
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

127

Manuscript received September 5, 2010
Manuscript revised September 20, 2010

Evaluating Layer 3 Device Tunneling and Access Control List
Security Bandwidths Using B-Node Theory

S P Maj, D Veal

Edith Cowan University, Perth, Western Australia

Summary
Computer networks of today consist of a multitude of devices,
technologies and protocols that each in themselves may impact
the performance as experienced by the end user. A number of
techniques exist to predict and/or model these variations, each
with their own relative merit. Bandwidth-Nodes (B-Nodes) are
one such technique that allows devices and/or technologies to be
modelled as a single node or as a collection of nodes, each
exhibiting their own performance characteristics. A simple
formula is used to calculate the theoretical maximum bandwidth
of a node which allows for efficiency decomposition. This
incorporates device sub-optimal operation (eDi) and using
empirically derived results, eDi for an individual process on a
particular device can be calculated. This paper focuses on
evaluating the impact the choice of device will have on network
performance. By empirically evaluating Access Control Lists
(ACLs) with a varying number of statements, as well as assessing
different tunneling techniques, the specific device efficiencies for
these can be calculated. Using this information, the anticipated
performance of an ACL network given a technical specification
can be easily and quickly determined.
Key words:
Network Security, B-Nodes, Access Control Lists, Tunneling.

1. Introduction

The addition and subtraction of devices, technologies and
protocols within a computer network may come at an
additional cost, not only in terms of expenditure for extra
system infrastructure, but also in terms of overheads which
may reduce overall system performance. This is especially
the case for complex security protocols ranging from
simple Access Control Lists (ACLs) to the IPSec
framework. These overheads can include additional
information, such as “control packet” or “data packet”
overheads [1] as well as those in the form of additional
processing required by a device in order to achieve the
desired network administration goal. A variety of methods
exists to measure and/or predict this anticipated system
performance variation. Such methods include [1]:
1. Rule-of-Thumb: a subjective method typically based

on prior experience, usually with little mathematical
rigor.

2. Stochastic modeling: the use of complex mathematics
which can be problematic and difficult to understand
by the typical network administrator, and

3. Benchmarking: commonly use different scales and
units, with comparative results possibly requiring
further interpretation.

B-Nodes are a method which uses the notion of a
networks’ bandwidth to provide an “unbiased, empirical
performance analysis that is simple to use and
conceptualise and be based on the user perception of
performance [1]”. B-Nodes are a conceptually simple
model that use the concept of abstraction to control the
detail and hide the complexity of a system [2]. A simple
formula is used to determine the anticipated performance
which can be used for individual components or for
networks as a whole [1]. Through the use of recursive
decomposition, device sub-optimal operation can be
assessed for a particular device and this information used
in the B-Node formula to predict the anticipated
performance of a network for given a configuration. This
research focuses on empirically evaluating device sub-
optimal operation for Access Control Lists and a variety of
tunneling techniques, and calculating the eDi parameter of
these for use in the B-Node formula.

2. Network Performance

There are a variety of terms, units and metrics that are
employed to describe performance including delay, packet
loss and bandwidth [3]. As each of these typically use
differing units of measure, there are numerous metrics and
measurement methodologies employed to express these
quantities [1]. One such metric is bandwidth, and in a
network centric context, it is defined as the data rate at
which a network link or path can transfer information [4].
Specific application data, including any overheads
incurred in its transportation, may impact the performance
as perceived by the user i.e. the overall elapsed time an
application takes to execute over the underlying network
[5], and this in turn impacts the performance as it is
perceived by the user [5]. Bandwidth Nodes (or B-Nodes),
as described by Maj, Veal, et. al [2, 6-13], is a bandwidth-
centric concept used to describe and model the
“performance of every node and data path …assessed by a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

128

simple, common measurement- bandwidth… with the
common units of …Mbytes/s” [7]. This bandwidth can be
described using Bulk Transfer Capacity (BTC), which is
defined as the long term average data rate over the path in
question [5]. It is calculated by dividing the amount of data
that was sent by the elapsed time it took to send this
information [5], and this also uses the common units of
Mbytes/s. Applications that rely on a networks’ capacity to
transfer significant quantities of data rely on this BTC. B-
Node theory has been expanded by to account for possible
reductions in efficiency due to additional network
protocols and the associated overheads they may incur [1].
By decomposing the simple B-Node formula,

(B = C x D x E) (1)

The “Efficiency” component (E) was shown to be a
product of all efficiencies (ei) contained within the B-Node,
with the equation thus becoming:

i

n

i
eDCB

1=
∏××=

 (2)

This accounted for Data Packet efficiencies (overheads
directly added to packets that are transmitting application
data) and Control Packet efficiencies (packets that carry no
user data and are used to control link flow) [1]. Devices
themselves can add latency and processing overhead to a
system that may not be accounted for in equation 2. As
such, the concept of device sub-optimal operation (eDi)
was introduced and the B-Node equation further modified
to account for this [1].

Dii

n

i
eeDCB

1=
∏××=

 (3)

Empirically derived results must be evaluated for an
individual process on a particular device [1]. From this, the
specific device efficiency, eDi, for a particular network
protocol or technique can be evaluated, and the effect the
device has on BTC can be determined.

3. Access Control Lists

Access Control Lists are a Layer 3 technique which
potentially enhances security by preventing traffic that a
network administrator defines as unnecessary, undesirable,
or unauthorized to traverse a network or internetwork [14],
[15], [16]. They are a sequential collection of permit or
deny statements that are applied to addresses or upper
layer protocols that instruct the device to block or forward
packets based on source or destination address, TCP/UDP
port numbers or combinations of these [17-19]. ACLs are

defined on a per-protocol basis [17, 19] and can be applied
per interface to inbound or outbound traffic, or both [18,
20]. They limit network traffic and can increase network
performance, provide traffic flow control, and provide a
basic level of security for network access [17]. Due to the
sequential nature of the technology, the order of access list
statements is significant as the first matching statement
decides what to do with the packet [21]. If a packet is not
matched against a statement, it will continue to be checked
against every statement one after the other until a match is
found, or until the end of the ACL. If no match is found,
the packet is implicitly denied by the device [21]. Cisco
Systems Inc rule of thumb is one ACL per interface per
direction, as they consume CPU resources in the device as
every packet has to be processed by the CPU [17].
Morrissey notes that ACLs may slow down your system
[20], as does Davis who states that “…typically your
router uses net flow or fast processors for fast switching.
When you use route filtering, you use the slowest mode of
process switching…” [19]. Morrissey also notes ACL
support in hardware ASICs which can support true wire
speed [20]. Davis also observes that “Using access lists
for route filtering is CPU intensive. Overuse of routing
filtering can slow the flow of packets...[and] the router
usually has but one processor available for process
switching” [19]. In the article entitled “The Cost of
Security on Cisco Routers” it is stated that “there are
significant performance penalties once you enable ACLs
… because an access list cannot always take advantage of
the fastest switching technique that might otherwise be
available on the router” [22] . Veal et.al uses the concept
of “Negative Bandwidth” to quantify the performance
reduction after implementing ACLs [23]. Using ACLs for
filtering is entirely CPU intensive [19], and as such there
are no control packets or additional data packet overheads
being sent on the wire to consume bandwidth. Control and
data packets in this case are defined by Cikara et al [1]. As
such, the Efficiency parameter pertaining to ACL
statements will refer to device sub-optimal operation and
the figure (eDi) should be obtained for the statements on a
specific device.

4. Tunneling

Tunneling is a technique which provides a method of
encapsulating arbitrary packets inside of a transport
protocol [24]. It is designed to provide the necessary
services to implement any standard point-to-point
encapsulation scheme, and as tunnels are point-to-point
links, a separate tunnel must be configured for each link
[24]. Tunnels have three primary components, those being
[24]:

1. Passenger protocol- is the protocol that is to be
encapsulated, such as Appletalk, DECNet, IP,
IPX, etc

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

129

2. Carrier protocol- is the encapsulation protocol
which may include Generic Route Encapsulation
(GRE), Network Operating System (NOS), etc.

3. Transport Protocol- is the protocol used to carry
the encapsulated protocol, which is IP only.

The advantages of using tunnels can include [24]:

1. Reductions in bandwidth, due to the directed
nature of the technology

2. The provision of multiprotocol local networks
over a single-protocol backbone

3. Alleviation of protocol limitations (such as
limited hop counts, default routes and load
balancing), and

4. Increased security through the use of virtual
private networks across wide area networks

Tunnels do however come with disadvantages, and
precaution must be used. Such considerations include [24]:

1. Encapsulation and decapsulation in general, is a
processor switched operation, which are slow
operations

2. Tunneling can violate security policy where the
source and destination is not restricted.

3. Transport protocols with limited timers may
create problems

4. Multiple point-to-point tunnels can saturate links
with routing information

5. Routing protocols that make decisions based
solely on hop count will often prefer a tunnel over
multipoint real link (i.e. tunnels may appear to be
“one hop”), and

6. The routing information of the tunnel network
mixes with the transport network’s information
create a recursive routes (i.e. the best path to the
tunnel is via the tunnel itself)

5. Tunneling Protocol Categories

A number of tunneling protocols exist that allow
encapsulation of one protocol inside another. For the
purposes of this paper and due to the limitations of the
technology evaluated, in this case the Cisco IOS version,
we will be focusing on IPv4-to-IPv4 and IPv6-to-IPv4
transition mechanisms.

6.	IPv4‐to‐IPv4	Encapsulation	Protocols	

6.1 I P‐over‐IP Tunnel
IP-over-IP tunnels are a method where an IP datagram is
carried as the payload within an IP datagram and is

defined by RFC 2003 [25]. This is achieved by the
addition of an outer header before the existing IP header
[25]. It is the outer header source and destination addresses
which identify the endpoints of the tunnel, while the
existing IP header identifies the original sender and
recipient of the packet [25]. The additional 20 bytes of
overhead incurred by the additional IPv4 header (which
precedes the existing IPv4 header) impacts efficiency
(table 1).

Table 1: IPv4-over-IPV4 encapsulation efficiency overhead

Protocol Overhead
(B)

TCP/UDP
Payload (B)

Efficiency

No Tunneling
IPv4 TCP 78 1460 94.93%
IPv4 UDP 66 1472 95.71%
With IP-over-IP
Tunneling

IPv4 TCP 98 1440 93.63%
IPv4 UDP 86 1452 94.41%

This encapsulation method translates to a reduction in
efficiency of 1.3% for both TCP and UDP.

6.2 IP‐over‐IP KA9Q/NOS Compatible
Tunnel

The KA9Q Network Operating System (NOS) TCP/IP
package was only the second known implementation of the
Internet protocols for low-end computers which could
simultaneously act as a network client, server and an IP
packet router, including support for multiple client and
server sessions [26, 27]. There are numerous
implementation and variations of NOS including but not
limited to the MS-DOS executable “net.exe” [28], WNOS,
JNOS, PMNOS and TNOS [29]. Cisco provides an IPv4 to
IPv4 NOS tunneling implementation which is compatible
with the KA9Q program [30]. Although KA9Q still exists
in various forms such as embedded versions of Linux [27],
the Cisco technical implementation is difficult to ascertain,
so as such for the purposes of this research it is assumed
that NOS has the same overheads as IPv4 as defined by
RFC 791 [31]. This would incur the same decrease in
efficiency as IP-over-IP tunnels of 1.3%

6.3 IP‐over‐IP GRE Tunnel

Generic Routing Encapsulation (GRE), defined by RFC
2784 [32], uses IP Protocol 47 and the Cisco
implementation adds an additional 24 bytes of overhead to
each packet [33, 34]. GRE tunnels were designed to be
completely stateless, meaning that each tunnel end-point
doesn’t keep any information about the state or availability
of the remote tunnel end-point [35]. However, new

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

130

implementations of the protocol allow for “keepalives” to
allow interfaces to shut down if the keepalives fail for a
certain period of time [36]. From and efficiency
perspective, the additional 24 bytes of overhead decreases
the efficiency of IPv4 TCP by 1.56% to 93.37%, and
likewise by 1.56% to 94.15% for IPv4 UDP.

7.	IPv6‐to‐IPv4	Encapsulation	Protocols	

7.1 Automatic 6to4 Tunnel
6to4 tunnels are defined in RFC 3056 [37] and are an
automatic tunneling method where tunnels are created
dynamically on a per-packet basis [38] based on an
embedded IPv4 address [39]. The tunnel endpoint is
determined by the IPv4 address embedded in the 6to4
address and it is a combination of the of the unique routing
prefix, 2002::/16 and the unique 32-bit IPv4 address [40].
The format of the packet is typically 2002:Layer-3-IPv4-
Address::/48 and 16 bits following the IPv4 address can be
used to number the networks within the site [38]. This type
of tunnel is used for less-permanent, transient connectivity
[40] and can be used in point-to-multipoint configurations
[38]. Dual stack layer 3 devices are not configured in pairs
as the IPv4 infrastructure is treated as a virtual non-
broadcast multi-access (NBMA) link, where the IPv4
address embedded in the IPv6 address is used to find the
other end of the automatic tunnel [38]. By intending to
encapsulate an IPv6 packet and transport it over an IPv4
backbone, an additional 20 bytes of overhead must be
added to each packet, which is the IPv4 header attached to
the front of the IPv6 packet (table 2).

Table 2: Automatic 6-to-4 encapsulation efficiency overhead

Protocol Overhead
(B)

TCP/UDP
Payload (B)

Efficiency

No Tunneling
IPv6 TCP 98 1440 93.63%
IPv6 UDP 86 1452 94.41%
With
Automatic 6-
to-4
Tunneling

IPv6-to-IPv4
TCP

118 1420 92.33%

IPv6-to-IPv4
UDP

106 1432 93.11%

Therefore the additional 20 bytes of overhead leads to a
decrease of 1.3% for TCP and for UDP using this
tunneling technique.

7.2 6to4 GRE Tunnel
IPv6 over IPv4 GRE tunnels use the standard tunneling
technique as defined is Section 0. They link two points in
the standard point-to-point encapsulation scheme [38]. As

indicated previously, the tunnels are not tied by any
specific passenger or transport protocol, however in this
case they carry IPv6 as the passenger protocol over GRE
as the carrier protocol [38]. As the GRE encapsulation is
an IPv4 encapsulation technique, it has the same overheads
as defined in Section 0. In this case, it leads to a decrease
of 1.56% to 92.07% for TCP, and 1.56% to 92.85% for
UDP

7.3 IPv4 Compatible Tunnel
IPv4 compatible tunnels use IPv4-compatible IPv6
addresses. This address comprises of a “IPv6 unicast
address that have zeros in the high order 96 bits of the
address, and an IPv4 address in the low-order 32 bits” It
has the format “0:0:0:0:0:0:A.B.C.D or ::A.B.C.D , where
“A.B.C.D” represents the embedded IPv4 address”. [38].
This method, as with Automatic 6to4 tunneling, adds an
additional 20 bytes of overhead. Therefore the efficiencies
are identical to table 2.

7.4 6to4 Manually Configured Tunnel
As the name suggests and as defined in RFC 2893 [39, 41],
manually configured tunnels is a technique where the IPv6
address is manually configured on the tunnel interface, and
the IPv4 address is also manually configured on the
interfaces of both the tunnel source and destination [40]. It
requires definite specification of the IPv4 tunnel source
and the IPv4 tunnel destination [42]. The tunneling
technique requires a dual-stack node (IPv4 and IPv6) [39]
and is generally used for dedicated, permanent
connectivity [40]. The IPv6 packets are encapsulated
within IPv4 packets, with IPv6 being the passenger
protocol and IPv4 the encapsulating protocol [43]. As such,
the additional overhead of this technique is 20 bytes. This
translates to efficiencies as identified in table 2.

8.	Empirical	Validation	
8.1 Access Control List Empirical Validation
As ACL statements are a CPU intensive process that does
not produce any control packet or data packet overheads,
they rely on the processing capacity of the device to filter
and apply the appropriate measures on the packet being
processed (ie discarding or permitting the packet to pass).
Hence, ACL statements are a device specific efficiency
(eDi) and as differing devices have different overheads, and
the efficiencies exhibited by each may vary. An
experiment to calculate specific device efficiencies for a
varying number of ACL statements was conducted and
arranged as in Figure 1. The router was used in its default
configuration (with CEF enabled), and ACL statements
were first applied and tested on the ingress interface for
both TCP and UDP data streams. Then, a differing number
of ACL statements were progressively applied to the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

131

ingress and egress interfaces and evaluated. It was also
noted that due to UDP not being a congestion-aware
transport protocol and in order to maximize the throughput,
the data streams were manually limited (to approximately
1Mbps of the maximum) to achieve the greatest device
throughput. As such, the maximum UDP throughput
achieved in this experiment was greater than in Cikara et.
als’ other experimentation and research [1]. It was
considered that this would give a more true indication of
the overheads incurred by implementing ACL statements.
The direction of flow in the experiments conducted was
from PC 2 which was connected to the fast Ethernet
interface 0/1 of the router, to PC 1 which was connected to
the routers’ Fast Ethernet interface 0/0.

The PCs used were identical dual stack IBM compatible
Celeron 800MHz machines running Windows 2003 Server
with not service packs or hot fixes installed. The router
utilised was a Cisco 2621XM router running Cisco IOS
version 12.3(6). The methodology employed in this
research was identical to that employed in [1].

Figure 1: ACL evaluation experimentation setup

For the TCP IPv4 experiments, extended ACLs were used,
and these were a collection of TCP deny statements from a
specific host to another specific host. An example is
shown below:
access-list 101 deny tcp host 192.168.201.1 host
192.168.202.1 eq telnet

Each line of the ACL would return a negative match,
forcing each subsequent line of the list to be checked until
the final statement,

access-list 101 permit ip any any

provided the match that permitted the traffic flow. The
same approach was used for UDP, with the statements
used shown below:

access-list 101 deny udp host 192.168.201.1 host
192.168.202.1 eq tftp

The identical methodology as described above was used
for IPv6, with the exception that the IPv4 address as
shown above was replaced with an IPv6 address.

8.2	IPv4	ACL	Results	
For TCP with the ACL applied to the in direction of Fast
Ethernet (FA) 0/1, we experience an average linear
decrease of 25kB per ACL statement. This corresponds
with the result obtained by applying the ACL to FA0/1 to
the out direction (25.1kB), which was as expected as this
is the main direction of flow of the transfer. By applying
the ACL to the opposite direction of the data transfer flow
(for experiments conducted on FA 0/0 on the in direction
and FA 0/1 on the out direction), we experience a lower
effect in the decrease in performance. This is most likely
due to the fact that the TCP acknowledgments PC 1 is
sending to PC 2 travel opposite to the main direction of
flow, and it is these acknowledgment packets to which the
ACL has to filter. The average decrease experienced in
this configuration was 11.1kB per ACL statement. By
applying the ACL to both the in and out direction (for
experiments with FA0/0 and then FA0/1), it was
anticipated that the decrease in performance would be
approximately 35kB per statement, which was a
combination of the in and out direction results. This
however proved to be incorrect, with an average of 28kB
per ACL statement decrease observed. It was also
anticipated that the results measured for TCP would have a
very similar correlation for the experiments conducted
with UDP. With the ACL applied to FA0/0 out and then
FA0/1 in, an increase in BTC of 8% and 6% respectively
was experienced compared to their TCP counterparts
(27kB and 26.5kB per ACL statement). Applying the ACL
statements in the opposite direction of the main traffic
flow was expected to have no impact on network
performance. The reasoning behind this was that as UDP
is a connectionless technology, no acknowledgments from
PC 1 will be sent to PC 2. This hypothesis proved correct
with a negligible decrease in performance experienced
from the maximum. The decrease in performance by
applying the ACL to both the in and out directions was
anticipated to be the same as applying the ACL to the main

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

132

direction of flow of traffic. Again this proved to be correct
with the same decrease for FA0/0 (27kB) and FA0/1
(26.5kB) encountered. The B-Node device efficiency (eDi)
for the interface and hence the main direction of flow for
ACLs can easily be extrapolated from the equations of the
lines using the experimental data obtained (equation 4).

()() ()
()BTCimum

BTCimumstatementsACLofACLperdecreaseeDi max
max# ×−

=

 (4)

For example, using the same experimental methodology as
described above, applying 167 ACL statements to
interface FA0/0 out, with 25.1kB per ACL statement
decrease, the calculated efficiency, eDi, that can be used in
the B-Node formula is 45.58% (table 3).

Table 3: IPv4 ACL Summary

Protocol Interface Direction ACL
TCP Fa0/0 In 11.10
TCP Fa0/0 Out 25.10
TCP Fa0/0 Inout 28.10
TCP Fa0/1 In 25.00
TCP Fa0/1 Out 11.10
TCP Fa0/1 Inout 27.90
UDP Fa0/0 In 0.00
UDP Fa0/0 Out 27.00
UDP Fa0/0 Inout 27.00
UDP Fa0/1 In 26.50
UDP Fa0/1 Out 0.00
UDP Fa0/1 inout 26.50

8.3	IPv6	ACL	Results	
For TCP ACL processing of IPv6 packets in the main
direction of traffic flow had a relatively comparable
decrease in the BTC (75.6kB for FA0/0 out and 84.2kB for
FA0/1 in). This represents an approximate 300% to 336%
increase in cost as opposed to IPv4. This relationship was
only true for ACL statements less than 25. Interestingly
after this number of statements (25), the BTC settled at a
constant metric with a very slight, almost negligible,
increase in performance (settling at 5.44MB/s with a 1kB
increase per ACL for FA0/0 out and 5.25MB/s with a
0.6kB increase for FA0/1). In the opposite direction of
main traffic flow, FA0/0 in experienced a 33.6kB decrease
in bandwidth and FA0/1 had a 30.2kB decrease per
statement. This represents a 272% to 303% increase on
IPv4. Again after 25 ACLs the results showed a settling of
BTC. FA0/0 in had a value of 6.55MB/s with a 0.3kB
upward drift, and FA0/1 out had a value of 6.30MB/s with
also a 0.3kB upward drift per statement.
Appling IPv6 ACLs in both directions (in and out) again
followed the above trends, with FA0/0 demonstrating an
80.2kB decrease and FA0/1 88.9kB (which was up 286%
to 317% on IPv4). For after 25 ACLs, FA0 settled at

5.33MB/s with a 0.8kB upward drift, and FA0/1 at
5.14MB/s with a 0.6kB upward drift. For FA0/0 out for
UDP, the cost per ACL statement was 67.3kB opposed to
84.9kB for FA0/1 in. This was again significantly higher
than IPv4 by about 249% and 315% respectively. For
more than 25 ACLs, max BTC was 6.22MB/s with a
0.6kB upward drift for FA0/0 out 5.81MB/s with a 0.1kB
upward drift fir FA0/1 in. For the direction opposite the
main traffic flow, FA0/0 experienced a 0.1kB decrease per
ACL statement and FA0/1 had 0.3kB. For more than 25
ACLs, FA0/0 had a 7.95MB/s transfer rate with zero drift,
and likewise FA0/1 was 7.94MB/s with zero drift as well.
In and out for both FA0/0 and FA0/1 was both 84.7 (about
300% worse than IPv4) with 6.22MB/s max with 0.6kB
drift and 5.81MB/s with zero drift (table 4).

Table 4: IPv6 ACL summary

Protocol Interface Direction Cost per
<25 ACLs>
((kB)

Cost per
<25
ACLs>
(kB)

TCP Fa0/0 In 33.60 0.30
TCP Fa0/0 Out 75.60 1.00
TCP Fa0/0 Inout 80.20 0.80
TCP Fa0/1 In 84.20 0.60
TCP Fa0/1 Out 30.20 0.30
TCP Fa0/1 Inout 0.60 0.60
UDP Fa0/0 In 0.10 0.00
UDP Fa0/0 Out 67.30 0.60
UDP Fa0/0 Inout 84.70 0.60
UDP Fa0/1 In 84.90 0.10
UDP Fa0/1 Out 0.30 0.00
UDP Fa0/1 inout 84.70 0.00

8.4	ACL	Conclusion	
Overall, the cost of ACLs on IPv6 compared to IPv4
performed worse, with on average at least a 2 to 3 fold
increase in the cost per ACL statement. This is however
only true for up to 25 ACL statements. IPv4 costs are a
linear decrease, dependent on the number of ACL
statements in the list. This is also true for IPv6, however
only to 25 statements. After 25 statements, the
performance does not deviate from a constant value,
except for a slight upward drift. Further investigation into
these phenomena is required to explain this received
outcome. The results obtained from the empirical
validation (the equations of the lines) can easily be used to
create and evaluate the performance degradation a desired
number of ACL statements will have on network
performance. This is hence used to determine the eDi figure
in the B-Node equation for ACLs. Further investigation is
required to ascertain as to why IPv6 ACL BTC is linear
after 25 statements for both TCP and UDP.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

133

9. Tunneling Empirical Validation

To empirically evaluate the effect the choice of tunneling
protocol has on network performance (the BTC of the
system) and how the choice of device impacts this (eDi) the
configuration was set up as shown in Figure 2. The same
equipment was used as in Section 0, with the addition of
another identical 2621XM Cisco Router. The tunnels
established for the purposes of this experimentation were
between the two routers, and they were configured as
required by the variable being tested. As with all
experimentation, the tunnels were up and established prior
to experimentation to ensure no negotiations (if any)
would impact the measured performance.

Figure 2: Tunneling Mode baseline experimental setup

10. Tunneling Results and Conclusion

The Bulk Transfer Capacity for various tunneling
techniques was evaluated, and the results are shown in
Table . Overall for IPv4-toIPv4 tunneling, the BTC
experienced by the system was close to the baseline result.
However, this was not the case for NOS compatible
tunnels, where the BTC was significantly lower than
others (NOS 1.06MB/s opposed to the Baseline 7.90MB/s
for TCP and NOS 1.37MB/s contrasting with Baseline
7.11MB/s). This was both true for TCP and UDP. IPv6-
toIPv4 tunneling contrasted markedly. Regardless of the
method of tunneling, the BTC experienced was extremely
low as compared to the Baseline. For TCP, BTC varied by

14KB/s between the three tunneling methods, and for UDP
the variation was only marginally less at 13KB/s (table 5).

Table 5: Tunneling Technique Bulk Transfer Capacity

 B
TC

(M

B
/s

)

Th
eo

re
tic

al

m
ax

A
ct

ua
l E

nt
ire

B

-n
od

e
ef

fic
ie

nc
y

(%
)

Ef
fic

ie
nc

y
of

in

tro
du

ce
d

B
-

no
de

Ef
fic

ie
nc

y
of

in

tro
du

ce
d

su
b-

B
-n

od
e

(%
)

TCP baseline 7.92 11.87 63.36 66.87 Ref.
value

4to4 TCP
IPIP

7.91 11.70 63.28 66.79 99.87

4to4 TCP
GRE

7.90 11.67 63.20 66.70 99.75

4to4 TCP
IPIP NOS

1.06 11.70 8.48 8.95 13.38

6to4 TCP
Manual

1.22 11.54 9.76 10.30 15.40

6to4 TCP
GRE

1.30 11.51 10.40 10.98 16.41

6to4 IPv4 1.16 11.54 9.28 9.79 14
6to4 TCP
overlay

1.17 11.54 9.36 9.88 65

UDP
baseline

7.11 11.96 56.88 60.54 14.77

4to4 TCP
IPIP

7.16 11.80 57.28 60.97 Ref.
value

4to4 TCP
GRE

7.06 11.77 56.48 60.12 100.70

4to4 TCP
IPIP NOS

1.37 11.80 10.96 11.67 99.30

6to4 TCP
Manual

1.62 11.74 12.96 13.79 19.27

6to4 TCP
GRE

1.68 11.61 13.44 14.31 22.78

6to4 IPv4 1.55 11.64 12.40 13.20 23.63
6to4 TCP
overlay

1.68 11.64 13.44 14.31 21.80

	

Conclusions	

This paper has presented the empirical validation and
quantified the impact of using techniques that are typically
used in computer networks today- those being Access
Control Lists and Tunneling. Even though ACLs do not
add any overhead in terms of extra control or data packets,
they do incur processing overhead due to the nature of the
technology. For IPv4, these results are linear and can be
easily modeled as an equation of a line, with the gradient
of the line giving the cost per ACL statement. This is also
true for IPv6 ACLs, but only for less than 25 statements.
When this number is exceeded, the BTC of the system is
constant regardless of the number of ACL statements
processed. Further investigation is required to investigate
this phenomenon. Tunneling is opposite to ACLs, in the
fact that additional packet overheads are required to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

134

implement the technology. These can be quantified and the
estimated degradation in performance can be calculated.
However, as many devices are a compromise between
price versus performance, this is not always the case. This
was experimentally evaluated, and demonstrated that IPv4-
to-IPv4 tunneling has far superior performance that IPv6-
toIPv4 tunneling. Again, this information can be used, and
the corresponding device efficiency, eDi

, can be calculated,
and used in further experimentation. Further related work
to tunneling is to include the evaluation of IPv6-toIPv6
transitions mechanisms, and its impact on B-Node Theory.

Acknowledgements
Mr S Cikara

References

[1] Cikara, S., D.T. Shaw, and S.P. Maj. Modelling Layer 2 and

Layer 3 Device Bandwidths using B-Node Theory. in 29th
Australasian Computer Science Conference (ACSC 2006).
2006. Hobart, Australia.

[2] Maj, S.P. and D. Veal. Controlling Complexity in
Information Technology: Systems and Solutions. in
IASTED Conference on Computers and Advanced
Technology in Education (CATE). 2001. Banff, Canada.

[3] Coccetti, F. and R. Percacci, Bandwidth Measurement and
Router Queues. 2002, Sezione de Trieste: Trieste.

[4] Prasad, R., et al., Bandwidth Estimation: Metrics,
Measurement Techniques, and Tools, in IEEE Network.
2003. p. 27- 35.

[5] Mathis, M. and M. Allman. RFC: 3148 A Framework for
Defining Empirical Bulk Transfer Capacity Metrics. 2001
[cited; Available from: www.rfc-editor.org.

[6] Maj, S.P., D. Veal, and P. Charlesworth. Is Computer
Technology Taught Upside Down? in ASEE Computers in
Education Division. 2000. St Louis, Missouri, USA.

[7] Maj, S.P. and D. Veal. Architecture Abstraction as an Aid to
Computer Technology Education. in ASEE Computers in
Education Division. 2000. St Louis, Missouri, USA.

[8] Maj, S.P., D. Veal, and P. Charlesworth. Is Computer
Technology Taught Upside Down? in 5th Annual
SIGCSE/SIGCUE Conference on Innovation and
Technology in Computer Science Education. 2000. Helsinki,
Finland.

[9] Maj, S.P. and D. Veal. B-Nodes: A proposed new method
for modelling information system technology. in
International Conference on Computing and Information
Technologies. 2001. Montclair State University, NJ, USA.

[10] Maj, S.P., D. Veal, and R. Duley. A Proposed New High
Level Abstraction for Computer Technology. in ACM
Special Interest Group for Computing Science Education
(SIGCSE) 2nd Technical Symposium in Computer Science
Education. 2001. Charlotte, North Carolina, USA.

[11] Maj, S.P., D. Veal, and A. Boyanich. A New Abstraction
Model for Engineering Students. in UNESCO 4th UICEE
Annual Engineering Education Conference. 2001. Bangkok,
Thailand.

[12] Maj, S.P. and G. Kohli. Modelling Global IT Structures
using B-Nodes. in 3rd Annual GITM World Conference.
2002. New York, USA.

[13] Veal, D., et al. A Framework for a Bandwidth Based
Network Performance Model for CS Students. in 2005
ASEE Annual Conference and Exposition "The Changing
Landscape of Engineering and Technology Education in a
Global World". 2005. Portland, Oregon.

[14] Hudson, K., K. Caudle, and K. Cannon, CCNA quide to
Cisco Networking (2nd Edition). 2003, Boston, MA:
Thomson Course Technology.

[15] Odom, W., Cisco CCNA exam 640-607 certification Guide,
C. Press, Editor. 2002: Indianapolis, IN.

[16] McGregor, M., CCNP Cisco networking Academy Program:
Semester Five Companion Guide Advanced Routing, ed. A.
Vito. 2001: Cisco Press.

[17] Cisco Systems Inc, Cisco Networking Academy Program
CCNA 1 and 2 Companion Guide, Third Edition. 2003,
Indianapolis, USA: Cisco Press.

[18] Morrissey, P. Demystifying Cisco Access Control Lists.
[cited 2006; Available from:
http://www.networkcomputing.com/907/907ws1.html.

[19] Davies, P.T., Securing and Controlling Cisco Routers. 2002,
Boca Raton, FL: Auerbach Publications.

[20] Morrissey, P. Implementing Access-Control Lists: Access
Control. 2004 [cited 2006; Available from:
http://nwc.securitypipeline.com/shared/article/printablePipel
ineArticle.jhtml;jsessionid=QXWHTY2HVS2NYQSNDBG
CKH0CJUMEKJVN?articleId=18400169.

[21] Grice, M., CCNP Guide to Advanced Routing, ed. S.
Soloman and A. Valsangiacomo. 2001, Canada: Course
Technology, Thomson Learning.

[22] Morrissey, P. The Cost of Security on Cisco Routers. 1999
[cited 2004; Available from:
http://www.networkcomputing.com/1004/1004ws22.html.

[23] Veal, D., et al. A Framework for a Network Performance
Model Based Upon B-Nodes. in 9th Annual Conference on
Innovation and Technology in Computer Science Education
(iTCSE). 2004. Leeds, UK.

[24] Cisco Systems Inc. Configuration Fundamentals
Configuration Guide- Part 3 Interface Configuration. 2005
[cited 2005; Available from: http://www.cisco.com.

[25] Perkins, C. RFC 2003 IP Encapsulation within IP. 1996
[cited 2006; Available from: http://www.rfc-editor.org.

[26] DeMarco, T., Structured Analysis and System
Specifications. 1979, London: Prentice/Hall.

[27] Karn, P. The KA9Q NOS TCP/IP Package. 2002 [cited
2006; Available from: http://www.ka9q.net/code/ka9qnos/.

[28] Karn, P. NET User Reference Manual (NOS Version). 1991
[cited 2006; Available from:
ftp://ftp.simtel.net/pub/simtelnet/msdos/tcpip/.

[29] Lantz, B.A., Hamming it Up on Linux, in Linux Journal.
1995.

[30] Cisco Systems Inc. Cisco IOS Software Releases 12.3 T
IPSec Virtual Tunnel Interface. 2005 [cited 2006;
Available from:
http://www.cisco.com/univercd/cc/td/doc/product/software/i
os123/123newft/123t/123t_14/gtipsctm.pdf.

[31] Information Sciences Institute. RFC 791 Internet Protocol.
1981 [cited; Available from: http://www.rfc-editor.org.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

135

[32] Farinacci, D., et al. RFC 2784 Generic Routing
Encapsulation (GRE). 2000 [cited; Available from:
http://www.rfc-editor.org.

[33] Cisco Systems Inc. MPLS FAQ for beginners. 2005 [cited
2006; Available from:
http://www.cisco.com/en/US/tech/tk436/tk428/technologies
_q_and_a_item09186a00800949e5.shtml#qa11.

[34] Cisco Systems Inc. IP Fragmentation and PMTUD. 2005
[cited 2006; Available from:
http://www.cisco.com/en/US/tech/tk827/tk369/technologies
_white_paper09186a00800d6979.shtml.

[35] Wikipedia. Generic Routing Encapsulation. 2006 [cited
2006; Available from:
http://en.wikipedia.org/wiki/Generic_Routing_Encapsulatio
n.

[36] Cisco Systems Inc. GRE Tunnel Keepalives. 2005 [cited
2006; Available from:
http://www.cisco.com/en/US/tech/tk827/tk369/technologies
_tech_note09186a008048cffc.shtml.

[37] Carpenter, B. and K. Moore. Connection of IPv6 Domains
via IPv4 Clouds. 2001 [cited; Available from:
http://www.rfc-editor.org.

[38] Cisco Systems Inc. Implementing Tunneling for IPv6. 2005
[cited 2005; Available from: http://www.cisco.com.

[39] Smith, C. IPv6 in Campus Networks. 2003 [cited 2005;
Available from:
http://www.cenic.org/events/cenic2004/pres/csmith.pdf.

[40] Cisco Systems Inc. Interconnecting IPv6 Domains Using
Tunnels. 2003 [cited 2005; Available from:
http://www.cisco.com.

[41] Nordmark, E. and R. Gilligan. RFC 4213 Basic Transition
Mechanisms for IPv6 Hosts and Routers. 2005 [cited;
Available from: http://www.rfc-editor.org.

[42] Cisco Systems Inc. Cisco- Tunneling IPv6 through and IPv4
Network (Document ID: 25156). 2005 [cited 2005;
Available from: http://www.cisco.com.

[43] Cisco Systems Inc. IPv6: Providing IPv6 Services over and
IPv4 Backbone Using Tunnels. 2003 [cited 2005;
Available from: http://www.cisco.com.

A/Prof S. P. Maj has been highly
successful in linking applied research
with curriculum development. In 2000
he was nominated ECU University
Research Leader of the Year award He
was awarded an ECU Vice-Chancellor’s
Excellence in Teaching Award in 2002,
and again in 2009. He received a
National Carrick Citation in 2006 for
“the development of world class
curriculum and the design and

implementation of associated world-class network teaching
laboratories”. He is the only Australian judge for the annual
IEEE International Student Competition and was the first
Australian reviewer for the American National Science
Foundation (NSF) Courses, Curriculum and Laboratory
Improvement (CCLI) program.

Dr. David Veal is a Senior Lecturer
at Edith Cowan University. He is the
manager of Cisco Network Academy
Program at Edith Cowan University and
be a unit coordinator of all Cisco
network technology units. His research
interests are in Graphical User Interface
for the visually handicapped and also
computer network modeling.

