
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

59

Software-Architecture for Object Oriented Systems-
Usability Patterns

R.V. Siva Balan1, Dr. M. Punithavalli2
1Department of Computer Applications,

Narayanaguru College of Engineering,kanyakumari, India.

2The Director, Department of Computer Applications,
Dr. SNS Raja Lakshmi College of Arts and Science, Coimbatore, India.

Abstract Over the years the software engineering community
has increasingly realized the important role of software
architecture plays in fulfilling the quality requirements of a
software system. It has been experienced that Software
Architecture (SA) constrains the achievement of various quality
attributes such as performance, security, maintainability and
usability in a system. Reportedly, most software engineering
projects reveals that a large number of usability related change
requests are made after its deployment. Software patterns have
proven to be a useful medium for capturing best practices.
Building on the seminal work on software design patterns,
usability patterns have been increasingly created to disseminate
usability knowledge. In existing scenario-based software
architecture analysis methods that focus on usability, the usage
context is not employed to select scenarios used for analysis, it
is known that understanding a specific usage context is
important to carefully design for usability.

Keywords: Software Architecture, patterns, usability, quality
attributes, QDK, design decision, ISO standards.

1. Introduction
Since the last decades it has been clear that the most
challenging activity of a software architect are not just
designing for required domain functionality, but, also for
specific quality attributes. One of the quality attribute
which has its impact on users’ acceptance is the usability.
Usability has been disseminated as inherent to software
quality because of the relationship between software and
its application system domain. Issues such as whether a
product is easy to learn to use and whether it is
responsive to user determines its reputation. Usability
engineering is the Human Computer Interaction (HCI)
engineering and a discipline concerned with the design,
evaluation and implementation of interactive computing
systems for human use.

Adding usability improving solutions during late stage
development is to some extent restricted by the software
architecture. However, few software engineers and
human–computer interaction engineers are aware of this
important constraint and as a result avoidable rework is
frequently necessary. User interface designers and

software engineers have usually very different
backgrounds resulting in the lack of mutual
understanding of each other’s view on technical or
design issues.

Design patterns [14, 16] are extensively used by software
engineers for the actual design process as well as for
communicating a design to others. Since then a pattern
community has emerged that specifies patterns for all
sorts of problem domains: architectural styles [16],
object-oriented frameworks [21], domain models of
businesses [29], interaction patterns [34],[20],[31], etc. A
lot of different types of patterns have been defined in the
field of HCI; interaction patterns [34,20,31] (Undo), user
interface patterns [38,30] (progress indicator), usability
patterns [40,23] (Model view controller), web design
patterns [30,10] (shopping cart) and workflow patterns
[42].

The pattern idea was referenced by HCI research earlier
than most people expect. Norman and Draper (1986)
mention Alexander's work, and in his classic Psychology
of Everyday Things [32], Norman states that he was
influenced particularly by it. Apple's Human Interface
Guidelines [1] quote Alexander's books as seminal in the
field of environmental design, and the Utrecht School of
Arts uses patterns as a basis for their interaction design
curriculum [4].

Patterns have been shown to be a useful and potentially
important vehicle for capturing some of the most
significant architectural decisions [11]. One of the
biggest difficulties of documenting architectural
decisions is the capturing of rationale and expected
consequences of a decision. This is where patterns are
particularly strong, because the consequences of using
the architecture pattern are part of the pattern. The result
of applying a pattern is usually documented as
“consequences” or “resulting context” and is generally
labeled as positive (“benefits”) or negative (“liabilities”).
Each benefit and liability is described in some detail. The
payoff of using patterns can be great. When an architect

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

60

uses a pattern, he or she can read the pattern
documentation to learn about the side effects of the
pattern. This reduces the chance of the architect failing to
consider important consequences. This relieves the
architect of the burden of being expert in all the quality
attributes. An important advantage of pattern-based
architecting is that it is an integral part of most current
architecture methods.

2. Software Architecture
Architecture is the fundamental organization of a system
embodied in its components, their relationships to each
other and to the environment and the principles guiding
its design and evolution. This IEEE 2000 standard [35]
emphasizes that a system's software architecture is not
only the model of the system at a certain point in time,
but it also includes principles that guide its design and
evolution. Software architecture is a key determinant of
whether system quality requirements can be met. In
software intensive systems, software architecture
provides a powerful means to achieve the system
qualities over the software life cycle [25]. Figure 1
shows how software architecture can help predict the
quality of a software system. First, the relevant quality
attributes are identified from the system's requirement
specification. In the next step, these quality attributes are
used to drive the software architecture which is
subsequently used as a blueprint to assess the system's
capabilities and qualities.

A number of case studies and theories based on practical
experience have been published, suggesting the need for
multiple architectural views to capture different aspects
of software architecture [33]. The effectiveness of having
multiple architectural views is that the multiple views
help developers manage complexity of software systems
by separating their different aspects into separate views
[28]. Several architectural views share the fact that they
address a static structure, a dynamic aspect, a physical
layout and the development of the system. Bass et al.
[25] introduced the concept of architecture structures as
being synonyms to view.

Many software engineering textbooks describe the
development stage between requirements and detailed
design as architectural design and this is compatible with
our notion of where the definition of the software
architecture occurs, mapping the transition from problem
definition to solution space. Whereas the ideas and
motivations underlying software architecture are not
novel, it is only within the past few years that researchers
and practitioners have made explicit the architectural
issues in their work, emphasizing the representation of

the architecture as an important and living artifact in its
own right within the life cycle of a system.

 Determines level of quality

Drive

 Drives

Fig 1: Relationship between software architecture and software
quality.

Even more recent is the notion that an architectural
representation may be analyzed to understand its fitness
with respect to adapt quality attributes of the resulting
system.

3. Design Patterns
Object-oriented programs evolve over time and it would
be ideal if we could capture persistent parts of the
programs early on and then derive the transient versions
of the program from the persistent part. In our view, the
object-oriented community is moving in this direction
through its work on software architecture and patterns.
Capturing the persistent parts of a program allows us to
better maintain the integrity of the program during
evolution. The most widely used concept of pattern in
software development is the design pattern, and it is used
particularly in the object-oriented paradigm. Design
patterns reside in the domain of modules and
interconnections. Design patterns can improve the
structure of software, simplify maintenance, and help
avoid architectural drift. Not all software patterns are
design patterns. A variety of pattern categories are
recognized in software pattern community. Note,
nevertheless, that a design pattern can be seen as a
unique or original solution. Design patterns have become
an increasingly popular choice for addressing OOD’s
limitations. Design patterns have a very close intact with
the architectural design decisions. Architectural design
decisions, among others, may be concerned with the
application domain of the system, the architectural styles
and patterns used in the system, COTS components and
other infrastructure selections as well as other aspects
needed to satisfy the system requirements. Abstracting
the definition of design pattern, an architectural pattern
can be defined as a description of the components of a
design and the communication between these
components to provide a solution for a usability pattern.

System specification
System quality attributes*

Software architecture

System capabilities
and software qualities

* Reliability
*Functionality
*Usability
*Maintainability

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

61

4. Quality Attributes
Industrial empirical studies reveals that Software
Architecture constrains the achievement of various
quality attributes (such as performance, security,
maintainability and usability) in a system [5]. Since
software architecture plays a significant role in achieving
system wide quality attributes, it is important to analyze
a system’s software architecture with regard to desired
quality requirements as early as possible [11]. The
principle objective of software architecture analysis is to
assess the potential of a proposed architecture to deliver
a system capable of fulfilling required quality
requirements and to identify any potential risks [27].

Quality attributes are characteristics of the system that
are non-functional in nature. Because quality attributes
are system-wide, their implementation must also be
system-wide: satisfaction of a quality attribute
requirement cannot be partitioned into a single module or
subsystem. Thus, a system-level vision of the system is
required in order to ensure that the system can satisfy its
quality attributes. One of the primary purposes of the
architecture of a system is to create a system design to
satisfy the quality attributes. Architecture patterns are a
viable approach for architectural partitioning, and have a
well-understood impact on quality attributes [39].
However their application has been rather limited due to
a number of factors [18].

Each domain has its own requirements for
maintainability, performance, security, or usability. The
requirement that there be a product line adds additional
complexity to the design task but does not remove the
necessity for designing to achieve all of the normal
quality attributes for a domain. This work is a natural
extension of the work of various communities. The
patterns community believes that there are fundamental
architectural patterns that underlie the design of most
systems. Similarly, attribute communities ultimately
explored the meaning of their particular attribute and
come up with standard techniques for achieving their
desired attribute.

5. Usability
The work in this paper is motivated by the fact that the
pattern work also applies to usability. Usability is
increasingly recognized as an important consideration
during software development; however, many well-
known software products suffer from usability issues that
cannot be repaired without major changes to the software
architecture of these products.

Fig 2: Usability Framework

The design and use of explicitly defined software
architecture has received increasing amounts of attention
during the last decade. Generally, three arguments for
defining architecture are used [26]. First, it provides an
artifact that allows discussion by the stakeholders very
early in the design process. Second, it allows for early
assessment of quality attributes [2, 9]. Finally, the design
decisions captured in the software architecture can be
transferred to other systems. This means that the design
decisions embodied by software architecture are strongly
influenced by the need to achieve quality attribute goals.

Fig 3: Relationship between usability patterns, properties and

attributes.

Distributing usability knowledge is usability heuristics,
which comes in many forms, from style guides (interface
widgets) to general principles to interface consistency
guidelines [36, 37]. While hundreds of usability
guidelines have been designed and published, empirical
studies have shown mixed results, with some
demonstrating that both novice and expert HCI
specialists benefit from guidelines [41, 15].

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

62

A combination of pattern maturity and new technologies
have the potential to improve how patterns are used,
created, and combined for form problem solutions. Use
cases are a popular requirements modeling technique, yet
people often struggle when writing them. They
understand the basic concepts of use cases, but find that
actually writing useful ones turns out to be harder than
one would expect. One factor contributing to this
difficulty is that we lack objective criteria to help judge
their quality. Many people find it difficult to articulate
the qualities of an effective use case. We have identified
approximately three dozen patterns that people can use to
evaluate their use cases. We have based these patterns on
the observable signs of quality that successful projects
tend to exhibit. Construction guidance is based on use
case model knowledge and takes the form of rules which
encapsulate knowledge about types of action dependency,
relationships between actions and flow conditions,
properties of objects and agents, etc. Based on this
knowledge rules, help discovering incomplete
expressions, missing elements, exceptional cases and
episodes in the use case specification through pattern
specification. They support the progressive integration of
scenarios into a complete use case specification.

6. Usability in ISO 9126
In 1991, ISO 9126 defined usability as “a set of attributes
that bear on the effort needed for use and on the
individual assessment of such use, by a stated or implied
set of users.” It then proposed a product-oriented
usability approach. Usability was seen as an independent
factor of software quality and it focused on software
attributes, such as its interface, which make it easy to use
[7]. In a product-oriented approach, usability is seen as a
relatively independent contribution to software quality,
as defined now in the 2001 edition of ISO/IEC 9126-1:
“The capability of the software product to be understood,
learned and liked by the user, when used under specified
conditions.” Usable products can be designed by
incorporating product characteristics and attributes,
which are beneficial to users in particular contexts of use.

Usability specification and evaluation should address
several user environments, which the software can affect,
including both use preparation and results evaluation. To
specify software quality, a purchaser needs a model and
analytical tools to communicate

Fig 4: ISO 9126-1 Quality model

precisely his requirements concerning the product to be
developed. Similarly, a software provider needs to be
able to verify with confidence whether or not the product
provides the expected level of software quality. This ISO
9126 standard can be used as a reference for contractual
agreements between a purchaser and a software producer,
and it can be used to eliminate a number of
misunderstandings between purchaser and provider. The
principal advantage of a clearly defined and agreed upon
model, supported with appropriate measures, is that it
clarifies the definition of usability, and proposes
measures to provide objective evidence of achievement.

The ISO/IEC 9126 quality model can be used to specify
and verify those properties that the software must exhibit
before being put into service. However, there are still
some weaknesses in ISO 9126 which have not yet been
fully tackled, such as:

1. Unclear architecture at the detail level of the
measures.

2. Some overlapping of concepts, making the standard
challenging for the user community to grasp clearly,
such as the usability characteristics of internal and
external quality with respect to the quality-in-use set
of quality characteristics.

3. Lack of a quality requirements standard.
4. Lack of guidance in assessing the results of

measurement.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

63

It is important to be able to relate software measures to
project tracking and to target values at the time of
delivery of the software.

7. Design Decisions and QDK
The process of architectural design has been
characterized as making a series of decisions that have
system-wide impact. Kruchten notes that the reasoning
behind a decision is tacit knowledge, essential for the
solution, but not documented [24]. The result is that
consequences of decisions may be overlooked.
Overlooking issues is a significant problem in
architecture. In a study of architecture evaluations, Bass
et al [6] report that most risks discovered during an
evaluation arise from the lack of an activity, not from
incorrect performance of an activity. Categories of risks
are dominated by oversight, including overlooking
consequences of decisions. Many of the overlooked
consequences are associated with quality attributes. Their
top risk themes included availability, performance,
security, and modifiability. The iterative refinement of
design decision (Dd), by means of the quality needs (Qn)
leads to the specification of (Ks) knowledge. This
activity, QDK (Quality Needs to Design decision to
Knowledge-rules Specification), explores the quality-
impact design decision for usability. Most architectural
decisions have multiple consequences; result in
additional requirements to be satisfied by the architecture,
which need to be addressed by additional decisions [22].
Some are intended, while others are side effects of the
decision. Some of the most significant consequences of
decisions are those that impact the quality attributes of
the system. Garlan calls them key requirements [17]. We
call it as Discovery of Knowledge, to be recorded in
Knowledge rule Specification (Ks). This impact may be
the intent of the decision; for example, one may choose
to use a role-based access control model in order to
satisfy a security quality attribute. Other impacts may be
side effects of different decisions. For example, the
architect may adopt a layered architecture approach,
which decomposes the system into a hierarchy of
partitions, each providing services to and consuming
from its adjacent partitions. A side effect of a layered
architecture is that security measures can be easily
implemented. One of the key challenges in dealing with
such consequences is the vast amount of knowledge
required to understand their impact on all the quality
attributes. Architectural design decisions are concerned
with the application domain of the system, the
architectural styles and patterns used in the system,
COTS components and other infrastructure selections as
well as other aspects needed to satisfy the system
requirements.

 iterate

 and

 quality needs

 or

Fig 5: Activities and dependencies in QDK scenario based
analysis

Bachmann et al note that the list of quality attributes in
the ISO 9126 standard is incomplete, and that one must
understand the impact on even the undocumented quality
attributes [3]. Missing the impact on quality attributes at
architecture time has an additional liability. Because
quality attributes are system-wide capabilities, they
generally cannot be fully tested until system testing [8].
Consequences that are overlooked are often not found
until this time, and are expensive to fix.

8. Result and Future work
When the scenario evaluation has been finished we need
to interpret the results to draw our conclusions
concerning the software architecture. At this stage we go
back to our architecture design approach where we
wondered if this architecture had sufficient support for
usability. The interpretation of the results depends
entirely on the goal of the analysis and the system
requirements. If the architecture proves to have sufficient
support for all quality attributes the design process is
ended. Otherwise we need to apply architecture
transformations or design decisions to improve certain
quality attribute(s). The choice to use particular
transformations may be based upon results from the
analysis. For example: Consider a system, which proves
to have a low support for usability, for example
learnability for some usage scenarios is not supported.
To improve learnability we could use the design
primitive of guidance, to address guidance we could
implement for example a wizard pattern or provide
context sensitive help. The framework we have
developed is then used as an informative source for
design and improvement of usability. Several issues need
to be resolved during case studies, which have been
summarized below:

i. Relevance of framework: The relationships depicted
in our framework indicate potential relationships.

Depend
encies
knowledg
e rules

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

64

Further work is required to substantiate these
relationships.

ii. Use case maps: may provide information about static
properties of usability. More research is required to
determine whether use case maps can provide that
kind of information.

9. Conclusions
The work presented in this paper is motivated by the
increasing realization in the software engineering
community of the importance of software architecture for
fulfilling quality requirements. We have presented a
provisional assessment technique for usability based on
scenarios, which has potential to improve current design
for usability. Future case studies should determine the
validity of our approach to refine it, possibly redefine
and elaborate the steps that should be taken to make it
generally applicable. The main contribution of this paper
is the formulation and derivation of an architectural
assessment approach for usability.

References
[1] Apple Computer (I992), Macintosh Human Interface

Guidelines. Addison-Wesley, Reading, MA.
[2] Architecting for usability; a survey,

http://segroup.cs.rug.nl.
[3] Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing

software architectures to achieve quality attribute
requirements. In: IEEE Proceedings, vol. 152 (2005).

[4] Barfield, L., van Burgsteden, W., Lanfermeijer, R. et al.
(1994). Interaction Design at the Utrecht School of the
Arts, SIGCHI Bulletin. 26(3). 49-79.

[5] BASS, L., CLEMENTS, P. & KAZMAN, R. (2003)
Software Architecture in Practice, Addison-Wesley.

[6] Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes
Discovered Through Architecture Evaluations. SEI Report
CMU/SEI-2006-TR-012 (2006).

[7] Bevan, N. 1997. ISO 9126, EAGLES evaluation group
workshop, Evaluation in Natural Language
Engineering:Standards and Sharing, Brussels, November
26th and 27th,
http://www.cst.ku.dk/projects/eagles2/workshop/ISOnigel.
html.

[8] Burnstein, I.: Practical Software Testing. Springer,
Heidelberg (2003).

[9] D. Kim, R. France, S. Ghosh and E. Song, “A UMLBased
Metamodeling Language to Specify Design Patterns”,
Proceedings of Workshop on Software Model Engineering
(WiSME), at UML 2003, San Francisco, 2003.

[10] D.K. van Duyne, J.A. Landay, J.I. Hong, The Design of
Sites: Patterns, Principles, and Processes for Crafting a
Customer-Centered Web Experience, Addison-Wesley,
Boston, 2002.

[11] DOBRICA, L. & NIEMELA, E. (2002) A Survey on
Software Architecture Analysis Methods. IEEE
Transactions on Software Engineering, 28, 638-653.

[12] E. Folmer et al. / Information and Software Technology 48
(2006).

[13] E. Folmer, J. v. Gurp, and J. Bosch. Scenario-Based
Assessment of Software Architecture Usability. In the
Proceedings of Workshop on Bridging the Gaps Between
Software Engineering and Human-Computer Interaction,
ICSE, 2003.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns Elements of Reusable Object-Orientated Software,
Addison-Wesley, Reading, MA, 1995.

[15] E. Lai-Chong Law, E. T. Hvannberg, "Analysis of
Strategies for Improving and Estimating the Effectiveness
of Heuristic Evaluation," Proc. 3rd Nordic Conf. on HCI,
pp. 241-250, 2004.

[16] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M.
Stal, Pattern-Oriented Software Architecture: A System of
Patterns, Wiley, New York, 1996.

[17] Garlan, D.: Software Architecture: a Roadmap. In:
Proceedings of Future of Software Engineering, Limerick
Ireland (2000).

[18] Harrison, N., Avgeriou, P., Zdun, U.: Architecture
Patterns as Mechanisms for Capturing Architectural
Decisions. IEEE Software (September/October 2007).

[19] J. K. Bergey, M. J. Fisher and L. G. Jones and R. Kazman.
Software Architecture Evaluation with ATAMSM in the
DoD System Acquisition Context. CMU/SEI- 99-TN-012.
Pittsburg, PA: Software Engineering Institute, Carnegie
Mellon University, 1999.

[20] J. Tidwell, Interaction design patterns, Proceedings of the
Conference on Pattern Languages of Programming 1998,
Illinois USA, 1998.

[21] J.O. Coplien, D.C. Schmidt, Pattern Languages of
Program Design, Software Patterns Series, Addison-
Wesley, Reading, MA, 1995.

[22] Jansen, A.G., Bosch, J.: Software Architecture as a set of
Architectural Design Decisions. In: Proceedings of
WICSA 5, pp. 109–119 (November 2005).

[23] K. Perzel, D. Kane, Usability patterns for applications on
the world wide web, Proceedings of the Pattern Languages
of Programming Conference, 1999.

[24] Kruchten, P., Lago, P., van Vliet, H.: Building up and
reasoning about architectural knowledge. In: Hofmeister,
C., Crnkovic, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, Springer, Heidelberg (2006).

[25] L. Bass, P. Clements and R. K. Kazman. Software
Architecture in Practice. SEI Series in Software
Engineering. Addison-Wesley, 1998. ISBN 0-201-19930-
0.

[26] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, Addison Wesley Longman,
Reading MA, 1998.

[27] LASSING, N., RIJSENBRIJ, D. & VLIET, H. V. (1999)
The goal of software architecture analysis: Confidence
building or risk assessment. Proceedings of First BeNeLux
conference on software architecture.

[28] M. A. Babar and I. Gorton. Comparison of Scenario-Based
Software Architecture Evaluation Methods. In the
Proceedings on Asia-Pacific Software Engineering
Conference, pp. 584-585, 2004.

[29] M. Fowler, Analysis Patterns: Reusable Object Models,
Addison-Wesley, Reading, MA, 1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010

65

[30] M. Welie, GUI Design Patterns, http://www.welie.com/
[31] M. Welie, H. Traetteberg, Interaction patterns in user

interfaces, Proceedings of the Seventh Conference on
Pattern Languages of Programming (PloP), 2000.

[32] Norman, D.A. (1988). The Psychology of Everyday
Things. Basic Books, New York.

[33] P. Clements and R. K. Kazman, M. Klein. Evaluating
Software Architectures: Methods and Case Studies.
Addison-Wesley Professional; 2002. ISBN 0-201-70482X.

[34] Pointer, PoInter: Patterns of INTERaction
collection,http://www.comp.lancs.ac.uk/computing/researc
h/cseg/projects/pointer/patterns.html.

[35] Recommended practice for architectural description. IEEE
Standard P1471, 2000.

[36] S. J. Koyanl, R. W. Bailey, J. R. Nall, "Research-Based
Web Design & Usability Guidelines," Communication
Technology Branch, National Cancer Institute & US Dept
of health and Human
Services,http://www.usability.gov/pdfs/guidelines.html,
2003.

[37] S. L. Smith, J. N. Mosier, "Guidelines for Designing User
Interface Software," ESD-TR-86-278, Technical Report,
The MITRE Corporation, 1986.

[38] S.A. Laakso, User Interface Design Patterns,
http://www.cs.helsinki.fi/u/salaakso/patterns/

[39] Shaw, M., Garlan, D.: Software Architecture: Perspectives
on an Emerging Discipline. Addison-Wesley, Reading,
MA (1996).

[40] UK, The Usability Group at the University of Brighton,
The Brighton Usability Pattern
Collection,http://www.cmis.brighton.ac.uk/research/patter
ns/home.html.

[41] W. Connell, N. V. Hammond, "Comparing usability
evaluation principles with heuristics," Proc. INTERACT,
pp. 621-636, 1999.

[42] W. van der Aalst, A. ter Hofstede, Workflow
Patterns,http://tmitwww.tm.tue.nl/research/patterns/

Prof. Dr. M. Punithavalli is currently the Director,
Department of Computer Applications, Dr. SNS College of
Arts and Science, Coimbatore, India. She is actively working as
the Professor in the department of Computer Applications of
SNS Raja Lakshmi College of Engineering, India.

 Lect. R.V. Siva Balan is currently
working as the Lecturer in the
Department of Computer Applications,
Narayanaguru College of Engineering,
Kanyakumari Dist., India. He is a
research scholar in Anna University
Coimbatore, India.

