
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

19

Manuscript received October 5, 2010

Manuscript revised October 20, 2010

Evaluating Agile Principles in CS Education

Dr. Ahmed El-Abbassy 1 Dr. Ramadan Muawad 2 Ahmed Gaber3

Higher Institute of Computer Science & College of Computing & Information College of Computing & Information
Information Technology, El-Shorouk Academy Technology, Arab Academy Technology, Arab Academy

Summary
Agile software development is becoming a matured, effective
approach and has wide acceptance according to the recently
published trends. Due to its success, agile practices have moved
into other disciplines including Computing Education. Most of
the computer science academic programmes are currently rigid
and use waterfall process model in delivery. Lightweight process
framework like Agile is recommended to computer science
education in order to improve quality and reacting to changes
and industry requirements. This paper discusses and presents a
framework to adopting and evaluating agile practices in
computer science education.

Key words:
Software Engineering, Agile process, Computer Science
Education, Learning Development.

1. Introduction

An important research work has been done in recent years
to move software engineering practices into other
domain/disciplines including Computer Science (CS)
education. The rationale for this initiative is: (1) the
commonalities between software development and teaching
and learning process improvement. (2) the maturity and
effectiveness of software engineering best practices.

Teaching and software development have a lot in common.
Both are complex activities, both undergo a development
life cycle, and we would like both to be of high quality [1,
5]. Figure 1 illustrates a high level correlation between
software development and education [2]. In software
development, the key Actors are: the programmer /
developer, the customer / client and collaboration result in
software. In education, the key actors are: the teacher (acts
as programmer in software development), the employer
(acts as customer in software development) and
collaboration result in qualified graduate/student (student
acts as software service/product).

Fig.1: Analogy between Software Development and Education Process

It is clear that the institution of higher education should be
considered as a firm delivering its own product/service:
knowledge, skills, and attitudes necessary for students to
acquire abilities for work and progress in professional area
[3]. Therefore it is important to follow a process approach
in the internal restructuring of the education institution in
order to grow business performances, and its own
competition on the education market.

In a first step towards the understanding of educational
process improvement, the education process was correlated
to CMMI practices [4] with the aim to propose a maturity
model for computing education inspired by the capability
maturity model (CMM) used in software engineering [1, 5].
Similar to CMM, a Computing Education Maturity Model
(CEMM) was proposed to rate educational organizations
according to their capability to deliver high quality
education on a five level scale [5]. Furthermore, CEMM
can be used in order to improve an institution’s capability
by implementing the best practices and organizational
changes it describes. Application of a strict CMM in
computing education raises the same issues and faces the
same problems as in software development. The main
criticism is following CMM implies the use of rigid
waterfall process model with fixed scope.

This is why research in a second step was directed towards
the new wave in software development with agile process
and dynamic short cycles to meet the rapid changes in
technology and business [2]. Agile software development is
becoming a matured, effective approach and has wide
acceptance according to the recently published trends [6,
7]. As illustrated in figure 2, agile development is rapidly
becoming the norm. In a recent survey, 57.4% of surveyed
organizations described their primary development method

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

20

as Agile. Waterfall fell to third place in the 2010 survey,
being preferred by only 11% of respondents.

Fig.2 Software development Trends in 2010

The majority of reports from practitioners of agile
development is positive and confirms the advantages of this
approach. With Agile Software Development becoming
more widely used, it is realized that adopting Agile within
an academic setting is essential [18]. Introducing agile
practices in education may be considered in all aspects of
education process, i.e. the three key processes in education
[2] which are: (1) Teaching (Teacher and support staff), (2)
Evaluation (Examination and Marking), (3) Administration
(infrastructure, and systems). The quality of the education
product is directly related to quality of these three
processes.

The rest of this work is structured as follows: Section 2
presents an overview of software agile methods. In section
3 a current situational analysis of CS teaching practices is
discussed before describing a proposed "framework for
evaluating agile principles in CS education" in Sections 4,
5, 6 and Section 7 describes the conclusion and future work
on this topic.

2. Agile Software Development Methods
2.1 Agile versus plan driven methodology

The traditional Plan-driven approaches (such as Waterfall,
PSP, or CMM-based methods) have been challenged in
recent years by the emergence of the Agile methods (such
as Extreme Programming, SCRUM and CRYSTAL) [8, 9].
Plan driven methodologies: focus heavily on process and
way of doing things, requires a lot of documentation, time
is spent on avoidable rework rather than value-added, aim
at reducing cost by appropriately documenting to minutest
detail so that the scope of error is reduced.

Agile methodologies: Focus is on reducing documentation;
improving communication so that very little documentation
is required and aim at reducing cost by reducing time spent
on documentation and spend time in value added work.
With Agile development, a project is divided into

releases, each with its own requirements, design, build, and
test activities.

The Plan-Driven and Agile methods both value the delivery
of quality systems that meet stakeholders’ needs, but they
differ in strategies, not in goals.

2.2 Agile Manifesto & Principles

The agile manifesto defines four agile values as follows [10,
11, 12, 19, 22, and 35]:

1) Customer collaboration over contract negotiation:
Based on the agile manifesto, there must be significant
and frequent interaction between the customers,
developers, and all stakeholders of the project.

2) Working software over comprehensive documentation:
Agile approach is based on the iterative development
model where early and frequent delivery of working
software to the customer is crucial.

3) Individuals and interactions over processes and tools:
Agile development is a human-centric approach that
relies on people and enforces the interactions among
them as a cornerstone in the definition of the agile
software process.

4) Responding to change over following a plan:
Basically, Agile is designed to be able to adapt to
change. Products designs change throughout the
project, and Agile helps to manage that change and
keep everything under control. Hence an attitude of
welcoming and embracing change should be
maintained throughout the software development.

Twelve agile principles underlie the agile manifesto and
define the core of what agile is. Agile principles are the
essential characteristics that must be reflected in a process
before it is considered Agile. Figure 3 presents the agile
values & basic principles compared to the traditional plan-
driven values.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

21

Fig.3: Agile Values Compared to Plan-Driven Vales (found in fields of
innovation and new product development)

The use of agile principles and practices in software
development is becoming a powerful force in today’s
workplace.

3. Current situation analysis of CS teaching
practices
Industry complains that CS graduates take at least one year
to become productive once hired and there are several
challenges to keep education current in the face of rapid
change [13]. Also a decline is observed in student
satisfaction and enrollment in CS majors.

The reasons for such situation are multiple, but in this work,
we will focus only on the reasons that are in disagreement
with agile practices.

3.1 Knowledge Lag Problem

There is a lag between the knowledge scope of current CS
curricula and the expectations of the IT industry [2, 14, and
20]. In curriculum design, industry inputs are often missing
and students graduate with little practical skills and no idea
of industry expectations.

3.2 The current Waterfall Teaching Model

CS Academic programmes are rigid and uses waterfall
process model in delivery [2, 14]. In Most of the CS
curricula today, the topics are covered in their waterfall
order specified by the existing prerequisite chains. The
drawbacks of waterfall teaching model are as follows:

 Waterfall teaching limits students’ view of the
complete education programme and the type of
engaging projects that the students can work on to
enhance the learning process.

 Many important concepts and skills are scattered in
many senior courses which cannot be taken earlier
due to the strict course prerequisite requirements. As a
result the instructors are limited in what kind of
projects they can use to engage the students, and the
students have limited opportunities in practicing the
important skills.

 In many educational institutions courses and projects
that emphasize Agile Software Development are
minimal. Therefore Students are not exposed or have
only limited exposure to the agile methods, and
practices at the undergraduate levels of education

 A lack of basic programming skills is reported by
instructors of upper-division courses.

3.3 Teaching Methods

Lecturing based on planned curricula and rigid course
syllabi is usually the dominant teaching method rather than
increasing student participation and knowledge sharing [2,
20]. Consequently procedures are considered more
important then outcome.
On the other hand teachers are not working as a project
team; this affects the integrity of curriculum teaching
content and introduces inconsistencies in teaching as
different instructors tried different approaches.

3.4 Change Process

Changes in CS programmes are not welcomed and Change
is a bureaucratic process of an average cycle time of 3-4
years [2, 20]. Also feedback from students and other
stakeholders is not seriously considered.

To improve this current situation we need to switch away
from the waterfall teaching model and greatly shorten the
current deep course prerequisite chains, and to advocate an
in-depth lab-based CS programme with emphasis on the
fundamental and recurring concepts and skills
underpinning the modern computing technologies.

 4. Mapping the Agile Manifesto to CS
Education
Considering that the primary goal of a computing
curriculum is to produce programmers and software
engineers [15]. Consequently there is a need to learn to
adapt to the ever- evolving nature of the field. Therefore
adopting Agile within an academic setting is becoming
essential, and agile manifesto is correlated to CS education
as illustrated in Table 1[2, 20].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

22

Table 1: Agile interpretation in CS Education Context

Agile Value Corollary to CS Education
Customer collaboration P1: Integrating Education with

Practice

Working software early P2: Focus early on core
expertise

Individuals & interactions P3: Student and instructor
collaboration

Responding to change P4: Continuously add value

Figure 4 presents the CS agile values & basic principles
compared to the current traditional practices.

Fig. 4: Agile CS Values Compared to Traditional Values

5 . Discussion of Agile CS Education

5.1 Integrating Education with Practice

In an ideal world, review and changes to computing
curricula should be driven solely by academic
concerns for the needs of students. However it is
important to explore current industry needs in order to
suggest how to better prepare CS graduates with the
appropriate background that will enable a successful
career. Agile Education is encouraging collaboration with
industry and responding to market demands over syllabus
and marks. Industry is an important source of practical
problems, project ideas and technology trends. Many
ideas are proposed for bridging the gap between CS
education and the IT industry as follows:
 Introducing a strong technological component to the

curriculum. This normally comes in many different
forms; prevalent among them is offering students
courses in IT, work attitude and work ethic, followed
by a subsequent placement in industrial and
commercial firms, where they get firsthand experience
in real work environment [38].

 In student projects encourage student interaction with
external customers or assign students to
tutor/instructor with sufficient domain and
programming knowledge.. Projects should be based on
need as defined by stakeholders [17, 37].

 University should encourage students towards
registration for certifications in IT.

 Apprenticeship by immersion: in software
engineering courses, real-world situations are imitated
as closely as possible: a professional working
environment, the client-supplier relationship, the
application of a development baseline, the use of
methods and associated tools, and cooperation within
the team [13].

 Modifying CS curriculum to provide more emphasis
on negotiation skills, time management, and cultural
differences, outsource management, in addition to a
strong technical background [26].

 Implement improvement programmes to upgrade
student practical skills and to learn new technologies
based on suggestions of leading software
industrialists.

 Topics in the theory of computing need to be
integrated with practical topics in the curriculum at all
levels.

5.2 Iterative Teaching/Working projects

The breadth of the CS discipline should be taught early in
the curriculum. Therefore the design of CS curricula can
benefit from three main agile practices as follows:
1) Iterative teaching model [14, 16, 23].
An iterative teaching model is more effective than
sequential/waterfall teaching. CS curriculum should early
focus on the core expertise and master the basic hands-on
problem-solving skills during their junior year. An
example of experience piloting curriculum design based
on the iterative model was developed at Pace University.
A new lab-based overview course for CS and modern
information technologies was given to students who have
just completed CS2 or the equivalent [14]. The purpose of
this course is to introduce the fundamental CS concepts,
methodologies and technologies underpinning the latest
information technologies. With early introduction of such
course, the curriculum could be structured into three major
iterations as illustrated in figure 5. The purpose of each
iteration as follows:
 The 1st iteration covers in an early stage the important

modern computing concepts with a simplified
software framework project.

 The 2nd iteration consists of courses including data
structures and algorithms, operating systems and
architectures, networking, as well as many elective
senior courses. With first iteration, the courses in

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

23

iteration 2 can be taught in more flexible orders and
with more depth and hands-on projects.

 The 3rd iteration allows students to integrate the
learned knowledge topics in problem solving and learn
new knowledge/technologies with limited instructor
assistance, which is important in developing life-long
learning abilities.

Fig. 5: Example of Iterative Model

The iterative teaching model attracts the designers of
recent CS programmes to deliver exciting programmes for
Computing that reflect enough technical material such that
students can get some insight into career paths available to
them, and also provide academic challenges to make
courses attractive to top students [23].
2) Working projects/ Student-driven projects.
CS programmes should be centered to prepare students to
work as part of a team. With the iterative teaching model,
it is possible to offer group projects early in first and
second years and expanded in subsequent years [25, 28,
29, 30, 32, 33, and 36]. With such course projects students
understand software process concepts, face problems such
as scheduling, time management and planning combined
with the course. They are also required to develop several
types of documents. Such practices give students sufficient
maturity and readiness for a more disciplined way to
develop their programs.
3) Emphasizing Agile Software Development in courses

and projects
With Agile Software Development becoming more widely
used, students must learn and understand the application of
agile methods, principles and techniques. Software
engineering courses and other courses that include a course
project component are the best places to introduce and
apply agile development methods [18, 19, 24, 25, 27, 31,
34, and 37].

5.3 Collaboration among the major players in the education
process

Agile practices focus on Teacher/Student productivity and
value Competence and Collaboration over Compliance
and Competition. Agile education encourages student-
centered active, collaborative, cooperative learning over

lecture-only approaches. Collaboration must be considered
among the major players in the education process: student-
student, student-teacher and teacher-teacher.
The agile approach for improvement in CS undergraduate
education involves the following practices [20, 39]:
 Focus on collaborative learning early in the CS

curriculum through engaging students in collaborative
learning experiences through team-based problem
solving, project planning, pair programming, and
other agile software development practices;

 Encourage frequent interaction between students and
faculty;

 Develop mutual cooperation among students;
 Provide frequent active learning exercises;
 Assisting teachers to be agile and develop mutual

cooperation among teachers: Organisational skills
sessions, Opportunities to work collaboratively.

5.4 Continuously add value / Responding to feedback

It is imperative that CS institutions develop better
mechanisms for continuously adding value to programmes
based on student feedback and changes in technology.
Agile change management is concerned with controlling
and tracking changes to the curriculum as well as to
teaching methods, and increasing the ability of the CS
process to be responsive to request for change and to
quickly implement accepted change requests. Agile
change management must help to do two things:
 Being more receptive to requests for change.
 Being more responsive to implement those changes.

Agile change approach for change management involves:
1) Acting on Technological Changes:
Liaising with the relevant industries to receive industrial
knowledge to augment the classroom lectures.
2) Acting on Student Feedback:
In response to student feedback, the instructors try to react
promptly and visibly, whether the feedback relates to
course curriculum issues or to the coverage of technical
content. The instructors must consider if it is appropriate
to adjust the order or the content of what is covered in
order to increase the learning benefit for students.
3) Acting on changes in academic studies
Continuously adding Modern content based on up-to-date
theoretical foundations.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

24

4) Enabling to more quickly and easily implement

changes by: (1) Working in dynamic short cycles
based on short iterations. (2) Maintaining two formal
backlogs of change requests: (a) the programme
backlog: It is an evolving and prioritized queue of
change requests that need to be included in the
programme. (b) the iteration backlog: It is a list of all
change requests concerning an iteration.

6. Evaluation Framework For Agile CS
Education

6.1 Evaluation model

This model is inspired from an evaluation framework used
to assess agile software methodologies [21].
The proposed evaluation framework measures how a CS
education process fulfills the agile values described in
Sections 4, 5. For this purpose, the framework provides
measurements for the four postulates presented in Section
4. These postulates (Pi, i=1...4) are expressed as the
assessment of two sub-postulates (Pi.1, Pi.2). The measure
of each postulate is defined as the difference between the
measures of the related sub-postulates as follows:

 m (Pi) = m (Pi.1) – m (Pi.2) where i =1..4

For example, Postulate 3 (P3) - Value Students/Teachers
over rigid course syllabi, it's measured by calculating the
difference between the measure of how the process values
Students/Teachers and their interactions (P3.1) and the
measure of how it values rigid course syllabi (P3.2).

Both the sub-postulate encouraged by the agile principles
(positive sub-postulate: Pi.1) and the other sub-postulate
(negative sub-postulate: Pi.2) are measured in a scale of 0
to 10 as follows:

m (Pi.x) = (∑ rate of related attributes) mapped to scale of
10, Where x=1, 2.

Therefore, each postulate might obtain a measure of -10 in
case both sub-postulates take the worst value (10 for the
negative sub-postulate and 0 for the positive sub-postulate),
and 10 in case both sub-postulates take the best value (0 for
the negative sub-postulate and 10 for the positive sub-
postulate). If the result is a value of 0 or close to 0, it means
that the process does not significantly value the positive sub-
postulate over the negative, which means that the Agile
Manifesto postulate is not completely satisfied. The rate of
each attribute is measured in a scale of 0 to 4 as illustrated in
table 2.

Table 2: How to rate an attribute

Rating Description
0 No fit
1 Low fit
2 fit
3 Good fit
4 Excellent fit

The framework, Postulates, sub-Postulates and the attributes
are presented in Table 3.

6.2 How to use the model

Like CEMM [5], the model is proposed to rate CS
educational organizations according to their capability to
deliver high quality education according to agile best
practices. As indicated in 6.1 each agile principle might
obtain a measure of -10, in case both sub-postulates take
the worst value. If the measure is a value close to 10, it
means that the process is significantly value agile practices.
If the measure is of 0 or close to 0, it means that the
process does not significantly value the positive attribute
over the negative, which means that the Agile postulate is
not completely satisfied, or in other words there is a
balance between agile practices and current practices.
The result can be represented as a process capability
profile using Kiviat chart. A Kiviat chart (some times
called a radar chart) is used to present the evaluation of CS
process. A kiviat chart is a graphical method of displaying
multivariable data in the form of a two dimensional chart
of three or more quantitative variables on axes starting
from the same point.
In the presented examples, the chart is composed of 8 axes
extending from a central point. The axes correspond to the 8
sub-postulates used in the evaluation model and each axis is
scaled according to the lowest and highest measure of its
associated sub-postulate.
As illustrated in figure 6, typical patterns for different
situations are presented;
Figure 6.a: An agile centric CS education process.
In agile centric process the measure of each postulate is a
value close to 10.
Figure 6.b: A waterfall centric CS education process.
In waterfall centric process the measure of each postulate is
a value close to -10.
Figure 6.c A balanced agile/waterfall CS education process.
In a balanced process the measure of each sub-postulate is a
value close to 5 and the measure of each postulate is a value
close to 0.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

25

Figure 6.d: Ad Hoc CS education process.
In Ad Hoc process the measure of each sub-postulate is a
value close to 0 and the measure of each postulate is a value

close to 0. This means that the process is neither understood
nor reflective and the success of courses depends on the
initiatives of some teachers without any structural support.

Table 3: Evaluation Framework for Agile CS Education Process

P1 Integrating education with practice over focus on academic studies only

P1.1 Value integrating education with practice P1.2 Value focus on academic studies only

Attribute Description Attribute Description

1 Curricula with strong technological component 1 Modern content based on up-to-date theoretical
foundations

2 In student projects encourage student interaction with
external customers 2 Industry inputs are often missing

3 Encourage students towards registration for
certifications in IT 3 Projects are of academic nature

4 Apprenticeship by immersion 4 IT is found underutilized

P2 Focus early on core expertise over rigid academic programme

P2.1 Value focus on core expertise early P2.2 Value rigid academic programme

Attribute

description Attribute

description

1 iterative teaching model 1 waterfall teaching model with fixed scope
2 Early Student-driven projects 2 Group projects are offered with senior courses
3 Agile practices in capstone courses 3 Waterfall practices in capstone courses

P3 Student/Teacher collaboration over rigid course syllabi

P3.1 Value Student/Teacher collaborations P3.2 Value rigid course syllabi

Attribute

description Attribute

description

1 Student participation and knowledge sharing 1 Planned curricula used to track progress
2 Different delivery methods and timing 2 Lecture-driven environment
3 Encourage cooperation among students 3 Formal communication channels
4 Encourage instructors' collaboration 4 Rote learning

P4 Continuously add value/Responding to feedback rather than following a plan

P4.1 Value the answer to change P4.2 Value the monitoring of a plan

Attribute

description Attribute

description

1 Dynamic short cycles and adaptive planning 1 Change on an average cycle time of 3-4 years
2 Being responsive to changes 2 adhering to a specific schedule
3 High interaction with local industry 3 Low Interaction with Local Industry
4 Continuous and comprehensive evaluation 4 Traditional evaluation system
5 Being receptive to student feedback 5 Formal change management

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

26

7. Conclusion and future work

This paper summarizes the agile best practices applied to
CS education. It focuses on the urgent need to apply agile
framework to CS education system in order to improve
quality and reacting to changes and industry requirements.
The paper also tries to relate the agile CS education
practices to the four agile values described in the agile
manifesto.
The main contribution of this paper is proposing a basic
model to rate and evaluate educational organizations
according to their capability to deliver high quality
education according to agile best practices. This model is
inspired from an evaluation framework used to assess agile
software methodologies [21]. The model can also be used
to organize the improvement effort based on the institution
priorities.
The future work includes comparing standard CS curricula
such as ACM/IEEE CC 2001 with the aspects related to
curriculum design in the proposed model. In addition, we
plan to extend the model by introducing weighting factors

for the attributes used to measure the agility in order to
reflect the relative importance of the attributes.

Referances
[1] Petros K. Dounos and George A. Bohoris, (2007),

"Exploring the interconnection of known TQM process
improvement initiatives in Higher education with key CMMI
concepts, 10th QMOD Conference, Helsingborg, Swede

[2] Dr. Venkatesh Kamat, (2008), "experience of using Agile in
the education process", the Agile Goa conference.

[3] Zoran L., Ljiljana R., Boza N., (2007), "Information System
Implementation Based on Process Approach at Higher
Education Institutions", Proceedings of Computer Science
and IT Education Conference.

[4] SEI-Software Engineering Institute, (2006), CMMI
(Capability Maturity Model Integrated) for Development,
Version 1.2, Staged Representation.

[5] Christof L., et. Al., (2007), "A Maturity Model for
Computing Education", Ninth Australasian Computing
Education Conference, Ballarat, Victoria, Australia.

[6] Technology Management Resource for Business Leaders,
(2010), The 2010 Software Development Trends-Survey
Results.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

27

[7] Dr. Dobb's Global Developer Technogaphics Survey,
Forrester research, Inc., Q3 2009.

[8] Sutap Chatterjee, (2010), "The Waterfall That Won’t Go
Away", ACM SIGSOFT Software Engineering Notes,
Volume 35 Number 1

[9] Li Jiang, and Armin Eberlein, (2008), "Towards A
Framework for Understanding the Relationships between
Classical Software Engineering and Agile Methodologies",
APSO’08, Leipzig, Germany.

[10] Beck, K., et.al, Manifesto for Agile Software Development,
http://agilemanifesto.org/

[11] Agile Alliance, http://www.agilealliance.org/.
[12] Decan Whelan, (2008), "Agile Adoption & Adaptation

Framework, Whelan & Associates Inc.
[13] Vincent Ribaud and Philippe Saliou, (2008), "A few

elements in software development engineering education",
Workshop on the Roles of Student Projects and Work
Experience in Undergraduate and Taught Postgraduate
Programmes - CSEET 2008, United States.

[14] Lixin Tao and Li-Chiou Chen, (2010), "A Hands-On
Overview Course for Computer Science and Modern
Information Technologies", Proceedings of Student-Faculty
Research Day, CSIS, Pace University.

[15] Matthias F., et.al., (2004), "The Structure and Interpretation
of the Computer Science Curriculum", Journal of Functional
Programming.

[16] Duben, Naugler, and Surendran, (2004), "Agile Computing
Curricula", Proc ISECON 2004, v21.

[17] Sue De Vincentis, Agile Education: Student-driven
knowledge production, Australian Council for Educational
Leaders

[18] Shvetha Soundararajan, James D. Arthur and Amine
Chigani, (2010), "Understanding the Tenets of Agile
Software Engineering:Lecturing, Exploration and Critical
Thinking", Computers and Society (cs.CY)

[19] David F. Rico and Hasan H. Sayani, (2009), Use of Agile
Methods in Software Engineering Education, Agile
Conference, AGILE '09.

[20] John C. Stewart, et.al., (2009), "Evaluating Agile Principles
in Active and Cooperative Learning", Proceedings of
Student-Faculty Research Day, CSIS, Pace University.

[21] Karla Mendes Calo, Elsa Estevez, Pablo Fillottrani, (2010),
"A Quantitative Framework for the Evaluation of Agile
Methodologies", JCS&T Vol. 10 No. 2.

[22] Asif Qumer, (2006), " Measuring Agility and Adoptability
of Agile Methods: A 4-Dimensional Analytical Tool",
IADIS International Conference Applied Computing

[23] Tim Bell, Peter Andreae, and Lynn Lambert, (2010),
"Computer Science in New Zealand High Schools", the
Twelfth Australasian Computing Education Conference
(ACE2010), Brisbane, Australia.

[24] Thomas Reichlmayr, (2003), " The Agile Approach in an
Undergraduate Software Engineering Course Project", 33rd
ASEE/IEEE Frontiers in Education Conference, 2003 IEEE.

[25] Andrew D. H. Chow and Mike Joy, (2004), "Shifting the
Focus from Methodologies to Techniques", HE Academy for
Information and Computer Sciences.

[26] Chris B. Simmons and Lakisha L. Simmons, (2010), "Gaps
in the Computer Science Curriculum: An Exploratory Study
of Industry Professionals", Consortium for Computing
Sciences in Colleges.

[27] Bill Davey, Technology in Education: An Agile Systems
Approach , Proceedings of Informing Science & IT
Education Conference (InSITE) 2010

[28] Richard L. Upchurch and Judith E. Sims-Knight, (1997),
"Integrating Software Process in Computer Science
Curriculum", Frontiers in Education Conference, 27th
Annual Conference.

[29] Deepak Dahiya, (2010), "Teaching Software Engineering: A
Practical Approach", ACM SIGSOFT Software Engineering
Notes, V35 Number 2

[30] Brian R. von Konsky and Jim Ivins, (2008), "Assessing the
Capability and Maturity of Capstone Software Engineering
Projects", Proc. Tenth Australasian Computing Education
Conference, Wollongong, Australia.

[31] Delbert Hart , (2010), "Supporting Agile Processes in
Software Engineering Courses", Consortium for Computing
Sciences in Colleges: Northeastern Conference

[32] Jerry Boetje, (2006), "Foundational Actions: Teaching
Software Engineering When Time Is Tight",
TiCSE’06Bologna, Italy.

[33] Richard Conn, (2004), "A Reusable, Academic-Strength,
Metrics-Based Software Engineering Process for Capstone
Courses and Projects", SIGCSE’04, Norfolk, Virginia, USA.
Copyright 2004 ACM

[34] Chris Lüer, (2008), "Transition from a Waterfall-Based
Capstone Course to an Agile Model", International
Conference on Frontiers in Education: Computer Science &
Computer Engineering (FECS), Las Vegas

[35] Ahmed Sidky and James Arthur, (2007), "A Disciplined
Approach to Adopting Agile Practices: The Agile Adoption
Framework", Innovations in Systems and Software
Engineering, Vol. 3, No. 3.

[36] Thomas B. Hilbum and Massood Towhidnejad, (1997),
"Doing Quality Work: The Role of Software Process
Definition in the Computer Science Curriculum", SIGCSE
‘97 CA, USA

[37] G.I.U.S. Perera , (2009), "Impact of using agile practice for
student software projects in computer science education",
International Journal of Education and Development using
Information and Communication Technology (IJEDICT),
Vol. 5, Issue 3.

[38] Azeez Nureni Ayofe , Azeez Raheem Ajetola , (2009),
"Exploration of the Gap Between Computer Science
Curriculum and Industrial I.T Skills Requirements",
International Journal of Computer Science and Information
Security, Vol. 4, No. 1 & 2.

[39] Dawn McKinney and Leo F. Denton, (2006), "Developing
Collaborative Skills Early in the CS Curriculum in a
Laboratory Environment", SIGCSE'06.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

28

Ahmed El-Abbassy: Received the Ph.D. Degree Computer
Science from ENSAE, France, 1979, now is a professor in the
Department of Computer Science, El-Shorouk Academy, Egypt,
His research interest includes: Software Engineering, Operating
Systems and Information Management.

Ramadan Muawad: Chief Professor of computer science and
Information System department, Arab Academy for Science,
Technology and Maritime Transport.

Ahmed Gaber: Received a bachelor degree in Computer
Science with Excellent grade with honor from Al-Shorouk
Academy, Egypt 2006, now is an IT Analyst at Agility Logistics
Co.

