PLC to test the code. Basically, the designed
software is intended to be a virtual PLC allowing itself to
be programmed and used to control an abstract virtual
control/automation system. This is considered more
conservative as compared to utilizing a PLC. PLCs are
costly and hardware based, allowing for less
effectiveness in simulating control logic quickly.
Reading PLC control logic, on the other hand, simply
requires a method of being able to interpret what the logic
means without any hardware interaction. This would
allow users to test control logic at anywhere and
anytime without the need for a PLC to interface with. All
that would be needed is a Control Logic Language
Development Tool and the Virtual Plant Generator. This
now leads to another important task which requires the
evaluation and selection of an appropriate PLC control
logic development tool. To select the development tool, an
analysis was first needed to determine the appropriate
PLC language that the Virtual Plant Generator would be
simulating. The IEC 61131-3 [2] standard details the
different forms of control languages that are utilized and
hence allows for the determining of the appropriate
language to be utilized. There are five different
programming language standards. Two are textual whilst
the remaining three are graphical: Textual Languages
(Structured Text and Instruction List (Statement List));
Graphical Languages: (Function Block Diagram, Ladder
Logic Diagram, a n d Sequential Function Chart).
Logically, it would be considered easier to interpret
textual languages rather than design software to interpret
graphical code. How- ever, the most popularly utilized
method of PLC programming is the Ladder Logic
Diagram. The reasoning goes back to before the
development of PLCs where control systems were
designed using relays. The relays however, could only be
used for making simple logic decisions in control systems.
As the PLC came into the spotlight in the 1970s,
engineers now had to cope with programming
them as compared to designing and implementing
relays to control systems. To reduce the need to retrain
engineers and trades people, the ladder logic language
was developed which purposely mimics relay logic within
its language. This eventually made ladder logic the most
utilized control logic language [6]. Despite this language
being the most popular, however, it still makes the

development of the VPG software system difficult
compared to utilizing textual languages. Nonetheless,
ladder logic was considered the primary language that
needed to be interpreted by the VPG. Following this
decision, there was the need to determine the type of PLC
that the software should be designed for. There exists
many PLCs, however, there are some that are more
widely utilized as compared to others. This was
considered the most appropriate approach to selecting a
type of PLC. Siemens, Allen-Bradley, ABB, Mitsubishi,
Omron, and General Electric are all popular brands of
PLCs but to reduce the scope, a decision needed to be
made. This decision consisted of determining which type
of PLC language development tool was capable of
programming in multiple control logic languages and
capable of converting ladder logic language into a type of
textual language. Allen-Bradley’s “PLC Communicator
DEMO” can be utilized to create ladder logic diagrams
but is unable to convert the language to an appropriate
textual form. Siemens SIMATIC “STEP 7 MicroWIN”
[22] is capable of creating ladder logic diagrams and also
has the ability to convert this graphical code into a
textual one known as an Instruction List language or
Statement List. In addition, familiarity has already been
established with this software and is considered quite easy
to utilize. The PLCs programmed by this software tool are
quite widely utilized in industry. One such example is the
S7-200 which is a micro PLC. It has a small size, is
designed similarly to a brick and consists of a power
supply and input/output modules on-board. In addition, it
has the simplicity of operating on stand alone
applications and may yet even be used to
control/automate even more elaborate and complex
control system designs. Having chosen the software to
develop the control logic with the most effective
methodology, there was the need to analyze the
instruction set for the IL language. Considering the time
allotted for the development of the VPG, it was necessary
to determine the most important instructions to design the
system to interpret. These are basic logic statements
allowing models to be controlled by the status of other
models.

2.3. VPG Architecture

The design of VPG requires the use case UML diagram
that gives a representation of what the system is expected
to do. Here, the actor is able to interact with the VPG
system via the activities of the system. The system’s
activities offer more flexibility and shows the levels at
which the actor is allowed to interact with the system. In
return, these system activities allow for screen output
changes as well as the ability to create and modify file
formats specific to the operation of the VPG. At any one
point in time, there is only expected to be one actor

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

53

(client) interacting with the system thereby allowing the
system to be a stand alone software tool capable of being
operated by a user who is competent in the application’s

functionality.

Actor1

System
Start Program

*

*
Model Insertion
into Workspace

Load Project to
Workspace

Save Project

Run Simulation Error Detection

View Outputs

Model Editing

Print Project

Help File

Control Logic File
Editor

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

«extends»

«extends»

VPG
File

Logic
Control File

«extends»

Screen
Output

«extends»

«extends»

Hardcopy
Output

«extends»

Configuration
File

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

Configuration File
Editor

*

*

«extends»

«extends»

Fig. 3. Use Case Diagram of the VPG

A typical narrative operation of the system illustrated in
Figure 3 is described
as follows:

1) The user starts the software GUI.
2) The user selects the workspace tabulation window.
3) The user selects the control model option in the

toolbox window by clicking it once.
4) The user inserts components/models

into the workspace by clicking the location for the
model to be placed.

5) By right-clicking the models within the workspace,
they can be edited to suit the user.

6) The control logic tabulation window is selected.
7) Control logic STL is created within the Control

Logic File Editor or pasted from a control logic
development tool.

8) The configuration tabulation window is selected
and the names of the workspace models are
assigned the variable names within the STL code.

9) The project is saved.
10) Simulation is begun by selecting “Run

Simulation”.
11) In the event of errors within the execution of the

code onto the workspace environment, prompts are
made to indicate the need for remedial measures.

12) Steps are taken to troubleshoot the code and the
virtual environment.

13) With no errors, the simulation commences allowing
the user to activate discrete inputs and view
discrete outputs.

The potential classes for the application were
brought about by analyzing the conceived design

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

54

of the VPG. Table 1 provide the initially deduced
attributes of the software classes.

Table 1: Potential Classes and attributes of the VPG
Class Attributes
VPG Main Window VPG Model Toolbox, Help

Window, Tab Window
VPG Model Motor Model, Tank Model, etc.
VPG Model Toolbox Motor Model, Tank Model, etc.
Workspace Window VPG Models, LCF Control Model,

VPG File, Control File,
Configuration File

Control Logic Window Control File
Configuration Window Configuration File
Help Window Documentation
Tab Window Workspace Window, Control Logic

Window, Configuration Window
LCF Control Model Dependents, independents

The diagram of Figure 4 shows the individual classes and
how they relate to each other. Each class consists of
attributes of which operations are performed on so as to
produce new data. The data is then saved as attributes
of a particular class. Each operation is part of a class and
so entities can be divided into classes, operations and
attributes. The overall diagram highlights the work
previously done in addition to the ideas conceptualized to
improve the software. Almost all entities have been
modified and as such, there is need for the documentation
of all changes made to the prototype model of the VPG.

Fig. 4. Static UML Class Diagram of the conceived classes

These concepts were implemented as the Virtual Plant
Generator software tool. An overview of its user interface
is given in Figure 5. With respect to the workspace
environment, all conceived ideas were unable to be shown
within this design approach but they are documented within
the program design and the implementation of the
workspace class.

Fig.5. An Overview of the VPG’s GUI

The control logic tabulation gives the user access to an

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

55

environment capable of designing control logic code
based on the instruction set designed for. This environment
is not expected to be where the code will be created.
Instead it is expected that a control logic language
development tool will be used to create the logic and then
the logic be copied within this window. For users familiar
with the language however, the code can be typed here
provided it is within the limitations of the instruction set.
The configuration window allows for the control logic
variables to be assigned to the models within the
workspace. The technical jargon for the design of control
logic is usually Qx.x for outputs and Ix.x
for inputs as stated within the ”Communication
Protocols” section of [20]. This window basically
provides an interface for the workspace window and
control logic window; allowing users to utilize code

created by programmers and implement it in the designed
virtual environment.

3. Testing and Evaluation

For the of any new technology, be it hardware or software;
it is a standard procedure to apply testing and evaluations.
Super classes were developed first, it was possible to apply
a defensive programming techniques for other classes.
This approach accounts for the immediate testing of any
function following its implementation. As such, the
functions could be evaluated to ensure that they do indeed
perform as specified. The most important concerns the
memory leakage during operations. Table 2 shows the non
existence of such phenomena during VPG operations

Scenario 1: The VPG prototype is started and basic operations done whilst monitoring the memory usage of the system.

Input Result Reasoning
Software application is started. Memory usage stands at

approximately 65 Mb
Memory usage is expected to remain fairly constant since
the animation frames for each type of model is created
when the system initializes.

Several models are inserted into
the workspace, STL code is
added and configurations made

Memory usage stands at
approximately 65 Mb

Since the insertion of models is the main reason for a lot
of memory usage, allowing one list of animations for
each type of model allowed for the memory to not vary at
all.

A new project is loaded Memory usage increases to
approximately 70Mb
(See Figure 26 of Appendix D)

The memory usage was expected to remain constant but
it increased by 5Mb. This was however considered small
and insignificant since no more change in memory was
observed. Research is however, expected to be done on
this issue at a later date.

More projects are opened and
models added to them

Memory usage stands at
approximately 70 Mb

The 5 Mb seems to only occur on the first opening of a
project but afterwards, the memory holds constant at 70
Mb.

Table 2: The VPG prototype is started and basic operations done whilst monitoring the memory usage of the system

Other tests, which are documented in [20], were performed
to prove the reliability and the stability of the VPG
software tool. Figure 10 shows one of the screen shots
relating a step in the design of the virtual model of a thank
system.

4. Conclusion and Future Work

Following the final testing of the Virtual Plant Generator,
its design was considered a viable venture. Research has
thus far indicated the lack of any software tool similar to
VPG. In order to justify the flexibility of the software,
several control/automation were designed and
programmed for simulation using Statement List (STL)
instructions. The results obtained further justify the
development of such software tool.
VPG as part of IPCS possesses the potential to be quite an
attractive software tool for PLC technology. There are
however, several useful improvements that can still be
made to make it a success story, they are listed below:

1) Control model animations based on the system;
2) Ability to interpret the entire ser of the instruction

list;
3) More models to be added to the software;
4) Ability to interpret more than one control

language.

Fig. 7. A step in building the virtual model of a tank

system

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

56

References
[1] I. Warnock, Programmable Logic Controllers - Operation

and application, Prentice Hall, Englewood Cliffs, NJ; 1998.
[2] ICE (International Electrotechnical Commission), IEC

Standard 61131-3: Programmable Controllers - Part 3, 1993
[3] T. Mandel The Elements of User Interface Design, John

Wiley & Sons, 1997.
[4] Marriot, K. and Myers B. (1998), ‘Visual Language Theory’,

Springer.
[5] General Electric Industrial Systems (GE)

(2010), ’www.gefanuc.com’, Accessed September 25,
2010.

[6] EasyVeep, http://www.easyveep.com, accessed September
25, 2010.

[7] Beck, L. L. (1997), ‘System Software: An Introduction to
Systems Programming’ Addison Wesley.

[8] Festo Didactic (2010), ‘www.festo-didactic.com’, Accessed
September 25, 2010.

[9] Vogeler, D., Wilson, E., and Barber, L. (2005),

‘Macromedia Flash Professional 8 UNLEASHED’, Sams.
[10] Lott, J. (2006), ’Chapter 1. Drawing in Flash in Flash 8

Cookbook”’, O’Reilly pp. 1-36.
[11] Dehaan, J. and Dehaan, P. (2005), ‘Introduction in

Learning Action- Script 2.0 for Macromedia Flash’,
Macromedia, pp. 1-6.

[12] Schmitt-Walter Automation Consult (SWAC) (2010),
‘http://lintouch.org’, Accessed September 25, 2010.

[13] D. Boley and R. Maier, ”A Parallel QR
Algorithm for the Non-Symmetric Eigen value
Algorithm”, in Third SIAM Conference on Applied
Linear Algebra, Madison, WI, 1988, pp. A20.

[14] D. Vogeller et al, ”Macromedia Flash Professional 8
UNLEASHED”, Sams, 2005.

[15] J. Lott, ”Chapter 1. Drawing in Flash” in Flash 8 Cookbook,
O’Reilly, 2006, pp. 1-36.

[16] J. Dehaan and P. Dehaan, ”Introduction” in Learning
ActionScript 2.0 for Macromedia Flash, Macromedia,
2005, pp. 1-6.

[17] J. Blanchette and M. Summerfield, ”Chapter 8. 2D and 3D
Graphics” in C++ GUI Programming with Qt 4, Prentice
Hall, 2006, pp. 47-52.

[18] Qt, http://www.trolltech.com
[19] Macromedia Flash, http://www.adobe.com/products/flash/
[20] V. Sahatoo, ”Virtual Plant Generator, Final Report for

ECNG 3020: Special Project for BSc. Electrical
Engineering”, Main Library, Uni- versity of the West
Indies, St. Augustine, Trinidad and Tobago.

[21] Adobe ImageReady Tool, http://www.adobe.com, Accessed
September 25, 2010.

[22] Siemens Energy & Automation Inc. (2010),
www.sea.siemens.com/step/pdfs/plcs.pdf, Accessed
September 25, 2010

[23] L. Ngalamou and Leary Myers, “Modelling PLC
Characteristics for Resource Allocation”, Int. J. Computer
Applications in Technology, Vol.31, No 3-4, 2008 , pp.263 -
274.

Lucien Ngalamou received the
B.Sc.(First Class Honor) Degree in
Applied Physics from the University
of Yaounde, Cameroon in 1989 and
the Master Degree in Electronic
Engineering from the University of
Science and Technologies of
Languedoc, Montepellier-France in
1991. He completed his PhD in

Electronic Engineering from Joseph-Fourier University,
Grenoble-France. He is presently an Assistant Professor in the
School of Engineering, Grand Valley State University, Grand
Rapids - Michigan. His current research interests include
Reconfigurable Computing, Electronic Systems Design, CAD
Tool for Process Automation, Formal Hardware Verification,
Evolvable Hardware, Asynchronous Logic, and Models of
Computation.

Leary Myers is a Lecturer in the Department of Physics,
University of the West Indies – Jamaica and holds a PhD in
Electrical Engineering from the Howard University, Washington
DC. He has occupied such positions as Director - Five Star
Engineering and Scientific Associates Ltd. He was a Part-time
(Senior) Lecturer, School of Engineering, University of
Technology - Jamaica; Research Assistant Professor, Graduate
School of Arts and Sciences; and Senior Research Associate,
Materials Science Research Center of Excellence at Howard
University.

