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Summary 

In this paper, a discrete control method for an unstable 

plant with dead time is proposed. The plant is controlled 

by means of a modified Smith predictor and a predicted-

state feedback technique composed of a plant predictor and 

an observer. Because we use a plant predictor that 

calculates future outputs and states of the plant, we can 

design a controller as if the system had no dead time. The 

state feedback controller with the plant predictor can place 

the poles of the plant at designed locations. Thus, the 

method can stabilize the system, even if the plant has 

unstable poles. In addition, a modified minor feedback 

eliminates the extra dead time component and a steady-

state error caused by input-side disturbance. In simulation 

studies, we show that our proposed method is effective for 

unstable plants with dead time. 
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1. Introduction 

A Smith predictor [1] is an efficient control method for a 

plant with dead time. However, if the plant has unstable 

poles, it cannot stabilize the system, and if the plant has 

integrators, input-side disturbances cause a steady-state 

error. To overcome these problems, many methods have 

been proposed. For instance, Paor et al. [2], [3] proposed a 

modified Smith predictor that has a constraint on the ratio 

of dead time to a time constant. Majhi et al. [4] proposed a 

new Smith predictor with three controllers that are tuned 

by simple tuning formulas. Liu et al. [5] proposed an 

analytical two-degree-of- freedom control scheme for a 

first- and second-order unstable plant. Rao et al. [6], [7] 

presented an enhanced Smith predictor that consists of one 

tuning parameter and offers better performance. In addition 

to modifications to the structure of the Smith predictor, 

new control methods using predictors that calculate the 

future signals of a system have been proposed. The method 

of Watanabe et al. [8] is based on an output prediction for 

a plant. Furukawa et al. [9] proposed a control strategy 

based on a predicted-state feedback technique with an 

observer. The method of Tan et al. [10] is based on the 

generalized predictive control approach. Del-Muro-Cuellar 

et al.[11] used an observer-based predictor with dead time 

partitions to stabilize an unstable plant. 

In this paper, we propose a discrete control method for an 

unstable plant with a long dead time using a plant predictor. 

The plant is controlled by means of a predicted state 

feedback technique and a modified Smith predictor 

composed of the plant predictor and an observer. The 

feedback technique can stabilize the system, even if the 

plant has unstable poles. The modified feedback can 

eliminate a steady-state error caused by an input-side 

disturbance. 

 

2. Plant Predictor 

2.1 Basic Equations 

In this method, we consider the following plant, which is 

controllable and observable, with dead time d. 

   

 ( 1) ( ) ( )p p p p pk k u k d   x A x b  (1) 

 

 ( ) ( )p p py k k c x  (2) 

 

A plant predictor is derived recursively as follows: 
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If the states of the plant are not observed directly, the 

following observer is used. 
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Lo is the observer gain. Note that the observer includes 

dead time d in the manipulated variable. 

2.2 Predicted-State Feedback 

A state feedback control cannot stabilize a system with a 

long dead time. However, the plant predictor solves this 

problem. Fig.1 is a block diagram of a predicted state-

feedback system with a predictor. The characteristic 

equation of the closed-loop system is given by 
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The characteristic equation clearly has no dead time 

components, so the feedback can stabilize the system, even 

for plants with unstable poles. Note that the z-transform of 

the plant predictor (3) can be written as follows. 
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3. Modified Smith Predictor 

3.1 Modified Minor Feedback 

In this section, we propose a modified Smith predictor with 

a plant predictor. The minor feedback of a conventional 

Smith predictor shown in Fig. 2 consists of a plant model 

and a dead-time-free component of the model. That is, it is 

composed of a plant output and a future plant output. To 

cut down on the number of delay devices in the system, we 

realized this idea using the observer output and the plant 

predictor output. 

 

 ˆ( ) ( ) ( )p pv k y k d y k    (7) 

 

However, the feedback causes a steady-state error, if an 

input-side step disturbance is added. To overcome this 

problem, we insert a disturbance rejection controller 

Gdc(z) into the feedback as shown in Fig. 3. 

3.2 Design of Disturbance Rejection Controller 

Gdc(z) 

The controller Gdc(z) eliminates a steady-state error 

caused by an input-side disturbance. We consider it a 

proportional controller, that is, Gdc(z) = Kdc. The 

proportional gain Kdc is obtained by applying the final 

value theorem to the disturbance response GD(z), which is 

given by 
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where, 
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Fig. 1 Predicted State Feedback 
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To eliminate the steady-state error, the following equation 

must be satisfied: 
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When a controller Gc(z) is chosen by 
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the gain Kdc is obtained as follows. 
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3.3 Reference Response 

The reference response is given by 
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where, 
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Fig. 3 Block Diagram of the Proposed Method 
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The reference response is equal to that of the conventional 

Smith predictor. In addition, the controller Gdc(z) has no 

effect if plant model is accurate. Thus, we can set the 

desired reference response with parameters F1 and F2. 

 

4. Simulation 

4.1 Example 1 

Consider the unstable first-order plant with a long dead 

time studied by Rao et al. [7]. 

 

 44
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 (23) 

 

To set the system parameters, the plant is discretized by a 

zero-order hold at sampling time Ts = 0.01[sec]. The 

discrete state formation and the output equation of the 

plant are as follows. 

 

 ( 1) 1.0025 ( ) 0.01 ( 400)p p px k x k u k     (24) 

 

 ( ) ( )p py k x k  (25) 

 

The feedback gains are F1 = −5.8705 and F2 = 0.015, and 

the observer gain is Lo = 0.0059. From (19), the gain Kdc 

is set to 4.0169. The result is shown in Fig. 4. A unit set-

point input is introduced at time t = 0 [sec], and an input-

side disturbance of magnitude −0.05 is added at time t = 

125 [sec]. The figure shows that the disturbance response 

is faster and smoother than that of Rao et al. We assume a 

+5% estimated error in the dead time and a −5% estimated 

error in the time constant. Fig. 5 shows that the proposed 

method achieves more robust stability and better 

disturbance rejection. 

4.2 Example 2 

Consider the unstable second-order plant with dead time 

studied by Liu et al. [5]. 
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To set the system parameters, the plant is discretized by a 

zero-order hold at sampling time Ts = 0.01 [sec]. The 

discrete state formation and the output equation of the 

plant are as follows. 
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  ( ) 0 1 ( )p py k k x  (28) 

 

The feedback gains are F1 = [−3.5172, −8.4016] and F2 = 

0.01, and the observer gain is Lo = [−0.0099, 0.0226]T. 

From (19), the gain Kdc is set to 5.4065. Fig. 6 shows the 

result for a perfect plant model, and Fig. 7 is the response 

when we assume a +10% estimated error in the dead time 

and a +20% estimated error in the unstable time constant. 
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Fig.4 Response of Example 1 
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Fig.5 Response of Example 1 with Estimated Error 
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A unit set-point input is introduced at time t = 0 [sec], and 

an input-side disturbance of magnitude −0.05 is added at 

time t = 50 [sec]. The proposed method clearly achieves a 

better reference response and disturbance response. 

4.3 Example 3 

We consider the unstable integral plant 

 

 
0.21

( )
( 1)

s

pG z e
s s




 (29) 

 

which was studied by Liu et al. [5]. To set the system 

parameters, the plant is discretized by a zero-order hold at 

sampling time Ts = 0.001 [sec]. The discrete state 

formation and output equation of the plant are as follows. 

 

1.001 0 0
( 1) ( ) ( 200)

0.001 1 0.001
p p pk k u k

   
      

   
x x  (30) 

 

  ( ) 0 1 ( )p py k k x  (31) 

 

The feedback gains are F1 = [−26.99, −339.75] and F2 = 

0.3, and the observer gain is Lo = [0.0069, 0.0037]T. From 

(19), the gain Kdc is set to 0.8874. Fig. 8 shows the result 

for a perfect plant model, and Fig. 9 is the response when 

we assume a +20% estimated error in dead time and a 

−20% estimated error in the unstable time constant. A unit 
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Fig.6 Response of Example 2 
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Fig.7 Response of Example 2 with Estimated Error 
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Fig.8 Response of Example 3 
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Fig.9 Response of Example 3 with Estimated Error 
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set-point input is introduced at time t = 0 [sec] and a 

negative unit input-side disturbance is added at time t = 50 

[sec]. These results also show that the proposed method 

performs better than that of Liu et al. 

5. Conclusion 

We have proposed a modified Smith predictor with a plant 

predictor for an unstable plant with dead time. A predicted 

state feedback technique can stabilize the system, even if 

the plant has unstable poles. A modified minor feedback 

with a proportional controller can eliminate a steady-state 

error caused by input-side step disturbance. In simulation 

studies, we have demonstrated the effectiveness of the 

proposed method. 
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