
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

145

Manuscript received September 5, 2010
Manuscript revised September 20, 2010

Design and Analysis of a Dynamically Reconfigurable Shared
Memory Cluster

Minakshi Tripathy**
Sambalpur University, Jyotivihar, Burla, Sambalpur,

Orissa,India.

Dr. C.R. Tripathy.
Department of Computer Science and Engineering V.S.S.
University of Technology, Burla,Sambalpur,Orissa,India.

Abstract
In recent years, the clusters have become a viable and less
expensive alternative to multiprocessor systems. This paper
proposes an architecture with a load balancing and a fault tolerant
model for shared memory clusters. A task clustering algorithm, a
Centralized dynamic load balancing model, a load balancing
algorithm and a fault tolerant model are proposed for shared
memory clusters. The results establish the proposed model to
provide high runtime availability and efficient load balancing.
Keywords
Cluster availability, task clustering, task allotment, load
balancing, fault tolerance, checkpoint recovery.

I. INTRODUCTION
The shared memory cluster systems have become popular
since they offer high computing power at low cost [1-2].
Shared memory programs are usually shorter and easier to
understand then equivalent message passing programs, and
large or complex data structure may easily be
communicated without marshalling. Dynamic clusters are
connected by a central global interconnection network.
Tasks of a program are defined to prevent data cache
reloading during their execution through task clustering on
scheduling algorithm based on macro data flow graph
representation [3-4]. Processors can be switched between
clusters with data in their caches. After switching, a
processor writes data from its cache to the memory
allowing the data to be read on the fly by processors
switching and is followed by the “read on the fly” called
“ communication on the fly” [5-8]. Scalability of shared
memory systems can be much improved by application of
cluster based system architecture. Such architecture has
become quite common today [9-10]. However till date, no
attempt has been made in the literature on implementation
of communication on the fly with clustering algorithm.
Load balancing is an efficient strategy to improve the
throughput or speedup execution of the set of jobs while
maintaining high processor utilization [11-12]. Load
balancing is broadly classified into two classes: static and
dynamic. A multicomputer system with static load
balancing distributes tasks across nodes using a priori
known task information where the load distribution remains
unchanged at run time. A multicomputer system with
dynamic load balancing uses no priori task information and

satisfies changing requirements by making task distribution
decision during run time. In dynamic load balancing,
workload is distributed among the processors at run time
[13-15]. New processes are assigned to the processors
based on the run time information collected from each node.
If a node in the system becomes overloaded, the task
that causes this overloading needs to be transferred to an
under loaded node and run there. Dynamic load balancing
can be further classified: centralized and decentralized
dynamic load balancing. In centralized scheme all the
nodes transfers their information to a cluster head for
decision making. In the distributed scheme, this
information is available to all the nodes. In shared memory
cluster environment, the centralized scheme is more
beneficial where the communication cost is less significant
[16-18]. However, the method proposed in [18] suffers
from certain disadvantages. The method does not report on
its time complexity and the efficiency. Here, only one node
acts as the central master controller called as manager. It
has a global view of the load information and decides how
to allot jobs to each of the nodes [19-20]. The rest of the
nodes, which act as the slaves are called as workers. The
workers only execute jobs assigned by the manager.
The shared memory clusters need to be fault tolerant. A
fault is an anomalous physical or environmental
phenomenon. Faults can be classified into transient, sticky
and permanent faults [21-23]. In case of transient faults, the
disk system recovers after a small finite interval e.g. link
down, switch down, bus busy, parity errors, hardware or
software reboot, process crash, hang, and node freeze etc.
The sticky faults require human intervention for correction
e.g. power failure, cable unplugging, disk hang, read and/or
write fault. A permanent fault is a fault that is continuous,
persistent and stable due to an irreversible change. An error
is at the manifestation of a fault. It is the undesired system
behaviour due to which the system is not able to deliver
services. A failure is the occurrence of undesired
circumstances affecting services of the system. An
analytical model describes system’s response to a fault. It is
used to compute availability during faults with the rates of
failures and repair of each component. Fault tolerance is
provided through three stages including detection of faults,
notification of fault followed by recovery from the fault

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

146

[24-27]. The checkpointing is used to restore the last
non-faulty state (checkpoint) of the failing task (i.e. to
recover from faults). The checkpoint is saved in advance
into a stable storage and is restored with event of failures of
a task [28-30].

The paper is organized into four parts. In the section 2,
the proposed system architecture followed by a data flow
graph and a clustering algorithm for task assignment is
described. In the Section 3, a centralized dynamic load
balancing model is proposed. The Section 4 presents a fault
tolerant model for the shared memory cluster system
followed by some theoretical analysis on the cluster
behaviour in case of failure of node(s). The Section 5 is
devoted towards the performance analysis of the proposed
system. The results presented are the performances of the
proposed models are evaluated and the results are compared
with the previous works [5][10][13][17][24][25].
Finally, the Section 6 provides for the conclusions.

II. DESCRIPTION OF THE PROPOSED ARCHITECTURE

In this section, we propose a dynamically reconfigurable
shared memory clusters architecture. The proposed shared
memory cluster system architecture is illustrated in Fig 1.

Fig. 1: Shared Memory Cluster System Architecture

The proposed system is built of a number of processors

(Pi), a controller memory (CM), a set of data memory
module (Mi), a set of caches and a set of buses. A memory
controller arbitrates accesses to a memory module through
the inter cluster bus and intra cluster buses. All the data

memory modules are placed in shared address space. All
the processors attached to the intra cluster bus of a data
memory module constitute a processor cluster. At a time, a
processor can belong to a single cluster. All processors are
connected to the inter-cluster bus. Each processor data
cache is connected with one module permanently during the
program execution and with another module that can be
changed dynamically according to the program needs. The
system can contain a number of elementary modules
connected by a common global network.

The permanent connection to a memory module is meant
for communication with large data sets. All other
processors that require to use the results need to get
connected to this memory bus dynamically. While a
processor writes them to the memory module through the
intra cluster memory bus, other processors observe the
address that appear on the bus and fetch the data they need
to their data cache. Such data operation is called read on the
fly. A read on the fly following a processor switching into a
cluster is called communication on the fly.

Tasks of a program are defined in order to prevent data
cache reloading during their execution. A processor data
cache has to be filled with all necessary data before a task
starts. During task execution, a processor sends
computation results only to the data cache without updating
the memory module. To update the memory, a processor
performs a special write module instruction. The results
that are meant for other processors are written using new
addresses. Such a single assignment principle avoids data,
memory and cache consistency problems. To enter a cluster,
a processor performs connect- bus instruction. The
processor is switched from using one memory module to
using another. Such changes are done at the end of a
computation, just before the computation result are written
from the data cache to a memory module and write the
result to a new memory module. In this way, a processor
can be switched to a new cluster to provide module and
common new data from its data cache.

Each processor is equipped with a Bus request controller
(BRC). An arbiter selects the highest priority level request
(first writes are examined and if there is no write then reads
in the inter-cluster bus arbiters) and allows a processor’s
BRC to perform the transmission. The transmission starts
only if the availability bit is set to ready. All writes and
reads are acknowledged to the arbiter. If the data are
unavailable, the transmission is suspended and an attempt is
made for request with the same priority level. If there is no
other request with the same priority or all the attempts have
failed, then a negative acknowledgement is sent to the
arbiter. On the fly, read requests are stored in the BRC in a
separate bus snooping table. When BRC finds a source
address on the bus equal to the source address of its move or

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

147

cache pre- fetch request stored in the table, it reads data
from the bus. Then the data is sent to the data cache and the
memory module according to the target address. After a
read request is completed, it is removed from the table and
is also removed from the request queue. The next
subsection describes the task clustering on the proposed
architecture.

A. Task Clustering
The initial program is first divided into sub graphs. Each
such sub graph constitutes a separate parallel task. All data
transfers between separate parallel tasks are executed via
global communication network and creates a new larger
parallel task by merging smaller tasks. The reduction in
execution time is obtained by transforming global
communication between separate small tasks into local
communication performed inside a larger task. Such local
communications may be executed on the fly, which further
reduces their execution time. For a given task ‘T’,
following two functions are defined.

a) FT comp (t): It determines the execution time of
task T of computation nodes on a time axis i.e. the
number of potentially concurrent computations.

b) FT comm (t):It determines the execution times of
nodes in a computation graph of task T i.e. the
number of concurrent communications on the fly.

For any task T, at any moment of its execution, the
following function fulfills the constraints as below.

FTComp(t)<= N, FT comm (t)<= M
where N is the number of processors and M is the number

of shared memory modules.

1) Extended Macro-Data Flow Graph
An application program is first represented as the macro

data – flow graph in which task nodes execute using data
contained in processor cache. To describe activities of
processors in dynamic cluster, special kinds of nodes in the
program graph are introduced. Memory read nodes (R),
memory write nodes (W), the intra-cluster memory bus
arbiter nodes (CA), the inter-cluster global memory bus
arbiter node (GA). Node R reads data from a memory
module to the processor data cache for the subsequent task
nodes. The node W writes data from the processor data
cache to the cluster memory module. The R and W are
labeled with volume of data. One read through the global
bus and one write through the intra cluster bus can be done
in parallel. Writes are done sequentially. An extended
macro data flow program graph (EMDFG) transfers
through the inter-cluster and intra-cluster buses is shown in
Fig 2. An arbiter node is connected by bi-directional edges
with many R and W nodes. It activates the node, which is
ready for execution and has the highest priority. When the

selected nodes are completed, it sends the token back to the
arbiter. Task nodes can be mapped to the same processor.
Data for task execution can be transferred through the
processor cache. Then the respective write and read nodes
disappear from the program graph as shown in Fig 3. A
section in a program graph is a sub-graph, which is
executed by a fixed subset of processors connected to the
same memory module of the same cluster. After each
switching of a processor to a cluster, new section is
associated with section activations. The next subsection
illustrates clustering mechanism with algorithms based on
the macro data flow graph representation

P1 P2 P3

P4 P5 P6

T1 T2 T3

T4 T5 T6

Section 1,0 Section 2,0

P1 T1 T2 T3

P4 T4 P5 T5 P6 T6

W

R1

CA1

W2 W3

R3

CA2

R31
R22

R21GA

MDFG EMDPG
Fig. 2: a) Macro- data flow graph. b) Extended Macro data flow graph

P3

P3

P2

P2

CA1

GA

T1 P1

T4 P4

W1

T2

T5

T4

T6

R21 R31

Section 1,0 Section 2,0

Fig. 3 : Mapping tasks onto the same processors

B. Clustering Mechanism
The proposed clustering method is based on the macro

data flow and extended macro data flow representation of
the program graph given in the Fig 2a and Fig 2b with
mapping of tasks in Fig 3. It is assumed that all processors
are connected to each other via a full interconnection
network. If two adjacent computing nodes are mapped to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

148

the same processor, the communication cost between them
becomes zero. Otherwise, it is equal to the weight of an
edge between these nodes. The proposed method has three
distinct steps described below in following subsections.
a) Task cluster structuring
b) Task clustering
c) Task cluster merging

1)Task Cluster Structuring
In this subsection the proposed task cluster structuring is

described followed by an algorithm. The communication
subgraph (CS) of EMDFG is a subgraph containing a read
node (R), a write node (W) which precedes this read in the
graph and nodes of arbiters e.g CA and GA controlling
transmissions. Critical path (CP) is the path going from the
initial node to the end nodes whose execution time is the
longest. It first selects the unexamined CS on CP. Next, a
basic structure is selected which contains this CS. Finally,
the selected CS is subjected to proper transformation. As a
result, an equivalent program graph is obtained. An
algorithm to implement the above is proposed below.

a) Algorithm (TCS)
Initialize the set S with all nodes.
Sort other read nodes from the considered CS in ascending
order as per ready time (PT) and place them in a queue.
Transform the initial CS by converting all nodes from the
set S to reads on the fly.
Determine execution time Te of transformed program
graph
While queue Q is not empty.

Pick the first node q from Q.
Transform initial CS by converting all nodes from the set
SU {q }
Determine execution time t of current transformed CS.
If t <= Te
 S=SU{q}
 Te=t
Else
 Break the loop
End If

End while
Set S to contain nodes to be included in a transformation
Finish

2) Task Clustering
A task clustering method supported by an algorithm is

proposed below. The clustering algorithm is based on
clustering technique and on observations, that converting a
standard read operation to a read on the fly removes this
read node from linear execution time of the graph. This
read operation is then performed on the fly while the write

takes place.

a) Algorithm (TS)
Set all communication sub graph (CS) as unexamined
Set parallel time (PT) as start time
While there exists an unexamined CS of CP that delay in
arbiters

Set unexamined CS with CP
 If CS’s write node has one successor node
 Unify CS’s write and read node cluster sequentially

on
 the same processor
 Evaluate improvement of PT
 Check data cache overflows.
 Else

Unify CS’s write and read node clusters parallely
on the same processor
Or
Unify CS’s write node cluster on the same
processor and read node cluster on a separate
processor.
Evaluate improvement of PT
Check data cache overflow.

 End If
 From all clustering performed above
 Validate one with biggest PT improvement

If PT is reduced and no data cache overflow
Replace unified cluster by validated cluster in

graph
 Set transformed PT as current PT
End If
 If for any task T,
 FTcomp(t)<=N and FTcomm(t)<=M

Mark current CS as examined
Find a new CP in the transformed graph

 Else
Reject task T

 Mark current CS as examined
 End If

End while

3)Task Cluster Merging
This subsection proposes an algorithm for task cluster

merging. The algorithm first groups the connected
components of the graph in larger clusters. If the number of
processors required for execution exceeds the real number
of processors, loads of clusters are merged. A point wise
width of the program graph is the sum of number of
processors in all clusters, which co-execute in a given point
of time. If a point wise width of the program graph exceeds
the number of available processors, then the tasks are
merged inside the processor clusters.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

149

a) Algorithm (TCM)
Find the total number of connected components of the
clustered graph CC.
If memory modules M > CC

 Set CC to M i. e M= CC
 Calculate sum of processors as co-execute at a
 particular time SP
 Determine total number of real processors RP i.e..Z
 cluster consisting of N processor is RP= ZN

If SP<RP then
 Compute PT of each CC

Merge component with smallest PT to balance PT
so that CC <=Mi

 M=CC
Else

Merge tasks in parallel of some cluster when no
cache overflow so that SP<=M

Or
Merge tasks sequentially to balance PT of all
processor in these clusters.

End If
End If

C. Theoretical Analysis
This subsection illustrates the theoretical operations on

the proposed cluster. Consider a matrix multiplication
operation C= AB where the order of matrices A, B and C is
mxk, kxn and mxn. It follows the serial block based matrix
multiplication by assuming the regular block distribution of
the matrices A, B and C. Each processor accesses the
appropriate blocks of the matrices A and B to multiply them
together with the result stored in the locally owned part of
matrix C. Our approach fetches these blocks independently,
as needs without requiring any co-ordination with the
processor that own the matrix blocks. The specified
sequence in which the block matrix multiplications are
executed is determined dynamically at run time to more
efficiently schedule. For each processor P and
corresponding matrix block Cij is held on that processor, the
following sequence is followed.

a) Build a list of tasks where a task computes each of the
Aik and Bkj products corresponding to the block matrix
multiplication in
 N

Cij=Σ Aik Bkj (1)
 k=1

b) Reorder the task list according to the communication
domains for that processes at which the Aik, Bkj are
stored.

For each task on the list,
a) Issue a non blocking involved in the next task on the

list if it is not on the same node

b) Wait for the non blocking get operation bringing Aik
and/or Bkj needed to execute the current task

c) Call serial matrix multiplication to compute Aik, Bkj
and add the results to the Cij block.

Let us denote,
tw – data transfer time per word or element
ts – latency or startup cost
p x q – process grid in 2D fashion
P – number of processor

For our analysis, we assume a 2D matrix distribution.
Each process owns a block of A, B and C matrices of size

q
k

p
m

q
n

p
m

×× , and
q
n

p
k
× .

 In a 4 x 4 grid processor P00 needs blocks of matrix A

from P00, P01, P02 and P03 and blocks of matrix B from
P00, P10, P20 and P30. As a further refinement, the
“diagonal shift” is used to sort the task list so that the
communication pattern reduces the communication
contention on clusters. The node1 has processors P00, P10,
P20 and P30, node2 has P01, P11, P21 and P31 etc. To
compute matrix C, a processor needs the corresponding
rows and columns of matrix A and B. As shown in Fig5
processor P00 needs blocks of matrix A from P00,P01,P02,
and P03 and block of matrix B from P00, P10, P20 and P30.
If the diagonal shift is not used processors P00, P10, P20
and P30 get a block from P01, P11, P21 and P31, in first
step. Thus all the four processors are trying to share the
bandwidth between node 1 and node 2. If the diagonal shift
is used instead, then processors P00, P10, P20 and P30 get a
block from P00 (node 1), P11 (node 2), P22 (node 3) and
P33 (node 4) in first step thus reducing contention. This
performs better also for more processors or nodes. The Fig
4 represents the pattern of getting block by processors in
node1.

Fig. 4: Pattern of getting blocks on a 4-way cluster to reduce

communication contention.

The sequential time Ts of the matrix multiplication

algorithm is N3 (say m=n=k=N).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

150

Ts = N3 (2)

The parallel time Tp is the sum of computation time

(Tcomp) and the time to get the blocks of matrices A and B
(Tcomm)[7].

Tp = Tcomp + Tcomm (3)

Tcomm = time to get rows of matrix A block + time to

get columns of B block.

Tcomm = Trow _ comm. + Tcol_comm (4)
Each process gets q blocks of matrix A and p blocks of

matrix B of size ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
k

p
m

 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
q
n

p
k

. So,

Trow_comm = [data transfer time of message size

pq
mk

] + latency / startup cost

Trow_comm = qtstw
pq
mk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 (5)

Similarly,

Tcol_comm = ptstw
pq
nk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

(6)

Now, from equation 3, Tp = Tcomp + Tcomm

Tp= ptstw
pq
knqtstw

pq
mk

p
mnk

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ (7)

For simplicity let us assume m=n=k=N and p=q= P .

Then equation 7 becomes

Ptstw
P

N
P

NTp 22
23

++= (8)

For a network with sufficient bandwidth, Ts can be

neglected, as it is relatively small when compared to the
total communication time. As per Amdahl’s rule [6] the
speedup is the ratio of sequential execution time to parallel
execution time. Therefore,

Tp
TsS =

PPPNN
NP

22
.

23

3

++
= (9)

And the efficiency is defined as the ratio of speedup

obtained to the number of processors used. Thus,

PPPNN
PN

P
SE

22 23

3

++
== (10)

III. PROPOSED CENTRALIZED DYNAMIC LOAD BALANCING
MODEL

This section presents the details of the proposed
centralized dynamic load balancing model for the shared
memory cluster computing environment followed by
theoretical analysis and an algorithm. The nodes are
composed of various resources including processor,
memory and network connectivity as shown in Fig 5. In a
shared heterogeneous environment, each node differs from
the other nodes with respect to their processor, memory and
disk. To accomplish worker manager model, master slave
paradigm is followed where a separate master program is
responsible for processes (slaves) spawning data
assignment and collection of results.

A. Theoretical Analysis
Next, we model the arrival process as a poisson process

with service demand of the background jobs as an
exponential distribution. The Fig 5 illustrates the adopted
centralized dynamic load balancing using worker manager
model. Here a shared memory cluster consists of a master
node with a job scheduling queue with n number of arrivals.
From the n number of job arrivals with arrival time (Tai)
and service time (Tsi), the mean arrival time (Ta) and mean
service time (Ts) can be given by

Fig.5: Centralized Dynamic load balancing worker manager model

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

151

 t
Ta= Σ Tai (11)
 i=1
 t
Ts= Σ Tsi (12)
 i=1
where t= Number of tasks in a job
Now the mean arrival time(Ta) and mean service

time(Ts) is related with mean arrival rate(λ) and mean
service time(μ) as

 1
λ= ------- (13)
 Ta
 1
μ=--------- (14)
 Ts

In exponential distribution, traffic intensity (ρ) is
 λ
ρ= --------- (15)
 μ
Some principal measures of queuing system are the mean

number of job requests in the queue i.e. queue length (L),
mean number of requests in the queue waiting (Lw), mean
time to complete service i.e. run time (W), mean time spent
waiting for service to begin i.e. waiting time (Ww) can be
given by

 ρ
L= --------- (16)
 1-ρ

Lw=QL-ρ (17)

 QL
W= ---------- (18)
 λ

 QW
Ww= --------- (19)
 λ
Each task has a run time, which is the time period to

finish the task execution and the response time(RT) is the
time taken for a job to be completed after it is detects
whether the task is more CPU bound, memory bound or
network bound. The manager creates a temporary lookup
table for the given job to submitted i.e. run time including
waiting time. Hence
 RT=W+Ww (20)

In the proposed model, the centralized dynamic load
balancing depends on some basic features such as CPU,
memory and network load or any one of them considering
the type of job (CPU, memory or network bound). When a

new job is submitted, the manager decides on assigning
tasks to workers based on CPU, memory and network load
status of worker nodes. As the job continues its execution,
the manager collect CPU usage of task (Wcpu), amount of
demanded memory (Wmem), and amount of data
transferred through network (Wnet) by the task. These
parameters are stored and are applied in decision making
for the next task run of the job by the manager.

 t
Wcpu = Σ CPUload (21)
 i=1
 t
Wmem = Σ MEMload (22)
 i=1
 t
Wnet = Σ NETload (23)
 i=1

where, CPUload, MEMload, NETload are load or

available free space of CPU, memory and network
respectively. These parameters are then declared and
assigned in each node for decision making by the manager.
When a worker processor is ideal, the faster processor is
scheduled for service before the slower processor. Now the
load value (Load) of a worker node is

Load=Wcpu+Wmem+Wnet (24)

The average load(Lavg) of a node can be

 1 n
Lavg = --- Σ Load

 (25)
 n j=1
where t=Number of tasks executed
 and n=Number of jobs completed.

Standard Deviation of load(σ) is the standard deviation

of worker node’s load and average load amount at every
moment. It is defined as

 1 n
σ = --- Σ (Load – Lavg)2 (26)
 n j=1

In general, high efficiency load balancing keep up in a

smaller domain along with the increase of task.

B. Description of the Proposed Algorithm
This subsection proposes an algorithm CDLBM for

centralized dynamic load balancing for shared memory
clusters. First, a new job j is submitted to the manager

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

152

node. Then the algorithm assumes CPU, memory and
network requirements of the task i.e. the type of job
whether it is CPU, memory or network bound. After finding
out the highest requirement of the task, the algorithm makes
an effort to balance the load. Accordingly, the tasks are
allotted to a worker node for the execution of task where the
expected response time is the minimum. Response time is
calculated using equations(1-10). The algorithm repeatedly
executes for each task of the job j. While performing the job,
the lookup table status is automatically updated by the
received information in every specific run. Finally the load
value(Load), average load (Lavg) and standard deviation of
load (σ) of each node are calculated using equations
(11-16). The minimum value of the Load yields higher
performance. Generally, the high efficiency load balancing
makes the average load monotonically increasing in fixed
percentage along with the increase of task and keeps σ in a
smaller domain.

1) Algorithm (CDLBM)
For each job in the job scheduling queue of manager
 Add a new job j to the manager
 For each task of job j
 Assume CPU, memory and network requirements
 If job type (j)= Bound (CPU) then
 Find a worker node where CPUload is minimum
 w
 CPUload(i)=min(CPUload(i))

 i=1
 Calculate RT for the task j to find the worker where
it
 is minimum
 w
 If RT(i)= min (RT(i)) then
 i=1

 Allot the task to worker Wi.
 End if
 Else If job type (j)= Bound (MEM) then
 Find a worker node where MEMload is minimum
 w
 MEMload(i)=min(MEMload(i))
 i=1
 Calculate RT for the task j to find the worker where
it
 is minimum
 w
 If RT(i)= min (RT(i)) then
 i=1

 Allot the task to worker Wi.
 End if
 Else If job type (j)= Bound (NET) then
 Find a worker node where NETload is minimum
 w

 NETload(i)=min(NETload(i))
 i=1
 Calculate RT for the task j to find the worker where
it
 is minimum
 w
 If RT(i)= min (RT(i)) then
 i=1

 Allot the task to worker Wi.
 End if
 End If

Update the status of the lookup table
Calculate load value of each job

End For
Calculate Lavg and σ for each node
End For

The proposed CDLBM algorithm is quite efficient and
has the time complexity O(nm) for m number of tasks within
n number of jobs.

IV. FAULT TOLERANT MODEL
This section proposes a fault tolerant model for shared

memory clusters. The goal is to achieve high performance
and reliability. This includes utilization of resources and
methodologies with error handling. The Fig 6 shows the
architecture of our proposed fault tolerant model for shared
memory clusters. We assume the model to consist of a set of
N processors, interconnected by a communication channel.
The processors have to access a shared memory where the
code of tasks or processes and the checkpoint (last non
faulty state of task) are stored. The use of shared memory
checkpoints significantly reduces the task migration
overhead. If a permanent error is detected on a node, the
task is recovered on the other nodes from its last checkpoint
stored. The status control is responsible for monitoring and
updating the status of each node. The checkpointing is
responsible for failure notification of each node. The status
and failure information are checked before hand in order to
avoid establishing communication with failed processes.
The function of the control process is similar to that of a
system manager.

A. Theoretical Analysis
This subsection provides the theoretical analysis for

Fault tolerance. A node is considered to be in failure mode
when it exhibits an abnormal behaviour in such a way that
the results returned by the processor can not be used either
by the remaining nodes or by the user. The time between the
detection of error leading to a failure and its first occurrence
is called an error detection delay.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

153

Fig.6: Fault Tolerance Model for Shared Memory Cluster

A cluster is said to be failed if i out its N nodes fail for i<

N. The transaction between states is memory less i.e. it does
not depend on the past states and so in order to goes back to
a preceding state, a restoration process needs to be
preformed. According to Poisson distribution [6-9], if X be
the random variable for the number of failures of nodes,
then the probability to have n failures at time interval (t) is
given by

[] 0t,....2,1,0n,
n

)t(enXPr
nt

>=
λ

==
λ−

 (27)
The instantaneous availability A(t) of a system is the

probability that the system is operating correctly at time t,
regardless of the number of times it may have failed and
have been repaired in the interval(0,t).

A (t) =
∫
T

dttA
T 0

)(1

 (28)
The steady state availability (SSA) is a measure of the

expected fraction of time that the system is available for
useful computation, and is obtained by taking the limit of
A(t) when time reaches infinity.

)(lim tASSA
t

=
∞→

 (29)

The mean time to failure(MTTF) of a system is the
expected time until the occurrence of the system failure.
The mean time to repair (MTTR) is a measure of the
expected time for repair of a failed node. The mean time

between failure(MTBF) is a measure of expected mean
time between failures in a system repair and it depends on
both failure and repair processes. Hence,

MTBF=MTTF+MTTR (30)
Fault arrivals are exponentially distributed and faults

queue at the system so that only a single fault is in effect at
any point of time t. For a repairable node with average
failure rate (λ) i.e. MTBF and average repair rate(μ) i.e.
MTTR, its instantaneous availability A(t) is given by

t

etA)()(μλ

μλ
λ

μλ
μ +−

+
+

+
=

 (31)

where MTTR
1

=μ
 and MTBF

1
=λ

The steady state availability can than be

μλ
μ
+

=SSA
 (32)

 We assume that all the N nodes are identical and
exponentially distributed with failure rate λ and repair rate
μ. In our proposed architecture, using shared memory
concept, all nodes are assumed both active and backup for
each other. Hence, every node in the cluster of N nodes has
N-1 backup nodes. So, when i number of nodes fail, the
system functions with (N-i) backup nodes. The availability
of the cluster system with N number of nodes is then given
by

() ij
N

Nj

AANCA ∑
−=

=
1

 (33)

 _
where CA is the cluster availability and A, A are the

availability and unavailability of a node at time t, given by
t

etAtA)()(1)(μλ

μλ
λ

μλ
λ +−

+
−

+
=−= (34)

1) Checkpointing and Recovery

This section describes the checkpointing and recovery
method as a part of theoretical analysis. Once a fault is
detected, a fault tolerant method needs to be invoked to
handle the fault. The time needed for the detection of faults
is accounted for by the error detection overhead (α). When
a process is reexecuted after a fault was detected, the node
restores all the initial inputs of that process. The process
re-execution operation requires some time for this i.e.
captured by the recovery overhead (β). In order to be
restored, the initial input to a process has to be stored before

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

154

the process is executed first time. The last non faulty state
or checkpoint, has to be saved in advance in the memory
and will be restored if the process fails. Saving the process
states including saving the initial inputs at checkpoint, takes
certain amount of time known as checkpointing overhead
(γ). In presence of faults checkpointing increases the task
execution time. In presence of k faults, execution time (Ri)
in worst case scenario of process Pi with ni checkpoints can
be obtained as below[10].

Ri=Ei(ni)+Si(ni)
 (35)
Ei (ni)=Ci+ ni (αi+γi)
 (36)

)1()()(−++= kk
n
C

nS ii
i

i
ii αβ

 (37)

Where Ei(ni) :Execution time of process Pi with ni

checkpoints.
 Si (ni) : Recovery slack of process Pi
 Ci : Checkpointing cost i.e. worst case execution
 time of Pi.

ni (αi+γi) : Overhead introduced with ni
checkpoints.

: Time needed to recover from a
single fault, when multiplied by k
for recovering from k faults.

αi : Error detection overhead
βi : Recovery overhead
γi : Checkpointing overhead

Recovery slack is the ideal time on the node needed to
recover the failed process segment.

B. Proposed Algorithm (SMFTC)
This subsection proposes an algorithm for checkpointing

and recovery method.

For each node in the cluster
 Select process from stored list of shared memory

 Obtain recovery slack (Si), Worst case Execution
 Time(Ei) and Checkpointing Cost(Ci)

For each task of a process
 For each fault of a task
 Perform Checkpointing and recovery
 End For
 Calculate Response Time of the processes.
End For

Calculate instantaneous availability and steady state
availability of the nodes.
End For

Calculate cluster availability of the system.
Finish

The proposed algorithm (SMFTC) has the time

complexity of O (n.mk) for k faults with m tasks in n
number of nodes.

V. PERFORMANCE EVALUATION
The matlab programming was used for the evaluation

of all the theoretical analysis made in architecture, load
balancing and fault tolerant sections. An instance of the
program is run on a head node known as manager. It is
responsible for running the proposed algorithms and
gathering results from computing tasks. The manager
assigns tasks to each worker by allotting data. Another
instance of program is run on the worker node. It takes the
tasks as multi dimensional matrix, where dimension is
generated randomly for multiple numbers of jobs. It
processes the data and sends the results back to the manager.
To validate the effectiveness of proposed shared memory
cluster architecture, a comparison is made with other
architectures of previous works in SRUMMA[5] and
STRASSEN[10] matrix multiplication. The proposed
centralized dynamic load balancing method using worker
manager model is evaluated and compared with that of the
previous works in DDLB[13] and DLBM[17]. The results
of proposed Shared memory fault tolerance cluster with
checkpointing (SMFTC) model are compared with
previous works in AMHPC [24] and RSHAC [25]. We vary
the application size with several processes implemented on
proposed architecture consisting of 1-1000 nodes, number
of processes (1-100), number of faults(1-10) and number of
checkpoints are generated randomly.

Table1 shows the performance of our architecture in
milliseconds by the application of dense block matrix
multiplication (DBMM). The Table2 and Table3 present
speedup and efficiency improvements obtained through
DBMM over the SRUMMA and STRASSEN matrix
multiplication. Most of our findings show the proposed
architecture provide high reduction of execution time of
tasks in which speedup is an essential component. It makes
the communication on the fly a promising solution to
shared memory cluster architectures.

To make the effects of load balancing algorithm clear, we
evaluated the response time, average load and standard
deviation of load. Experimental results of executing tasks
along with comparison are shown in Figure7-9. The Fig 7
compares the Response Time between DDLB and the
proposed CDLBM model. The mean arrival rate, mean
service rate and traffic intensity are the main factors to
calculate response time. As shown in Fig 7 with the

i
i

i

n
C β+

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

155

increase in number of tasks, response time of the cluster
decreases and is less then or equal to the response time of
DDLB model. Therefore it improves speedup of the
execution time. The Fig 8 shows the average load of
proposed model with DLBM concept. Our proposed
CDLBM model is found to be superior then DLBM in most
of the cases. Further, it occupies fewer loads on average
from CPU, memory and network avoiding system overhead.
The Fig 9 shows the standard deviation of load between the
proposed models with the DLBM concept. The standard
deviation is the primary factor as it determines how reliable
the data is. The standard deviation is more close to the
average load in proposed CDLBM model as compared to
that of DLBM model. This establishes the superiority of the
proposed model over DLBM model in terms of system
reliability and efficiency.

We consider a fault scenario with checkpoint cost for a
node Ci=50ms, error detection overhead(αi)=10ms,
recovery overhead(μi)=15ms and checkpointing
overhead(χi)=5ms.The program is run on central node for
status monitoring and fault tolerance of each node. Now to
compute the response time of a process making checkpoint
(ni=1,2,3) with faults (k=1,2,4,6,8,10), results are given in
below Table 4-5. Here, the Mean response time of this
process is found to be 5.09 ms. It is computed taking the
ratio of the sum of response time of all tasks with the
product of the total faults and total checkpoint. It is
calculated as below.

∑
=

t

i
Ri

1
)(

Ri(mean) = --------------------- (38)

 ∑ ∑
= =

Σ∗
t

i
i

t

i
nk

1 1
)()(

 The Table 5 shows the major faults with their noticeable
MTBF and MTTR. With the MTBF and MTTR values, the
average failure rate(λ), average repair rate(μ) and Cluster
availability (CA) are calculated. The Fig 10 illustrates the
scalability impact on cluster availability for different
number of processors in the proposed SMFTC system and
is also compared with the previous results in AMHPC and
RSHAC. The availability decreases significantly when the
number of processors increases with more number of faults
affecting total runtime availability. Thus, in order to
maximize the cluster availability, we need to minimize the
number of faults and maximize response time. As shown in
Fig 10, the proposed architecture gives high runtime
availability over the previous system [24][25] with quick
fault recovery and fast response time due to the proposed
checkpointing and recovery method.

TABLE 1
DENSE BLOCK MATRIX MULTIPLICATION(DBMM)

N P Tcomp Tcomm Ts Tp S E
64 1 262144 8194 262144 270338 0.97 .97
32 8 4096 729.73 32768 4825.74 6.8 .85
16 64 64 80 4096 144 28.4 .44
8 512 1 50.91 512 51.91 9.87 .02
4 4096 0.02 128.5 64 128.52 0.5 .0001

TABLE 2
SPEEDUP COMPARISION WITH SRUMMA

N P SPEEDUP EFFICIENCY
SRUMMA DBMM SRUMMA DBMM

1000 16 18 15.87 1.13 .9920
2000 16 25 15.94 1.56 .9960
4000 16 24 16 1.5 .9980
1000 32 20 31.64 0.63 .9888
2000 32 35 31.82 1.09 .9943
4000 32 48 31.90 1.5 .9971

TABLE3

SPEEDUP COMPARISION WITH STRASSEN
N P SPEEDUP EFFICIENCY

Strassen DBMM Strassen DBMM
512 8 17.3 7.91 2.16 .9890
1024 8 22.3 7.95 2.79 .9945
1024 16 41.3 15.88 2.58 .9922
2048 16 42.3 15.94 2.64 .9961
2048 32 43.6 31.82 1.36 .9945
4096 32 45.6 31.91 1.43 .9972

TABLE 4

RESPONSE TIME(IN MS) FOR A PROCESS
Ni K Ei Si Ri
1 1 65 65 130
1 2 65 140 205
2 4 80 190 270
2 6 80 290 370
3 8 95 323.33 418.33
3 10 95 406.67 501.67

TABLE 5 MAJOR FAULTS

Fault MTBF MTTR
Switch down 1 year 30 min.
Disk timeout 10 months 20 min
Link down 6 months 10 min.
Process crash 4 months 5 min
H/W reboot 2 months 2 min.

COMPARISION RESULTS

Fig. 7: Comparison of Response Time Vs Number of Tasks

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

156

Fig. 8: Comparison of Average Load Vs Number of Tasks

Fig. 9: Comparison of Standard Deviation of Load Vs Number of Tasks

Fig. 10: Comparison of Cluster Availability Vs Number of Processor

VI. CONCLUSION
The paper proposed a new architecture for dynamically

reconfigurable shared memory processor clusters based on
communication on the fly. In the proposed system, the
switching between processor clusters at program run time is
discussed. It is the communication on the fly which enables
transfers of data carried in the data cache of a processor.
The multiple reads on the fly are done in the cluster when
the processor writes data to memory. Such a combination of
processor switching and reads on the fly eliminates many
data transactions on the buses and strongly speeds up
communication in a program. It eliminates data cache
reloads and thrashing. The paper also presented algorithms
for scheduling program given in the form of task graphs.

The algorithm uses the concept of parallel tasks. It
decomposes an initial program graph to sub graphs treated
as parallel tasks. The load balancing problem was discussed
in detail and a new load balancing algorithm was proposed.
It involves both load balancing and task allotment. Various
properties of jobs such as CPU bound, memory bound or
network bound were taken into consideration while
deciding how to balance the load among clusters. The
uniqueness of our SMFTC model is that it performs data
analysis and availability modeling step by step through the
proposed algorithm. The status control contains failure and
repair events at various times to reflect availability
information. The paper also provides availability analysis
for both node wise and overall cluster system. This enables
the runtime system to be aware of resource availability and
ensures more accurate results with fast recovery and
response from faults. Finally, the proposed architecture is
compared with other clustering architecture on the basis of
matrix multiplication speedup, and efficiency. The result of
comparison establishes the advantages of the proposed
architecture over others and illustrates the efficiency of the
proposed models. It minimizes the response time of job and
average load of the system, giving high speedup and
avoiding system overhead with communication latency.

REFERENCES
[1] Buyya R., High Performance Cluster Computing, (Vol.2,

Prentece Hall PTR, New Jersey, USA 1999.)
[2] J. Protic, M. Tomasevice and V. Milutinoviec, “’A Survey of

shared Memory Systems’, Proc of the 28th annual Hawaii
international Conference of System Sciences, Mauci, Hawai,
Jan 1995, PP 74-84.

[3] T. A. Gerasoulis and T. Yang : A comparision of Clustering
Heurestics for Scheduling Directed Acyclic Graphs on
Multiprocessors, Journal of Parallel and Distirbuted
Computing, Vol. 16, 1992, pp 276-291.

[4] M. Tudruj and L. Masko, ‘An Architecture and Task
Scheduling algorithms for System based on Dynamically
Reconfigurable shared memory clusters’, NATO Advanced
Research Workshop. Advanced Environments Tools and
Applications for Cluster Computing 2001, LNCS 2326, 2002,
pp 197-206.

[5] M. Tudruj and L. Masko, Communication on the Fly and
Program Execution Control in a System of Dynamically
Configurable SMP Clusters, 11th Euromicro Conference on
Parallel and Network based processing, Feb. 2003, Geneva,
Italy IEEE CS press.

[6] G.M. Amdahl, Validity of the Single Procesor Approach to
achieving large scale computing capabilities. In AFIPS
Conference Proceedings, PP 483-485, 1967.

[7] Manoj Kumar Krishnan and Jarek Nicplocha SRUMM A: A
Matrix Multiplication Algorithm suitable for clusters and
scalable-shared memory systems. Proc. Of the 18th
International Parallel and Distributed Processing Symposium
(I PDPS 04) 2004 IEEE.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

157

[8] B.Brutylo, M. Tudruj, L.Masko,L.Nicolas and C. Vollarie:
SSOR Preconditioned Conjugate Gradient Algorithm in
Dynamic SMP Clusters with Communication on the Fly,
Proc. Of the 4th International Symposium on parallel and
distributed Computing (ISPDC’05) 2005IEEE.

[9] M. Tudruj, and L. Masko, ‘A Parallel System Architecture
Based on Dynamically Configurable Shared Memory
Clusters’, PPAM 2001 – Parallel Processing and applied
Mathematics 2001, UNCS 2328, 2002, pp 51-64.

[10] Ananth Grama, Anshul Gupta and Vipin Kumar ISO
Efficiency: Measuring the scalability of parallel algorithms
and architecture, IEEE Parallel and Distributed Technology,
1(3); August 1993, pp 12-21.

[11] Chau, S.-C. and Ada Wai-Chee Fu, Load balancing between
computing clusters, Proceedings of the Fourth International
Conference on ” Parallel and Distributed Computing,
Applications and Technologies”, pp 548-551, PDCAT' Aug
2003.

[12] Tae-Hyung Kim and James M. Purtilo, Load Balancing for
Parallel Loops in Workstation Clusters, Proceedings of the
1996 International Conference on Parallel Processing -
Volume 3, pp 182-190, 1996.

[13] Neeraj Nehra, R.B. Patel and V.K.Bhat, ’A framework for
distributed dynamic load balancing in heterogeneous cluster’,
Journal of Computer Science 3(1): 14-24, 2007.

[14] D.M. Tullsen, and S.J. Eggers : Effective Cache Pre-fetching
on bus based Multiprocessors, ACM Trans on Computer
Sytems, Vol. 13, N.I., Feb. 1995, PP – 57-88.

[15] Xiao Qin, Hong Jiang, Yifeng Zhu and David R. Swanson,
‘Dynamic Load Balancing for I/O-Intensive Tasks on
Heterogeneous Clusters’, In Proceedinges of the 2003
International Conference on Parallel Processing Workshops.
IEEE.

[16] Parimah Mohammadpour, Mohsen Sharifi and Ali Paikan, A
Self-Training Algorithm for Load Balancing in Cluster
Computing,Proceedings of the 2008 Fourth International
Conference on Networked Computing and Advanced
Information Management - Volume 01,pp104-109, 2008

[17] Huajie Zhang, On Load Balancing Model for Cluster
Computers, IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No. 10, October 2008

[18] P. K. Chandra, B.D. Sahoo and S.K. Jena, Modeling and
Analysis to Estmate the Performance of Heterogeneous
Cluster, 50th Technical Review of Institution of Engineers,
Orissa State Centre, pp. 113-118, 2009.

[19] Cheng-Jia Lai and Wolfgang Polak, A Collaborative
Approach to Stochastic Load Balancing with Networked
queues of autonomous service clusters, 2nd IEEE
Collaborative Computing Conference, Atlanta, GA, USA,
Nov 2006, pp 1-8.

[20] Chee Shin Yeo and Raj Kumar Buyya, Managing Risk of
Inaccurate Runtime Estimates for deadline constrained job
admission controls in clusters, Proceedings of the 2006
International Conference on Parallel Processing, IEEE
Computer Society Washington, DC, USA, Aug. 2006, pp
451 – 458.

[21] Rajagopal Subramaniyan, Vikas Aggarwal, Adam Jacobs
and Alan D. George, FEMPI: A Lightweight Fault-tolerant
MPI for Embedded Cluster Systems, Proc. International

Conference on Embedded Systems and Applications (ESA),
Las Vegas, 3-9, 2006.

[22] Bianca Schroeder and Garth A. Gibson, A large-scale study
of failures in high-performance computing systems,
Proceedings of the International Conference on Dependable
Systems and Networks(DSN2006), Philadelphia, PA, USA,
June 25-28, 2006.

[23] Kiran Nagaraja, Xiaoyan Li, Ricardo Bianchini, Richard P.
Martin and Thu D. Nguyen, Using Fault Injection and
Modeling to Evaluate the Performability of Cluster- Based
Services, Proceedings of the 4th conference on USENIX
Symposium on Internet Technologies and Systems - Volume
4, Seattle, WA, Pages: 2 – 2, 2003

[24] Hertong Song, Chokchai “box” Leangsuksun, Raja Nassar,
Narasimha Raju Gottumukkala, and Stephen Scott,
Availability Modeling and Analysis on High Performance
Cluster Computing Systems, The First International
Conference on Availability, Reliability and Security, 2006,
ARES 2006, Volume , Issue , 20-22 April 2006, Page(s): 8.

[25] Christian Kobhio, Samuel Pierre and Alejandro Quintero,
Redundancy Schemes for High Availability Computer
Clusters, Journal of Computer Science 2(1):33-47, 2006.

[26] Minakshi Tripathy, C.R. Tripathy and B. D. Sahoo, Job
admission controls in cluster networks with queuing methods,
Proceedings of the International Conference on Computing,
Communication and Information Technology
Applications(CCITA 2010), Jan 21-23, Page: 235-241.

[27] Minakshi Tripathy and C.R. Tripathy, Centralized Dynamic
Load Balancing Model for Shared Memory
Clusters,Proceedings of the International Conference on
Control,Communication and Computing(ICCC 2010), Feb
18-20, Pages: 173-176.

[28] Paul Pop, Viacheslav Izosimov, Petru Eles and Zebo Peng,
Design Optimization of Time-and Cost-Constrained
Fault-Tolerant Embedded Systems With Checkpointing and
Replication, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol-17, No.3, March 2009.

[29] Frank Liberato, Rami Melhem and Daniel Mosse, Tolerance
to Multiple Transient Faults for Aperiodic Tasks in Hard
Real-Time Systems, IEEE Transactions on Computers, Vol.
49, N0.9, Sept 2000.

[30] Ying Zhang and Krishnendu Chakrabarty, Fault Recovery
Based on Checkpointing for Hard Real-Time Embedded
Systems, Proceedings of the 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems,
Page: 320, 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

158

Ms. Minakshi Tripathy received the
degree of B.Sc. (PCM), M.Sc. (Statistics)
and MCA from Sambalpur University.
She has done 'A' level course from
DOEACC, New Delhi. She is currently a
Ph.D. (Computer Science) student at
Sambalpur University, Burla, Orissa. She
has publications in two different
international conferences. Her research
interest includes shared memory, cluster

computing, load balancing and fault tolerance.

Prof. (Dr.) C.R. Tripathy received the
B.Sc. (Engg.) in Electrical Engineering
from Sambalpur University and M. Tech.
degree in Instrumentation Engineering
from I.I.T., Kharagpur respectively. He
got his Ph.D. in the field of Computer
Science and Engineering from I.I.T.,
Kharagpur. He has more than 50
publications in different national and
international Journals and Conferences.

His research interest includes Dependability, Reliability and
Fault–tolerance of Parallel and Distributed system. He was
recipient of “Sir Thomas Ward Gold Medal” for research in
Parallel Processing. He is a fellow of Institution of Engineers,
India. He has been listed as leading scientist of World 2010 by
International Biographical Centre, Cambridge, England, Great
Britain. He was recipient of “Sir Thomas Ward Gold Med

