
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

206

Manuscript received September 5, 2010
Manuscript revised September 20, 2010

Ant Colony and Branch & Bound algorithms in coherent
synthesis of computer system

Mieczysław Drabowski

Cracow Univrsity of Technology Warszawska 24 31-155 Kraków, POLAND
Summary
The paper presents a coherent approach to solving the problems
of computer system synthesis based on Ant Colony Optimization
methods. We describe algorithm realizations aimed to optimize
resource selection and task scheduling, as well as the adaptation
of this algorithm for coherent co-synthesis realization. This is
approach, which we called a par-synthesis [1]. We then present
selected analytical experiments proving the correctness of the
par-synthesis concept and indicate its practical motivations.
Key words:
Synthesis, Ant Colony Optimization, Branch & Bound,
task scheduling, resource selection

1. Introduction

Presented algorithms let us find the solution, but at the
same time they let us evaluate the algorithms themselves.
This way we can tell which of the algorithms is faster in
finding better and better solutions, which algorithm is
more tolerant to modifications of system parameters, and
also which of them enables fast adaptation to new
parameters, while the system changes dynamically.
If we assume that solution is changing dynamically, it
would be a big obstacle for greedy algorithms, because
modification of single parameter (giving eventually better
parameters) forces another verification of the full set of
solutions.
In our approach, the obtained solutions are considered
allowing for the following parameters:
 size and cost of operational memory,
 size and cost of mass storage,
 number of processors and the cost of computing power,
 the time needed for scheduling the tasks.

To evaluate obtained solution, we use the method of
weighted average: evaluated are all parameters considered
during the analysis with appropriate weights; if the final
grade of the new solution is better than the grade of the
previous one, the new solution is being saved.

2. Adaptation of ACO to solve the problems
of synthesis

The Ant Colony Optimization (ACO) algorithm is a
heuristics using the idea of agents (here: ants) imitating

their real behavior [2], [3]. Basing on specific information
(distance, amount of pheromone on the paths, etc.) ants
evaluate the quality of paths and choose between them
with some random probability (the better path quality, the
higher probability it represents). Having walked the whole
path from the source to destination, ants learn from each
other by leaving a layer of pheromone on the path. Its
amount depends on the quality of solution chosen by
agent: the better solution, the bigger amount of pheromone
is being left. The pheromone is then “vapouring” to enable
the change of path chosen by ants and let them ignore the
worse (more distant from targets) paths, which they were
walking earlier (Fig. 1).

Fig. 1. The idea of algorithm – overcoming the obstacle by ants

The result of such algorithm functioning is not only
finding the solution. Very often it is the trace, which led us
to this solution. It lets us analyze not only a single solution,
but also permutations generating different solutions, but
for our problems basing on the same division (i.e. tasks are
scheduled in different order, although they are still
allocated to the same processors). This kind of approach is
used for solving the problems of synthesis, where not only
the partition of tasks is important, but also their schedule.
To adapt the ACO algorithm to synthesis problems, the
following parameters have been defined:
 Number of agents (ants) in the colony,
 Vapouring factor of pheromone (from the range (0; 1)).

The process of choosing these parameters is important and
should consider that:
 For too big number of agents, the individual cycle of

algorithm can last quite long, and the values saved in the
table (“levels of pheromone”) as a result of addition will
determine relatively weak solutions.
 On the other hand, when the number of agents is too

small, most of paths will not be covered and as a result,
the best solution can long be uncovered.
The situation is similar for the vapouring factor:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

207

 Too small value will cause that ants will quickly “forget”
good solutions and as a result it can quickly come to so
called stagnation (the algorithm will stop at one solution,
which doesn’t have to be the best one).
 Too big value of this factor will make ants don’t stop

analyze “weak” solutions; furthermore, the new solutions
may not be pushed, if time, which has passed since the last
solution found will be long enough (it is the values of
pheromone saved in the table will be too big).
The ACO algorithm defines two more parameters, which
let you balance between:
 α – the amount of pheromone on the path, and
 β - “quality” of the next step.

These parameters are chosen for specific instance of
problem. This way, for parameters:
 α > β there is bigger influence on the choice of path,

which is more often exploited,
 α < β there is bigger influence on the choice of path,

which offers better solution,
 α = β there is balanced dependency between quality of

the path and degree of its exploitation,
 α = 0 there is a heuristics based only on the quality of

passage between consecutive points (ignorance of the
level of pheromone on the path),

 β = 0 there is a heuristics based only on the amount of
pheromone (it is the factor of path attendance),

 α = β = 0 we’ll get the algorithm making division
evenly and independently of the amount of pheromone
or the quality of solution.

Having given the set of neighborhood N of the given point
i, amount of pheromone on the path τ and the quality of
passage from point i to point j as an element of the table η
you can present the probability of passage from point i to j
as [4]:

∑
∈ k

l

ijij

ijij

Nl

βα

βα

ητ
ητ

][][
][][

 when j k
iN∈

 (6.1.)
k
ijp =

 0 else
Formula 1. Evaluation of the quality of the next step in the ACO

algorithm

In the approach presented here, the ACO algorithm uses
agents to find three pieces of information:
 the best / the most beneficial division of tasks between

processors,
 the best sequence of tasks,
 searching for the best possible solution for the given

distribution.
Agents (ants) are searching for the solutions which are the
collection resulting from the first two targets (they give

the unique solution as a result). After scheduling, agents
fill in two tables:
 two-dimensional table representing allocation of task to

the given processor,
 one-dimensional table representing the sequence of

running the tasks.
The job of agent involves (Fig. 2).

Fig. 2.Agent operation scheme

To evaluate the quality of allocation the task to processor,
the following method is being used (Fig. 3).
The computational complexity of single agent is
polynomial and depends on the number of tasks, resources
and times of tasks beginning.
After initiating the tables (of allocation and sequence) for
each agent, the algorithm starts the above cycle, after
which the evaluation of solutions takes place. Having
completed the particular number of cycles, the parameters
are being updated and algorithm continues working (Fig.
4).

Drawing the next available task with the
probability specified in the table of task

running sequence

Drawing resources with the probability
specified in the table of allocation the tasks

to resources

Task scheduling

Is it the last task?

End

N

T

Collecting information:
Allocation of tasks to resources and running

the tasks

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

208

Fig. 3.The principle of path evaluation

3. Customization of the B&B to synthesis
problems solving

Branch & Bound (B & B) algorithm is a greedy algorithm
browsing the set of solutions and “pruning” these branches,
which give worse solutions than the best solution already
found [5], [6]. This kind of approach often significantly
reduces the number of solutions, which must be
considered. However in the worst case scenario, “pruning”
the branches is impossible and as a result, the B & B
algorithm analyzes the complete search-tree.
Both forms (DFS and BFS) of B & B algorithm were used
for synthesis. It let us comprehend the problem of analysis
of three different kinds of optimization (cost, power, time)
without discrediting any of the problems.
B&B algorithm investigates the problem by:
 choice of the task,
 definition of initial time to which you can schedule the

task,

 choice of processor on which the task will be allocated.
Because schedule the chosen task in the first available
time unit or on the first available processor is not always
the best idea, all available time units and processors are
being considered. As a result, calculative complexity of
algorithm changes exponentially when new tasks are
added or polynomial after addition of new processors.
B&B algorithm is relatively simple, but the number of
solutions, which must be examined, is huge.
Example
In scheduling of ten independent tasks on 4 different
processors and on 2 additional resources is the full tree
which included more than 1018 potential solutions!

Fig. 4.The principle of ACO algorithm operation

Evaluation of the best solution found in
current cycle

For each agent – basing on the best solution –
updating the tables of tasks running sequence and

allocation of tasks to resources

Is it the last cycle?

Optimization.
/customization of system

parameters.

N

T

Initiation of tables of tasks running
sequence and allocation of tasks to

resources

Completing the cycle of analysis for each
agent

Evaluation of the sequence obtained

Release the task

Was it the last of available
resources?

End

N

T

Evaluation of current (incomplete)
scheduling

Allocation of task to the next of available
resources

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

209

4. Calculative experiments

Because one algorithm creates unlimited cycle and the
other one takes a very long time to finish in many cases,
the results given in the tables present state of the system
after not more than given time limit of analysis.
Depending on the solution criterion, there were used both
forms of B&B – DFS and BFS – for the algorithm to be
able to find a good solution in time. Each solution given
by ACO algorithm will be graded on the basis of solutions
found by Branch & Bound algorithm.
Formula for the assessment of obtained solution is
following [4]:

∑⋅⋅
criterions

=criterion ACO

BB

result
result

criterions
=assessment

1

&1100%

 (Formula 6.2.)
Formula 2. Assessment (AS) of solutions

The final grade is influenced only by these parameters,
which were being optimized by algorithms: cost, power
and schedule length (speed). The assessment of proposed
system includes all three parameters (schedule length, cost
and power consumed by the system):
 the assessment higher than 100% means that ACO

algorithm has found better solution than B&B,
 the assessment equal 100% means that both algorithms

have found equally good solutions,
 the assessment less than 100% means that B&B

algorithm has found better solution.

4.1. Scheduling of tasks

For the simplicity of tasks descriptions, the (n: i, j)
scheme was adopted, where n – name of the task, i –
constant time (independent of the speed of processor), j –
time dependent on the speed of processor.
Example 1
Parameters of the problem:
 5 tasks: (Task1: 1, 0), (Task2: 1, 0), (Task3: 2, 0),

(Task4: 1, 0), (Task5: 1, 0),
 2 identical, universal processors,
 additional resources (memory, storage): without of

constraints.
 Relations between tasks are shown on the figure:

Scheduling obtained by both algorithms is identical.
 total time of scheduling: 3 units,
 use of resources: 2 units.

Obtained scheduling is presented on the figure (Fig. 5):

Fig5.Schedules - results for example 1

Example 2
Parameters of the problem:
 12 identical tasks UET (time equal 1unit); Unit

Execution Tasks
 2 identical, general processors,
 additional resources (memory, storage): without of

constraints,
 relations between tasks are shown on the figure:

Scheduling obtained by both algorithms is identical. The
algorithms have found solutions immediately after their
activation. Obtained scheduling is presented on the figure
(Fig. 6):

Fig. 6.Schedules; results for example 2

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

210

Example 3
Parameters of the problem:
 12 task: (Task1: 1, 0), (Task2: 1, 0), (Task3: 7, 0),

(Task4: 3, 0), (Task5: 1, 0), (Task6: 1, 0), (Task7: 3, 0),
(Task8: 2, 0), (Task9: 2, 0), (Task10: 1, 0), (Task11: 3, 0),
(Task12: 1, 0)
 2 identical, general processors,
 additional resources (memory, storage): without of

constraints,
 relations between tasks are shown on the figure:

Scheduling obtained by both algorithms is identical: 14
unit - time of scheduling. Obtained scheduling is presented
on the figure (Fig. 7):

Fig. 7.Schedules - results for example 3

Example 4
Example from link STG (Standard Graph Set: task 000
RNC50) [7].
Parameters of the problem:
 50 dependent tasks about difference parameters,

 2 identical, universal processors,
 additional resources (memory, storage): without of

constraints.
The algorithms have found solutions 15 minutes after their
activation. Scheduling obtained by both algorithms is
identical: schedule length: 131 unit (optimum by STG,
too). Schedules are presented on the figure (Fig. 8):

Fig. 8.Schedules - results for example 4

4.2. Partition of resources

Solves of resources partition problems proposed by ACO
and B & B algorithms were verified on the basis of the
following examples.
Example 1
Parameters of the problem:
 5 tasks,
 2 identical, general processors,
 additional resources: 3 units of memory, 3 unit’s

storage.
 parameters of tasks:

Tasks Tim

e
Memor

y
Storage

Task1 1 2 1
Task2 3 2 1
Task3 2 1 1
Task4 1 1 1
Task5 1 2 1

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

211

 relations between tasks are shown on the figure:

The algorithms have found optimum solution immediately
after their activation. Schedules obtained by both
algorithms are identical: 5 unit schedule length, 3 unit
memory, 3 unit storage. Obtained scheduling is presented
on the figure (Fig. 9):

Fig. 9.Schedules - results for example1

Example 2
Parameters of the problem:
 10 tasks,
 2 identical, general processors,
 additional resources: 3 units of memory, 3 units of

storage.
 parameters of tasks:

Tasks Tim
e

Memor
y

Storage

Task1 1 2 1
Task2 3 2 1
Task3 2 1 1
Task4 1 1 1
Task5 1 2 1
Task6 1 2 3
Task7 3 2 2
Task8 2 1 1
Task9 1 3 1
Task10 1 1 1

 Relations between tasks are shown on the figure:

Schedules obtained by both algorithms are identical: 10
unit schedule length, 3 unit memory, 3 unit storage.
Obtained scheduling is presented on the figure (Fig. 10):

Fig. 10.Schedules - results for example 2

Example 3
Parameters of the problem:
 10 tasks,
 2 identical, general processors,
 additional resources: 3 unit’s memory, 3 unit’s storage.
 parameters of tasks:

Tasks Tim

e
Memor

y
Storage

Task1 1 2 1
Task2 3 2 1
Task3 2 1 1
Task4 1 1 1
Task5 1 2 1
Task6 1 2 3
Task7 3 2 2
Task8 2 1 1
Task9 1 3 1
Task10 1 1 1

 Relations between tasks are shown on the figure:

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

212

The algorithms have found solutions immediately after
their activation. Schedules obtained by both algorithms are
identical: 10 unit schedule length, 3 unit memory, 3 unit
storage. Obtained scheduling is presented on the figure
(Fig. 11):

Fig. 11.Schedules - results of operations of algorithms for

example 3

Example 4
Parameters of the problem:
 25 tasks,
 3 identical, general processors,
 additional resources: 5 units of memory, 5 units of

storage.
 parameters of tasks:

Tasks Tim

e
Memor

y
Storage

Task1 1 3 2
Task2 3 2 4
Task3 3 2 2
Task4 5 4 1
Task5 2 1 4
Task6 4 2 2
Task7 1 2 3
Task8 2 5 1
Task9 3 0 0
Task10 3 0 3
Task11 1 3 4
Task12 10 1 1
Task13 1 3 2
Task14 3 2 1
Task15 3 0 1
Task16 4 2 4

Task17 3 1 1
Task18 5 1 1
Task19 1 2 3
Task20 1 2 2
Task21 4 1 4
Task22 1 3 1
Task23 3 1 3
Task24 1 2 2
Task25 1 1 4

Algorithms presented in a schedule in time till 15 minutes
from starting. Algorithm B&B did not find in this time to
find optimum. It following results was received was:
 schedule length: 33 unit for B & B, 30 unit for ACO.

Obtained scheduling is presented on the figure (Fig 12):

Fi
g. 12. Schedules - results for example 4

4.3. Comparison of coherent and non-coherent
synthesis
Coherent synthesis is based on recurring division and
scheduling tasks, in order to define the best set of
hardware and scheduling for the system. As a result, the
systems proposed by coherent synthesis may be better than
the ones obtained as a result of incoherent synthesis
(which makes division at the beginning of synthesis
process) not only in relation to optimized parameters, but

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

213

also in general (eventually, the system can enable much
faster tasks completion at the same or even lower energy
consumption, etc.). The results obtained by coherent and
incoherent synthesis will be presented on the basis of the
following examples.
Example 1
 25 independent tasks with different completion times.
 3 identical processors.
 Criterion of optimization: power.

The time of algorithm operation until finding the solution,
length of scheduling, cost and power consumption of the
system as well as the quality of solution obtained as a
result of coherent synthesis are presented in the table (Tab.
1).

Tab.1. Results of coherent and non-coherent synthesis: Example 1

Systems obtained as a result of coherent synthesis
consume less energy and are cheaper. In the case of B&B
algorithm, system obtained as a result of coherent
synthesis is generally better than the one obtained by
incoherent synthesis (assessment = 108.8%).

Example 2
 25 independent tasks with different completion times.
 3 identical processors.
 Criterion of optimization: cost.

The time of algorithm operation until finding the solution,
length of scheduling, cost and power consumption of the
system as well as the quality of solution obtained as a
result of coherent synthesis are presented in the table (Tab.
2).
Tab. 2. Results of coherent and non-coherent synthesis – Example 2

Similarly how in previous case, systems for coherent
synthesis are clearly cheaper and quicker.

Example 3
 25 identical, independent tasks.
 5 identical processors.
 Criterion of optimization: cost.

The time of algorithm operation until finding the solution,
length of scheduling, cost and power consumption of the

system as well as the quality of solution obtained as a
result of coherent synthesis are presented in the table (Tab.
3).
Tab. 3. Results of coherent and non-coherent synthesis – Example

3

In presented examples is visible the considerable
superiority of coherent synthesis with non-coherent.
Except improvement of the costs, the power consumption
improved also. The larger number of processors was
eliminated as well as the demand lowered of memory and
storage too. In result of the assessment of system for
algorithm the ACO is equal 124.1 % and for algorithm B
& B is equal 168.0 %.

Example 4
 25 identical, independent tasks.
 5 identical processors.
 Criterion of optimization: power consumption.

The time of algorithm operation until finding the solution,
length of scheduling, cost and power consumption of the
system as well as the quality of solution obtained as a
result of coherent synthesis are presented in the table (Tab.
4).
Tab. 4. Results of coherent and non-coherent synthesis – Example 4

Systems for coherent synthesis are clearly cheaper and
quicker. The difference is visible in case of algorithm
B&B: the assessment of solution for coherent synthesis is
higher though the assessment of proposed solutions in
both cases is considerably worse than in case of solutions
proposed by algorithm the ACO (206.7 %).
Example 5
 25 identical, independent tasks.
 5 unrelated processors.
 Criterion of optimization: power consumption.

The time of algorithm operation until finding the solution,
length of scheduling, cost and power consumption of the
system as well as the quality of solution obtained as a
result of coherent synthesis are presented in the table (Tab.
5).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.9, September 2010

214

Tab. 5. Results of coherent and non-coherent synthesis – Example 5

Algorithm ACO for coherent synthesis finds good solution,
better than solution for non-coherent. We have again the
superiority of coherent synthesis. Solutions for non -
coherent synthesis are weak, assessment 75% for ACO as
well as 76% for B & B.

4. Conclusions

We may say, basing on the above research, that the ACO
algorithm is better suitable for both one- and multi-
objective analyses of optimization of computer systems.
Furthermore, the use of coherent analysis significantly
improved the quality of obtained solutions. In the case of
multi-objective synthesis, heuristic algorithm gave
comparable results for optimized parameters and at the
same time, the final grade of the systems it proposed was
much better. The computational experiments prove the
superiority of coherent synthesis over the incoherent
synthesis and heuristic algorithms over the greedy ones.
Solutions of this method are better both, for their cost, as
and of time of executing the tasks and of optimization of
multi-criterions.

Acknowledgments

This work was supported by the Polish Ministry of
Science as a 2007-2010 research project.

References

[1] Drabowski M., (2008), Par-synthesis of multiprocessors
parallel systems, International Journal of Computer Science
and Network Security, Vol. 8, No. 10, 90-96.

[2] Blum C., (2005), Beam-ACO – Hybridizing ant colony
optimization with bean search: An application to open shop
schedling, Comput. Oper. Res. 32, 1565-1591.

[3] Montgomery J., Fayad C., Petrovic S., (2006), Solution
representation for job shop scheduling problems in ant
colony optimization, LNCS 4150, 484-491.

[4] Drabowski M., (2009), Ant Colony and Neural method for
scheduling of complex of operations and resources
frameworks – comparative remarks, in: Proceedings of the
IASTED International Conference on Computational
Intelligence, Honolulu, USA, ACTA Press, Anaheim, USA,
91-97.

[5] Mitten L.G., (1970), Branch-and-bound methods: general
formulation and properties, Oper. Res. 18, 24-34.

[6] Drabowski M., Wantuch E., (2006), Coherent Concurrent
Task Scheduling and Resource Assignment in Dependable
Computer Systems Design, International Journal of
Reliability, Quality and Safety Engineering, vol. 13, no. 1.
World Scientific Publishing, 15-24.

[7] http://www.kasahara.elec.waseda.ac.jp/schedule/index.html

Mieczyslaw Drabowski, Assistant
Professor of Department of Computer
Engineering, Faculty of Electrical and
Computer Engineering, Cracow
University of Technology, received
the M. Sc. degree in automatic control
and communication from AGH
University of Science and Technology,
graduated mathematic from
Jagiellonian University in Krakow and
received the Ph. D. degree (with
honors) in computing science from

Poznan University of Technology, in 1977, 1979 and 1986,
respectively.
Currently he is member of several editorial boards, among others
Scientific Journals International, International Association for
Development of the Information Society (IADIS), and
International Association of Science and Technology for
Development (IASTED) on Artificial Intelligence and Soft
Computing.
His research interests include schedule, assignment and
allocation for tasks and resources, dependable and fault tolerant
systems, artificial intelligence, operating systems and software
engineering, author and co-author of 3 monographs and over 60
papers in major professional journals and conference proceedings.
Dr. Drabowski is a member of the council of the Polish
Information Processing Society.

