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Summary 
Computer networks of today consist of a multitude of devices, 
technologies and protocols that each in themselves may impact 
the performance as experienced by the end user. A number of 
techniques exist to predict and/or model these variations, each 
with their own relative merit. Bandwidth-Nodes (B-Nodes) are 
one such technique that allows devices and/or technologies to be 
modelled as a single node or as a collection of nodes, each 
exhibiting their own performance characteristics. A simple 
formula is used to calculate the theoretical maximum bandwidth 
of a node which allows for efficiency decomposition. This 
incorporates device sub-optimal operation (eDi) and using 
empirically derived results, eDi for an individual process on a 
particular device can be calculated. This paper focuses on 
evaluating the impact the choice of device will have on network 
performance. By empirically evaluating Access Control Lists 
(ACLs) with a varying number of statements, as well as assessing 
different tunneling techniques, the specific device efficiencies for 
these can be calculated. Using this information, the anticipated 
performance of an ACL network given a technical specification 
can be easily and quickly determined. 
Key words: 
Network Security, B-Nodes, Access Control Lists, Tunneling. 

1. Introduction 

The addition and subtraction of devices, technologies and 
protocols within a computer network may come at an 
additional cost, not only in terms of expenditure for extra 
system infrastructure, but also in terms of overheads which 
may reduce overall system performance. This is especially 
the case for complex security protocols ranging from 
simple Access Control Lists (ACLs) to the IPSec 
framework. These overheads can include additional 
information, such as “control packet” or “data packet” 
overheads [1] as well as those in the form of additional 
processing required by a device in order to achieve the 
desired network administration goal.  A variety of methods 
exists to measure and/or predict this anticipated system 
performance variation. Such methods include [1]: 
1. Rule-of-Thumb: a subjective method typically based 

on prior experience, usually with little mathematical 
rigor. 

2. Stochastic modeling: the use of complex mathematics 
which can be problematic and difficult to understand 
by the typical network administrator, and 

3. Benchmarking: commonly use different scales and 
units, with comparative results possibly requiring 
further interpretation. 

B-Nodes are a method which uses the notion of a 
networks’ bandwidth to provide an “unbiased, empirical 
performance analysis that is simple to use and 
conceptualise and be based on the user perception of 
performance [1]”. B-Nodes are a conceptually simple 
model that use the concept of abstraction to control the 
detail and hide the complexity of a system [2]. A simple 
formula is used to determine the anticipated performance 
which can be used for individual components or for 
networks as a whole [1]. Through the use of recursive 
decomposition, device sub-optimal operation can be 
assessed for a particular device and this information used 
in the B-Node formula to predict the anticipated 
performance of a network for given a configuration. This 
research focuses on empirically evaluating device sub-
optimal operation for Access Control Lists and a variety of 
tunneling techniques, and calculating the eDi parameter of 
these for use in the B-Node formula. 
 
2. Network Performance 
 
There are a variety of terms, units and metrics that are 
employed to describe performance including delay, packet 
loss and bandwidth [3]. As each of these typically use 
differing units of measure, there are numerous metrics and 
measurement methodologies employed to express these 
quantities [1]. One such metric is bandwidth, and in a 
network centric context, it is defined as the data rate at 
which a network link or path can transfer information [4]. 
Specific application data, including any overheads 
incurred in its transportation, may impact the performance 
as perceived by the user i.e. the overall elapsed time an 
application takes to execute over the underlying network 
[5], and this in turn impacts the performance as it is 
perceived by the user [5].  Bandwidth Nodes (or B-Nodes), 
as described by Maj, Veal, et. al [2, 6-13], is a bandwidth-
centric concept used to describe and model the 
“performance of every node and data path …assessed by a 
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simple, common measurement- bandwidth… with the 
common units of …Mbytes/s” [7]. This bandwidth can be 
described using Bulk Transfer Capacity (BTC), which is 
defined as the long term average data rate over the path in 
question [5]. It is calculated by dividing the amount of data 
that was sent by the elapsed time it took to send this 
information [5], and this also uses the common units of 
Mbytes/s. Applications that rely on a networks’ capacity to 
transfer significant quantities of data rely on this BTC. B-
Node theory has been expanded by to account for possible 
reductions in efficiency due to additional network 
protocols and the associated overheads they may incur [1]. 
By decomposing the simple B-Node formula, 
 
(B = C x D x E)     (1) 

 
The “Efficiency” component (E) was shown to be a 
product of all efficiencies (ei) contained within the B-Node, 
with the equation thus becoming: 
 

i

n

i
eDCB
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∏××=

    (2)
 

 
This accounted for Data Packet efficiencies (overheads 
directly added to packets that are transmitting application 
data) and Control Packet efficiencies (packets that carry no 
user data and are used to control link flow) [1]. Devices 
themselves can add latency and processing overhead to a 
system that may not be accounted for in equation 2. As 
such, the concept of device sub-optimal operation (eDi) 
was introduced and the B-Node equation further modified 
to account for this [1]. 
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Empirically derived results must be evaluated for an 
individual process on a particular device [1]. From this, the 
specific device efficiency, eDi, for a particular network 
protocol or technique can be evaluated, and the effect the 
device has on BTC can be determined. 
 
3.  Access Control Lists 
 
Access Control Lists are a Layer 3 technique which 
potentially enhances security by preventing traffic that a 
network administrator defines as unnecessary, undesirable, 
or unauthorized to traverse a network or internetwork [14], 
[15], [16]. They are a sequential collection of permit or 
deny statements that are applied to addresses or upper 
layer protocols that instruct the device to block or forward 
packets based on source or destination address, TCP/UDP 
port numbers or combinations of these [17-19].  ACLs are 

defined on a per-protocol basis [17, 19] and can be applied 
per interface to inbound or outbound traffic, or both [18, 
20]. They limit network traffic and can increase network 
performance, provide traffic flow control, and provide a 
basic level of security for network access [17]. Due to the 
sequential nature of the technology, the order of access list 
statements is significant as the first matching statement 
decides what to do with the packet [21]. If a packet is not 
matched against a statement, it will continue to be checked 
against every statement one after the other until a match is 
found, or until the end of the ACL. If no match is found, 
the packet is implicitly denied by the device [21]. Cisco 
Systems Inc rule of thumb is one ACL per interface per 
direction, as they consume CPU resources in the device as 
every packet has to be processed by the CPU [17]. 
Morrissey notes that ACLs may slow down your system 
[20], as does Davis who states that “…typically your 
router uses net flow or fast processors for fast switching. 
When you use route filtering, you use the slowest mode of 
process switching…” [19]. Morrissey also notes ACL 
support in hardware ASICs which can support  true wire 
speed [20]. Davis also observes that “Using access lists 
for route filtering is CPU intensive. Overuse of routing 
filtering can slow the flow of packets...[and] the router 
usually has but one processor available for process 
switching” [19]. In the article entitled “The Cost of 
Security on Cisco Routers” it is stated that “there are 
significant performance penalties once you enable ACLs 
…  because an access list cannot always take advantage of 
the fastest switching technique that might otherwise be 
available on the router” [22] . Veal et.al uses the concept 
of “Negative Bandwidth” to quantify the performance 
reduction after implementing ACLs [23]. Using ACLs for 
filtering is entirely CPU intensive [19], and as such there 
are no control packets or additional data packet overheads 
being sent on the wire to consume bandwidth. Control and 
data packets in this case are defined by Cikara et al [1]. As 
such, the Efficiency parameter pertaining to ACL 
statements will refer to device sub-optimal operation and 
the figure (eDi) should be obtained for the statements on a 
specific device.  
 
4. Tunneling 
 
Tunneling is a technique which provides a method of 
encapsulating arbitrary packets inside of a transport 
protocol [24]. It is designed to provide the necessary 
services to implement any standard point-to-point 
encapsulation scheme, and as tunnels are point-to-point 
links, a separate tunnel must be configured for each link 
[24]. Tunnels have three primary components, those being 
[24]: 

1. Passenger protocol- is the protocol that is to be 
encapsulated, such as Appletalk, DECNet, IP, 
IPX, etc 
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2. Carrier protocol- is the encapsulation protocol 
which may include Generic Route Encapsulation 
(GRE), Network Operating System (NOS), etc. 

3. Transport Protocol- is the protocol used to carry 
the encapsulated protocol, which is IP only. 

 
The advantages of using tunnels can include [24]: 

1. Reductions in bandwidth, due to the directed 
nature of the technology 

2. The provision of multiprotocol local networks 
over a single-protocol backbone 

3. Alleviation of protocol limitations (such as 
limited hop counts, default routes and load 
balancing), and 

4. Increased security through the use of virtual 
private networks across wide area networks 

 
Tunnels do however come with disadvantages, and 
precaution must be used. Such considerations include [24]: 

1. Encapsulation and decapsulation in general, is a 
processor switched operation, which are slow 
operations 

2. Tunneling can violate security policy where the 
source and destination is not restricted. 

3. Transport protocols with limited timers may 
create problems 

4. Multiple point-to-point tunnels can saturate links 
with routing information 

5. Routing protocols that make decisions based 
solely on hop count will often prefer a tunnel over 
multipoint real link (i.e. tunnels may appear to be 
“one hop”), and 

6. The routing information of the tunnel network 
mixes with the transport network’s information 
create a recursive routes (i.e. the best path to the 
tunnel is via the tunnel itself) 

5. Tunneling Protocol Categories 
 
A number of tunneling protocols exist that allow 
encapsulation of one protocol inside another. For the 
purposes of this paper and due to the limitations of the 
technology evaluated, in this case the Cisco IOS version, 
we will be focusing on IPv4-to-IPv4 and IPv6-to-IPv4 
transition mechanisms.  

6.	IPv4‐to‐IPv4	Encapsulation	Protocols	

6.1 I  P‐over‐IP Tunnel 
IP-over-IP tunnels are a method where an IP datagram is 
carried as the payload within an IP datagram and is 

defined by RFC 2003 [25]. This is achieved by the 
addition of an outer header before the existing IP header 
[25]. It is the outer header source and destination addresses 
which identify the endpoints of the tunnel, while the 
existing IP header identifies the original sender and 
recipient of the packet [25]. The additional 20 bytes of 
overhead incurred by the additional IPv4 header (which 
precedes the existing IPv4 header) impacts efficiency 
(table 1).  
 
Table 1:  IPv4-over-IPV4 encapsulation efficiency overhead 
 

Protocol Overhead 
(B) 

TCP/UDP 
Payload (B) 

Efficiency 

No Tunneling    
IPv4 TCP 78 1460 94.93% 
IPv4 UDP 66 1472 95.71% 
With IP-over-IP 
Tunneling 

   

IPv4 TCP 98 1440 93.63% 
IPv4 UDP 86 1452 94.41% 

 
This encapsulation method translates to a reduction in 
efficiency of 1.3% for both TCP and UDP. 
 

6.2  IP‐over‐IP  KA9Q/NOS  Compatible 
Tunnel  
 
The KA9Q Network Operating System (NOS) TCP/IP 
package was only the second known implementation of the 
Internet protocols for low-end computers which could  
simultaneously act as a network client, server and an IP 
packet router, including support for multiple client and 
server sessions [26, 27]. There are numerous 
implementation and variations of NOS including but not 
limited to the MS-DOS executable “net.exe” [28], WNOS, 
JNOS, PMNOS and TNOS [29]. Cisco provides an IPv4 to 
IPv4 NOS tunneling implementation which is compatible 
with the KA9Q program [30]. Although KA9Q still exists 
in various forms such as embedded versions of Linux [27], 
the Cisco technical implementation is difficult to ascertain, 
so as such for the purposes of this research it is assumed 
that NOS has the same overheads as IPv4 as defined by 
RFC 791 [31].  This would incur the same decrease in 
efficiency as IP-over-IP tunnels of 1.3% 

6.3 IP‐over‐IP GRE Tunnel 
 
Generic Routing Encapsulation (GRE), defined by RFC 
2784 [32], uses IP Protocol 47 and the Cisco 
implementation adds an additional 24 bytes of overhead to 
each packet [33, 34]. GRE tunnels were designed to be 
completely stateless, meaning that each tunnel end-point 
doesn’t keep any information about the state or availability 
of the remote tunnel end-point [35]. However, new 
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implementations of the protocol allow for “keepalives” to 
allow interfaces to shut down if the keepalives fail for a 
certain period of time [36]. From and efficiency 
perspective, the additional 24 bytes of overhead decreases 
the efficiency of IPv4 TCP by 1.56% to 93.37%, and 
likewise by 1.56% to 94.15% for IPv4 UDP. 

7.	IPv6‐to‐IPv4	Encapsulation	Protocols	

7.1 Automatic 6to4 Tunnel 
6to4 tunnels are defined in RFC 3056 [37] and are an 
automatic tunneling method where tunnels are created 
dynamically on a per-packet basis [38] based on an 
embedded IPv4 address [39]. The tunnel endpoint is 
determined by the IPv4 address embedded in the 6to4 
address and it is a combination of the of the unique routing 
prefix, 2002::/16 and the unique 32-bit IPv4 address [40]. 
The format of the packet is typically 2002:Layer-3-IPv4-
Address::/48 and 16 bits following the IPv4 address can be 
used to number the networks within the site [38]. This type 
of tunnel is used for less-permanent, transient connectivity 
[40] and can be used in point-to-multipoint configurations 
[38]. Dual stack layer 3 devices are not configured in pairs 
as the IPv4 infrastructure is treated as a virtual non-
broadcast multi-access (NBMA) link, where the IPv4 
address embedded in the IPv6 address is used to find the 
other end of the automatic tunnel [38]. By intending to 
encapsulate an IPv6 packet and transport it over an IPv4 
backbone, an additional 20 bytes of overhead must be 
added to each packet, which is the IPv4 header attached to 
the front of the IPv6 packet (table 2).  
 
Table 2: Automatic 6-to-4 encapsulation efficiency overhead 
 

Protocol Overhead 
(B) 

TCP/UDP 
Payload (B) 

Efficiency 

No Tunneling    
IPv6 TCP 98 1440 93.63% 
IPv6 UDP 86 1452 94.41% 
With 
Automatic 6-
to-4 
Tunneling 

   

IPv6-to-IPv4 
TCP 

118 1420 92.33% 

IPv6-to-IPv4 
UDP 

106 1432 93.11% 

 
 
Therefore the additional 20 bytes of overhead leads to a 
decrease of 1.3% for TCP and for UDP using this 
tunneling technique. 

7.2 6to4 GRE Tunnel 
IPv6 over IPv4 GRE tunnels use the standard tunneling 
technique as defined is Section 0.  They link two points in 
the standard point-to-point encapsulation scheme [38]. As 

indicated previously, the tunnels are not tied by any 
specific passenger or transport protocol, however in this 
case they carry IPv6 as the passenger protocol over GRE 
as the carrier protocol [38]. As the GRE encapsulation is 
an IPv4 encapsulation technique, it has the same overheads 
as defined in Section 0. In this case, it leads to a decrease 
of 1.56% to 92.07% for TCP, and 1.56% to 92.85% for 
UDP 

7.3 IPv4 Compatible Tunnel 
IPv4 compatible tunnels use IPv4-compatible IPv6 
addresses. This address comprises of a “IPv6 unicast 
address that have zeros in the high order 96 bits of the 
address, and an IPv4 address in the low-order 32 bits” It 
has the format “0:0:0:0:0:0:A.B.C.D or ::A.B.C.D , where 
“A.B.C.D” represents the embedded IPv4 address”. [38]. 
This method, as with Automatic 6to4 tunneling, adds an 
additional 20 bytes of overhead. Therefore the efficiencies 
are identical to table 2. 

7.4 6to4 Manually Configured Tunnel 
As the name suggests and as defined in RFC 2893 [39, 41], 
manually configured tunnels is a technique where the IPv6 
address is manually configured on the tunnel interface, and 
the IPv4 address is also manually configured on the 
interfaces of both the tunnel source and destination [40]. It 
requires definite specification of the IPv4 tunnel source 
and the IPv4 tunnel destination [42]. The tunneling 
technique requires a dual-stack node (IPv4 and IPv6) [39] 
and is generally used for dedicated, permanent 
connectivity [40]. The IPv6 packets are encapsulated 
within IPv4 packets, with IPv6 being the passenger 
protocol and IPv4 the encapsulating protocol [43]. As such, 
the additional overhead of this technique is 20 bytes. This 
translates to efficiencies as identified in table 2. 

8.	Empirical	Validation	
8.1 Access Control List Empirical Validation 
As ACL statements are a CPU intensive process that does 
not produce any control packet or data packet overheads, 
they rely on the processing capacity of the device to filter 
and apply the appropriate measures on the packet being 
processed (ie discarding or permitting the packet to pass). 
Hence, ACL statements are a device specific efficiency 
(eDi) and as differing devices have different overheads, and 
the efficiencies exhibited by each may vary. An 
experiment to calculate specific device efficiencies for a 
varying number of ACL statements was conducted and 
arranged as in Figure 1. The router was used in its default 
configuration (with CEF enabled), and ACL statements 
were first applied and tested on the ingress interface for 
both TCP and UDP data streams. Then, a differing number 
of ACL statements were progressively applied to the 
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ingress and egress interfaces and evaluated. It was also 
noted that due to UDP not being a congestion-aware 
transport protocol and in order to maximize the throughput, 
the data streams were manually limited (to approximately 
1Mbps of the maximum) to achieve the greatest device 
throughput. As such, the maximum UDP throughput 
achieved in this experiment was greater than in Cikara et. 
als’ other experimentation and research [1]. It was 
considered that this would give a more true indication of 
the overheads incurred by implementing ACL statements.  
The direction of flow in the experiments conducted was 
from PC 2 which was connected to the fast Ethernet 
interface 0/1 of the router, to PC 1 which was connected to 
the routers’ Fast Ethernet interface 0/0. 
 
The PCs used were identical dual stack IBM compatible 
Celeron 800MHz machines running Windows 2003 Server 
with not service packs or hot fixes installed. The router 
utilised was a Cisco 2621XM router running Cisco IOS 
version 12.3(6). The methodology employed in this 
research was identical to that employed in [1]. 

 
Figure 1: ACL evaluation experimentation setup 

For the TCP IPv4 experiments, extended ACLs were used, 
and these were a collection of TCP deny statements from a 
specific host to another specific host. An example is 
shown below: 
access-list 101 deny tcp host 192.168.201.1 host 
192.168.202.1 eq telnet 
 

Each line of the ACL would return a negative match, 
forcing each subsequent line of the list to be checked until 
the final statement,  
 
access-list 101 permit ip any any 
 
provided the match that permitted the traffic flow. The 
same approach was used for UDP, with the statements 
used shown below: 
 
access-list 101 deny udp host 192.168.201.1 host 
192.168.202.1 eq tftp 
 
The identical methodology as described above was used 
for IPv6, with the exception that the IPv4 address as 
shown above was replaced with an IPv6 address. 

8.2	IPv4	ACL	Results	
For TCP with the ACL applied to the in direction of Fast 
Ethernet (FA) 0/1, we experience an average linear 
decrease of 25kB per ACL statement. This corresponds 
with the result obtained by applying the ACL to FA0/1 to 
the out direction (25.1kB), which was as expected as this 
is the main direction of flow of the transfer. By applying 
the ACL to the opposite direction of the data transfer flow 
(for experiments conducted on FA 0/0 on the in direction 
and FA 0/1 on the out direction), we experience a lower 
effect in the decrease in performance. This is most likely 
due to the fact that the TCP acknowledgments PC 1 is 
sending to PC 2 travel opposite to the main direction of 
flow, and it is these acknowledgment packets to which the 
ACL has to filter.  The average decrease experienced in 
this configuration was 11.1kB per ACL statement. By 
applying the ACL to both the in and out direction (for 
experiments with FA0/0 and then FA0/1), it was 
anticipated that the decrease in performance would be 
approximately 35kB per statement, which was a 
combination of the in and out direction results. This 
however proved to be incorrect, with an average of 28kB 
per ACL statement decrease observed. It was also 
anticipated that the results measured for TCP would have a 
very similar correlation for the experiments conducted 
with UDP. With the ACL applied to FA0/0 out and then 
FA0/1 in, an increase in BTC of 8% and 6% respectively 
was experienced compared to their TCP counterparts 
(27kB and 26.5kB per ACL statement). Applying the ACL 
statements in the opposite direction of the main traffic 
flow was expected to have no impact on network 
performance. The reasoning behind this was that as UDP 
is a connectionless technology, no acknowledgments from 
PC 1 will be sent to PC 2. This hypothesis proved correct 
with a negligible decrease in performance experienced 
from the maximum. The decrease in performance by 
applying the ACL to both the in and out directions was 
anticipated to be the same as applying the ACL to the main 
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direction of flow of traffic. Again this proved to be correct 
with the same decrease for FA0/0 (27kB) and FA0/1 
(26.5kB) encountered. The B-Node device efficiency (eDi) 
for the interface and hence the main direction of flow for 
ACLs can easily be extrapolated from the equations of the 
lines using the experimental data obtained (equation 4).   
 

( )( ) ( )
( )BTCimum

BTCimumstatementsACLofACLperdecreaseeDi max
max# ×−

=

      (4) 
 
For example, using the same experimental methodology as 
described above, applying 167 ACL statements to 
interface FA0/0 out, with 25.1kB per ACL statement 
decrease, the calculated efficiency, eDi, that can be used in 
the B-Node formula is 45.58% (table 3). 
 
Table 3: IPv4 ACL Summary 

Protocol Interface Direction ACL 
TCP Fa0/0 In 11.10 
TCP Fa0/0 Out 25.10 
TCP Fa0/0 Inout 28.10 
TCP Fa0/1 In 25.00 
TCP Fa0/1 Out 11.10 
TCP Fa0/1 Inout 27.90 
UDP Fa0/0 In 0.00 
UDP Fa0/0 Out 27.00 
UDP Fa0/0 Inout 27.00 
UDP Fa0/1 In 26.50 
UDP Fa0/1 Out 0.00 
UDP Fa0/1 inout 26.50 

 

8.3	IPv6	ACL	Results	
For TCP ACL processing of IPv6 packets in the main 
direction of traffic flow had a relatively comparable 
decrease in the BTC (75.6kB for FA0/0 out and 84.2kB for 
FA0/1 in). This represents an approximate 300% to 336% 
increase in cost as opposed to IPv4. This relationship was 
only true for ACL statements less than 25. Interestingly 
after this number of statements (25), the BTC settled at a 
constant metric with a very slight, almost negligible, 
increase in performance (settling at 5.44MB/s with a 1kB 
increase per ACL for FA0/0 out and 5.25MB/s with a 
0.6kB increase for FA0/1). In the opposite direction of 
main traffic flow, FA0/0 in experienced a 33.6kB decrease 
in bandwidth and FA0/1 had a 30.2kB decrease per 
statement. This represents a 272% to 303% increase on 
IPv4. Again after 25 ACLs the results showed a settling of 
BTC. FA0/0 in had a value of 6.55MB/s with a 0.3kB 
upward drift, and FA0/1 out had a value of 6.30MB/s with 
also a 0.3kB upward drift per statement. 
Appling IPv6 ACLs in both directions (in and out) again 
followed the above trends, with FA0/0 demonstrating an 
80.2kB decrease and FA0/1 88.9kB (which was up 286% 
to 317% on IPv4). For after 25 ACLs, FA0 settled at 

5.33MB/s with a 0.8kB upward drift, and FA0/1 at 
5.14MB/s with a 0.6kB upward drift. For FA0/0 out for 
UDP, the cost per ACL statement was 67.3kB opposed to 
84.9kB for FA0/1 in. This was again significantly higher 
than IPv4 by about 249% and 315% respectively. For 
more than 25 ACLs, max BTC was 6.22MB/s with a 
0.6kB upward drift for FA0/0 out 5.81MB/s with a 0.1kB 
upward drift fir FA0/1 in. For the direction opposite the 
main traffic flow, FA0/0 experienced a 0.1kB decrease per 
ACL statement and FA0/1 had 0.3kB. For more than 25 
ACLs, FA0/0 had a 7.95MB/s transfer rate with zero drift, 
and likewise FA0/1 was 7.94MB/s with zero drift as well.  
In and out for both FA0/0 and FA0/1 was both 84.7 (about 
300% worse than IPv4) with 6.22MB/s max with 0.6kB 
drift and 5.81MB/s with zero drift (table 4). 
 
Table 4: IPv6 ACL summary  

Protocol Interface Direction Cost per 
<25 ACLs> 
((kB) 

Cost per 
<25 
ACLs> 
(kB)

TCP Fa0/0 In 33.60 0.30
TCP Fa0/0 Out 75.60 1.00
TCP Fa0/0 Inout 80.20 0.80 
TCP Fa0/1 In 84.20 0.60 
TCP Fa0/1 Out 30.20 0.30
TCP Fa0/1 Inout 0.60 0.60 
UDP Fa0/0 In 0.10 0.00 
UDP Fa0/0 Out 67.30 0.60
UDP Fa0/0 Inout 84.70 0.60
UDP Fa0/1 In 84.90 0.10 
UDP Fa0/1 Out 0.30 0.00
UDP Fa0/1 inout 84.70 0.00

 

8.4	ACL	Conclusion	
Overall, the cost of ACLs on IPv6 compared to IPv4 
performed worse, with on average at least a 2 to 3 fold 
increase in the cost per ACL statement. This is however 
only true for up to 25 ACL statements. IPv4 costs are a 
linear decrease, dependent on the number of ACL 
statements in the list. This is also true for IPv6, however 
only to 25 statements. After 25 statements, the 
performance does not deviate from a constant value, 
except for a slight upward drift. Further investigation into 
these phenomena is required to explain this received 
outcome. The results obtained from the empirical 
validation (the equations of the lines) can easily be used to 
create and evaluate the performance degradation a desired 
number of ACL statements will have on network 
performance. This is hence used to determine the eDi figure 
in the B-Node equation for ACLs. Further investigation is 
required to ascertain as to why IPv6 ACL BTC is linear 
after 25 statements for both TCP and UDP. 
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9. Tunneling Empirical Validation 
 
To empirically evaluate the effect the choice of tunneling 
protocol has on network performance (the BTC of the 
system) and how the choice of device impacts this (eDi) the 
configuration was set up as shown in Figure 2. The same 
equipment was used as in Section 0, with the addition of 
another identical 2621XM Cisco Router. The tunnels 
established for the purposes of this experimentation were 
between the two routers, and they were configured as 
required by the variable being tested. As with all 
experimentation, the tunnels were up and established prior 
to experimentation to ensure no negotiations (if any) 
would impact the measured performance. 

 
Figure 2: Tunneling Mode baseline experimental setup 

10. Tunneling Results and Conclusion 
 
The Bulk Transfer Capacity for various tunneling 
techniques was evaluated, and the results are shown in 
Table . Overall for IPv4-toIPv4 tunneling, the BTC 
experienced by the system was close to the baseline result. 
However, this was not the case for NOS compatible 
tunnels, where the BTC was significantly lower than 
others (NOS 1.06MB/s opposed to the Baseline 7.90MB/s 
for TCP and NOS 1.37MB/s contrasting with Baseline 
7.11MB/s). This was both true for TCP and UDP. IPv6-
toIPv4 tunneling contrasted markedly. Regardless of the 
method of tunneling, the BTC experienced was extremely 
low as compared to the Baseline. For TCP, BTC varied by 

14KB/s between the three tunneling methods, and for UDP 
the variation was only marginally less at 13KB/s (table 5). 
 
Table 5: Tunneling Technique Bulk Transfer Capacity 
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TCP baseline 7.92 11.87 63.36 66.87 Ref. 
value 

4to4 TCP 
IPIP 

7.91 11.70 63.28 66.79 99.87 

4to4 TCP 
GRE 

7.90 11.67 63.20 66.70 99.75 

4to4 TCP 
IPIP NOS 

1.06 11.70 8.48 8.95 13.38 

6to4 TCP 
Manual 

1.22 11.54 9.76 10.30 15.40 

6to4 TCP 
GRE 

1.30 11.51 10.40 10.98 16.41 

6to4 IPv4  1.16 11.54 9.28 9.79 14 
6to4 TCP 
overlay 

1.17 11.54 9.36 9.88 65 

UDP 
baseline 

7.11 11.96 56.88 60.54 14.77 

4to4 TCP 
IPIP 

7.16 11.80 57.28 60.97 Ref. 
value 

4to4 TCP 
GRE 

7.06 11.77 56.48 60.12 100.70 

4to4 TCP 
IPIP NOS 

1.37 11.80 10.96 11.67 99.30 

6to4 TCP 
Manual 

1.62 11.74 12.96 13.79 19.27 

6to4 TCP 
GRE 

1.68 11.61 13.44 14.31 22.78 

6to4 IPv4  1.55 11.64 12.40 13.20 23.63 
6to4 TCP 
overlay 

1.68 11.64 13.44 14.31 21.80 

	

Conclusions	
 
This paper has presented the empirical validation and 
quantified the impact of using techniques that are typically 
used in computer networks today- those being Access 
Control Lists and Tunneling. Even though ACLs do not 
add any overhead in terms of extra control or data packets, 
they do incur processing overhead due to the nature of the 
technology. For IPv4, these results are linear and can be 
easily modeled as an equation of a line, with the gradient 
of the line giving the cost per ACL statement. This is also 
true for IPv6 ACLs, but only for less than 25 statements. 
When this number is exceeded, the BTC of the system is 
constant regardless of the number of ACL statements 
processed. Further investigation is required to investigate 
this phenomenon. Tunneling is opposite to ACLs, in the 
fact that additional packet overheads are required to 
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implement the technology. These can be quantified and the 
estimated degradation in performance can be calculated. 
However, as many devices are a compromise between 
price versus performance, this is not always the case. This 
was experimentally evaluated, and demonstrated that IPv4-
to-IPv4 tunneling has far superior performance that IPv6-
toIPv4 tunneling. Again, this information can be used, and 
the corresponding device efficiency, eDi

, can be calculated, 
and used in further experimentation. Further related work 
to tunneling is to include the evaluation of IPv6-toIPv6 
transitions mechanisms, and its impact on B-Node Theory. 
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