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Summary 
Wireless Networks (WN) have become an interesting technology 
for delivering services such as video, voice and video conference, 
in the last years. In order to satisfy the demand of these services, 
the estimation of the power reception at a specific distance is 
required. The power reception is affected by environmental and 
infrastructure constraints which varies according to different 
characteristics of the medium, such as the layout of the buildings, 
building materials, people movement, separations between rooms, 
among others. Therefore these factors have to be contemplated 
when calculating the power attenuation´s signal and this process 
can be considered very complex. Hence, a model that deals, in a 
simple way, with these constraints is required. The proposal of 
this work is to show that, through the application of Fuzzy Logic 
(FL) to the analysis of the signal´s attenuation in indoor 
environments (IE), it is possible to deal with these constraints 
and it is possible to determine the value of the path loss exponent 
– the “β” parameter of the Shadowing Model of Signal 
Propagation, with results very similar to those obtained by 
experimental methods. 
Key words: 
Attenuation, Indoor Environment, Shadowing Model, Fuzzy 
Logic. 

1. Introduction 

Nowadays, Wireless Networks (WN) have become very 
useful for delivering data services such as video, voice and 
video conference [1]. The planning of this network is 
important to warranty the efficiency with which it will 
work. In a WN, in order to offer reliability when providing 
a service, the power of the received signal has to be taken 
in consideration [1] [2].  

 
In WN, the power transmitted through a link spreads out 
in all directions causing the decrease of the signal power 
level as the distance traveled by the signal increases. 
Besides, environmental and infrastructure conditions (such 
as building materials, building layout, divisions of the 
rooms, windows, doors, distribution and materials of these 
objects) affect the performance of a WN [1] [3]. So, in 
order to adequately predict the reception power, it is 
necessary to take in consideration all these mentioned 
environmental and infrastructure conditions. 

 

 
The Shadowing Model (SM) permits to calculate the 
intensity of the received signal after it is transmitted and 
passes through the link and suffers the attenuation caused 
by the environment. The attenuation degree varies in 
relation to the characteristics of the environment and it is 
expressed by the path loss exponent “β” in the SM.  

 
But the environmental and infrastructure conditions are 
constraints that do not affect the signal in a deterministic 
way. So, estimating the impact of each of these factors in 
the degradation of the signal could result in a very 
complicated process. In consequence, it is required a 
model that can represent, in a simple and approximated 
way, the influence of all  these constraints. 

 
The Fuzzy Logic (FL) permits to treat problems with 
vague, ambiguous or imprecise information in a simple 
way through the processing of a knowledge base and 
conditional rules that allow reaching a conclusion 
approximated to the human knowledge [4]. 

 
In this paper it is proposed to use FL to analyze the signal 
attenuation through the application of the fuzzy inference 
process in the calculation of the value of the path loss 
exponent “β” of the SM. 

2. Main Concepts 

2.1 Signal of Shadowing Propagation Model  

One of the models of propagation of signal presented in 
the literature to predict the signal reception is the 
Shadowing Model, which not only considers the distance 
as a factor to calculate the reception power, as well as the 
obstacles encountered during the course of the signal from 
the transmitter to the receiver [1]. 

 
The parameter used to characterize the attenuation due to 
obstacles in the environment is represented by the path 
loss exponent “β” present in the Shadowing´s equation 
model as follows: 
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where PR(d) is the power received at a “d” distance, PR(d0) 
is the power received at a reference distance “d0”, β 
represents the obstruction of the environment, “d” is the 
length of the path, “d0” is the reference distance and XdB is 
a random variable with Gaussian distribution of zero mean 
and standard deviation “σ” which is expressed in dB.  

 
As mentioned before, the β value can varies depending on 
the presence of some conditions that could modify the 
attenuation related to the link. To determine these 
conditions and their influence on the link attenuation level, 
it is really important to evaluate the functionality of the 
path.  

 
In Rappaport [12], it is presented a classification of the 
parameter β according to the type of the environment in 
which the attenuation is being calculated. Table 1 shows 
these values. 

Table 1: β values for different environments [12] 
Environment β 

Free Space 2 

Urban Area 2.7 – 3.5 

Shadowed Urban Area 3 - 5 

LOS in Buildings 1.6 - 1.8 

Obstruction in Buildings 4 - 6 

Obstruction in Factories 2 - 3 

 
 
To obtain a β value close to the real characterization of the 
environment, it is necessary to consider all the variables 
that can impact in signal attenuation. However, the usage 
of mathematical models to describe this factor can become 
very complex due to the nature of the involved variables. 

 
In this context, the use of Fuzzy Logic to calculate the 
parameter β can provide a simple mechanism to evaluate 
the signal attenuation related to the obstruction of the 
environment and can permit to reach values similar to the 
ones obtained experimentally. 

2.2 Fuzzy Logic 

The FL is a way of processing data by allowing partial set 
membership rather than crisp set membership or non-
membership to a set [3]. It is based on the Fuzzy Set 
Theory which establishes that for each element that 
belongs to a domain, the degree of membership in relation 
to the set is verified. The degree of membership 
determines how much this element is part of this set 
assigning a degree of truth. This value could be in the 
range of 0 and 1, being 1 when the statement is absolutely 
true, 0 when it is absolutely false and other value between 
this range that specifies an intermediate truth degree. The 
FL model is described in Figure 1. 

 

  
Fig. 1  Fuzzy Logic Scheme. (LL: Linguistic Level, NL: Numerical 

Level) 

The process begins with the fuzzyfication step which 
consists on translating a numerical value into a linguistic 
variable (fuzzy variables). To do this, a membership 
function is used in order to determine how much a fuzzy 
variable belongs to a fuzzy set. The fuzzy sets are the 
values assigned to the fuzzy variables. The triangular 
function is a simple function that permits to describe a 
membership relation in a fuzzy set especially when the 
elements of the set are discrete. The triangular 
membership function can be represented as follows: μtri 
(x; a, b, c) = max ( min ( x-a/b-a, c-x/c-b ), 0) [3] [7]. 
 
The inference process is based on a set of rules which 
permits through its application to map the relationship 
between the input and output linguistic variables. In the 
inference process the Max-Min method can be used to 
evaluate the condition (IF) and the conclusion (THEN) of 
a statement. This method is basically a multiplication of 
two matrix in which the maximum is represented by the 
OR function and the minimum by the AND function [3] 
[7]. 
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The defuzzyfication process is about to translate a 
linguistic value into a numerical one. For this, there are 
several methods that can be used and the selection of one 
method depends on the system that is being evaluated. In 
this research, the Center of Gravity (that determines the 
center of the area of each fuzzy set implicated) and the 
Mean-Max (that returns the mean value of the points that 
presents the major membership degree in the universe) [3] 
[7] methods were used. 

3. Methodology 

As mentioned before, the proposal of this work is to 
analyze the signal attenuation by using FL in the 
calculation of the β parameter presented in the SM. The β 
value represents the environment in which the signal is 
transmitted. 

This parameter cannot be determined as a fixed parameter 
due to the nature of the medium in which the WN operates. 
By using the LF, the β value can be obtained in an 
approximated way by taking into account the different 
environmental and infrastructure conditions that may 
cause attenuation in the wireless network link.  

 In this work, the indoor environment consists of 6 
classrooms of a University (Pontifical Catholic University 
of Campinas), which are distributed consecutively and 
separated by wood divisions and brick walls (in the case 
of the wall that divides rooms 3 and 4). As well, other 
elements that cause attenuation in an indoor environment 
are windows, metallic cabinets, the size of the rooms and 
the distance from the transmitter to the receiver equipment. 
Each of them generates a different degree of attenuation. 
Figure 2 represents these rooms. 

 

 

Fig. 2  Analyzed rooms 

In order to validate the fuzzy model proposed in this paper, 
the results obtained after the step of Defuzzyfication were 
confronted with the empirical results obtained in 
BRANQUINHO et. al. (2005) that are presented in the 
Table 2 where “b” is the β value. 

 

Table 2: Empirical results 

Room b 

1 -8,1116 

2 -0,02011 

3 1,4018 

4 -4,7992 

5 -2,9495 

6 -1,8988 
 
As cited before, the reception power varies according to 
the distance and obstruction caused by the infrastructure. 
Thus, for the proposed study, the distance considered in 
each room must be composed by summing the sizes of the 
rooms prior to the one that is analyzed. Similarly, in the 
case of objects that block the signal, it must also be 
considered the overall composition of the rooms prior to 
that where the parameter β is being estimated . Table 3 
shows the summary of the cumulative characterization of 
rooms for this study. 

Table 3: Characterization accumulated 
Accumulated 

Characteristic R1 R2 R3 R4 R5 R6
Walls 1 2 3 6 8 10
Divisions 0 1 2 2 3 4
Windows 7 11 15 17 18 19
Metal Cabinet 4 4 5 6 6 6
Room size 16 12 6 10 10 13
Distance 16 28 34 44 54 67

 

To calculate the β value the following steps were 
executed: 

Fuzzyfication: In this step, the fuzzy variables were 
determined to an indoor environment. These variables are 
the input data for the fuzzy machine which were selected 
due to their impact in the attenuation level and in the 
output data, which is the β value. These variables are: 

• Walls ----------------------------------- (WA) 

• Divisions ------------------------------ (DIV) 

• Windows ---- -------------------------(WIN) 

• Metal Cabinets ------------------------(MC) 

• Room Size ------------------------------(RS) 
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• Distance --------------------------------(DIS) 

 

After that, each fuzzy variable was assigned to a fuzzy 
value and a membership function to map this relationship, 
presented in Tables 4 to 9. 

Table 4: Membership Function WA 

Linguistic Value Function Values 

Low triangular (x;0,1,4) 

Medium triangular (x;2,6,8) 

High triangular (x;7,9,10) 

Table 5: Membership Function DIV 

Linguistic Value Function Values 

Few triangular (x;-1,0,2) 

Many triangular (x;1,3,5) 

Table 6: Membership Function WIN 

Linguistic Value Function Values 

Low  triangular (x;0,4,9) 

Medium triangular (x;8,11,16) 

High triangular (x;14,19,22) 

Table 7: Membership Function MC 

Linguistic Value Function Values 

Low triangular (x;0,1,2) 

Medium triangular (x;1,3,5) 

High triangular (x;4,6,8) 

Table 8: Membership Function DIS 

Linguistic Value Function Values 

Low triangular (x;5,20,39) 

Medium triangular (x;35,48,52)

High triangular (x;50,59,70)

Table 9: Membership Function RS 

Linguistic Value Function Values 

Small triangular (x;6,10,14) 

Big triangular (x;12,15,20) 

Inference: This step involves the activation of the rule 
base that will map the relationship between the values 
obtained in the fuzzyfication step and the values of the 
output fuzzy variable, through the implication relation. 
Considering that the objective of this work is to calculate 
the degree of obstruction represented by the parameter β, 
the output variable best suited for the representation of this 
purpose is the obstruction - OBS, described in Table 10. 

Table 10: Membership Function OBS 

Linguistic Value Function Values 

Nule triangular (x;-2.5,-1.8,0.01)

Very Low triangular (x;0,1.7,2.4) 

Low triangular (x;2,3,3.5) 

Medium triangular (x;3.2,4,4.7) 

High triangular (x;4.3,5.3,6.3) 

Very High triangular (x;6.2,8,10) 
 

In this work, 103 rules were implemented. One of these is 
presented in the following, as an example:  
 
IF (WA is Low) AND (DIV is Few) AND (WIN is Low) 
AND (DIS is Low) AND (RS is Big) and (MC is Medium) 
THEN (OBS is VERY HIGH). 
 
For effective implementation of the rule base, it is 
necessary to adopt an implication relation. For this work 
the Mandani min operation was chosen due to its 
simplicity of use. 
 
Defuzzyfication: This was implemented by applying the 
methods of Center of Gravity and Mean Max from manual 
calculation and computed by an application developed in 
Java platform. These methods are well known and widely 
found in the literature. 

4. Application and Results 

The value of β was calculated in the 6 rooms by following 
the methodology described in Section 3. In this section, as 
an example, the manual calculation of β for room 1 is 
presented in details. Besides, the obtained results for the 
other five rooms are also presented as a comparison 
among the empirical results, described in reference [3], 
and the results obtained by manual calculation and using 
the developed computational application. 
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Fuzzyfication Application – Room 1 

Tables 11 to 16 and Figures 03 to 08 show the 
membership value obtained for all variables for room 1, 
considering the values given in Table 03.  For instance, 
considering that the number of walls (WA) in room 1 is 1 
and that the Membership Function of this value is given by 
Table 04, the membership value (M) to this variable is 1. 
This is presented in Table 11 and in the Figure 03.  

In the case of the variable divisions (DIV), its value to 
room 1 is 0 according to Table 03 and using the 
Membership Function given by Table 05, the membership 
value obtained is 0,4. This result is presented in Table 12 
and in Figure 04. 

In the case of the variable windows (WIN), its value to 
room 1 is 7 according to Table 03 and using the 
Membership Function given by Table 06, the membership 
value obtained is 1. This result is presented in Table 13 
and in Figure 05. 

By applying the same methodology for the other variables, 
it is possible to obtain the results shown in Tables 14 to 16 
and Figures 06 to 08.  

 

Table 11:  Membership Function and Membership value (M) to the set of 
the variable WA considering WA = 1 

LV Membership Function M
Low max(min((1-0)/(1-0),(4-1)/(4-1)),0) 1
Med max(min((1-2)/(6-2),(8-1)/(8-6)),0) 0
High  max(min((1-7)/(9-7),(11-1)/(11-9)),0) 0

 

 

 
Figure 03: Plot of the Membership Function for the variable WA. The 
yellow dot represents the value of WA in room 1.  

 

Table 12:  Membership Function and Membership value (M) to the set of 
variable DIV considering DIV = 0. 

LV Membership Function M
Few max(min((0-(-1))/(0-(-1)),(2-0)/(2-0)),0) 1 
Man max(min((0-1)/(3-1),(5-0)/(5-3)),0) 0 

 

 

Figure 04: Plot of the Membership Function to the variable DIV. The 
yellow dot represents the value of DIV in room 1. 

Table 13:  Membership Function and Membership value (M) to the set of 
variable WIN, considering WIN = 7. 

LV Membership Function M
Low max(min((7-0)/(4-0),(9-7)/(9-4)),0) 0,4
Med max(min((7-8)/(11-8),(16-7)/(16-11)),0) 0
High max(min((7-14)/(19-14),(22-7)/(22-19)),0) 0

 

 

 

 
Figure 05: Plot of the Membership Function to the variable WIN. The 
yellow dot represents the value of WIN in room 1. 
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Table 14:  Membership Function and Membership value (M) to the set of 
variable MC, considering MC = 4. 

LV Membership Function M
Low max(min((4-0)/(1-0),(2-4)/(2-1)),0) 0
Med max(min((4-1)/(3-1),(5-4)/(5-3)),0) 1
High max(min((4-4)/(6-4),(8-4)/(8-6)),0) 0

 

 

Figure 06: Plot of the Membership Function to the variable MC. The 
yellow dot represents the value of MC in room 1. 

Table 15:  Membership Function and Membership value (M) to the set of 
the variable DIS, considering DIS = 16 

LV Membership Function M
Low max(min((16-5)/(20-5),(39-16)/(39-20)),0) 0,8
Med max(min((16-35)/(48-35),(52-16)/(52-48)),0) 0
High max(min((16-50)/(59-50),(70-16)/(70-59)),0) 0

 

 

Figure 07: Plot of the Membership Function to the variable DIS. The 
yellow dot represents the value of DIS in room 1 

Table 16:  Membership Function and Membership value (M) to the set of 
the variable RS, considering RS = 16. 

LV Membership Function M
Small max(min((16-6)/(10-6),(14-16)/(14-10)),0) 0,8
Big max(min((16-12)/(15-12),(20-16)/(20-15)),0) 0

 
Figure 08: Plot of the Membership Function to the variable RS. The 
yellow dot represents the value of RS in room 1. 

 

Inference Application – Room 1 

Table 17 presented a summary of the results of the 
application of fuzzy inference for room 1. 

Table 17: Summary Fuzzyfication  Room 1 

Linguistic Variable MF 
Wall µLow(1)=1 

Divisions µFew(1)=1 
Windows µLow(1)=0,4 

Metal Cabinet µMedium(1)=0,5 
Distance µHigh(1)=0,8 

Room Size µBig(1)=0,8 
 

In this case, due to the simplicity of this particular 
situation, it has been fired a single rule of the rule base, 
described below: 

1 - IF (WA is Low) AND (DIV is Few) AND (WIN is Low) 
AND (DIS is Low) AND (RS is Big) AND (MC is Medium) 
THEN (OBS is VERY HIGH) 

According to the operation of implication Mandani (min), 
the minimum membership value, selected from the 
membership functions resulting from fuzzyfication , is 0.4. 
Applying the rule (1), it was observed that the output is 
within the range Obstruction “Very High”, as illustrared in 
Figure 09. It is important to emphasize that the variable 
OBS (Obstruction) represents the parameter β. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.10, October 2010 
 

 

84

 
Figure 09: Output in room 1. 

As mentioned before, the β value was also calculated with 
a computational tool based in Java which has implemented 
both Defuzzyfication methods (Center of Gravity - CG 
and Mean Mix - MM) used in this work.  

 
Table 18 shows the results for the 6 rooms by the 
empirical method, manual calculation and computational 
calculation with the Center of Gravity (CG) and Mean 
Mix (MM) methods.         

Table 18: Summary of Results  Room 1 

Room  
Manual 

Calculation 
Computational 

Calculation 
Empirical CG MM CG MM

1 8,1116 8,12 8,12 8,05 7,94 

2 0,02011 1,39 1,39 -0,1 0,07 

3 -1,4018 -1,3 -1,3 -0,3 -0,3 

4 4,7992 5,3 5,3 5,31 5,2 

5 2,9495 2,82 2,82 1,92 2,13 

6 1,8988 2,23 2,12 1,79 2,13 

 
As shown in Table 18, the results for room 1 were very 
similar for the different types of calculation. The error 
between the empirical and the manual calculation were 
0.1% using the CG and MM methods, and in relation to 
computational calculations, were about 0.7% for the CG 
method and 2% for the MM method. 
 
In the case of room 2, the empirical and the computational 
calculation results were very close. In this particular case, 
the absolute error (0.16 for CG method and 0.05 for MM 
method) corresponds to an indicator of proximity rather 
than the percentage error. The significant difference 
obtained between the empirical and the manual calculation 
results may be justified because of the chosen points for 
the defuzzyfication. Perhaps, these points, may not be the 
most representative of the output variable in relation to its 
membership function. 
 

In the case of room 3, the manual calculation and the 
empirical methods provide very similar results; an 
interesting point to be emphasized in room 3 is that the 
results indicate a gain rather than a loss of signal (note the 
minus signal in the corresponding row of Table 18). It can 
also be observed that the computational calculation shows, 
similarly, a tendency for the achievement of gain, although 
not at the same intensity of the first methods mentioned.  
This is an interesting fact, since the rule base was 
projected only for situations of attenuation (representing 
only losses in the signal), but taking into account the 
expert knowledge, the emergence of situations where the 
signal attenuation is reversed, gain meaning, demonstrates 
the ability of the rule base to extrapolate the knowledge 
contained in them originally to cover situations that are 
not explicitly described in its generation. 
 
The results for room 4 can be considered close for the 
different types of calculations. Errors that appear between 
the empirical and the manual calculation were about 10% 
using the CG and MM methods, and in relation to 
computational calculations, were about 11% for the CG 
method and 8% for the MM method. 
 
In the case of room 5, the errors between the empirical and 
the manual calculation were about 4% using the CG and 
MM methods, and in relation to computational 
calculations, were about 34% for the CG method and 27% 
for the MM method. Taking into view the vagueness 
inherent in fuzzy logic, these results can be considered 
satisfactory. 
 
As in the case of room 4, the results for room 6 can also be 
considered close for the different types of calculations. 
Errors that appear between the empirical and the manual 
calculation were about 15% for the CG method and 11% 
for the MM method, and in relation to computational 
calculations, were about 5% for the CG method and 11% 
for the MM method. 

5. Conclusions 

This paper aimed to explore a new method for the analysis 
of signal attenuation, with the additional purpose of 
simplifying (in terms of computational effort and 
knowledge) the task of characterizing the environment 
through the use of Fuzzy Logic for the β parameter in the 
Shadowing Method. 
 
To perform a real calculation of the power reception, it is 
necessary to take into account the obstacles in the 
environment, since they, as outlined in this work, can 
cause obstruction in the transport of the signal, generating 
attenuation. 
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This work also demonstrated that through the application 
of Fuzzy Logic for analyze the signal attenuation in indoor 
environment, it was possible to obtain values very close to 
those measured empirically.  The method of (Max, Min), 
chosen for the simplicity of its implementation, was able 
to provide satisfactory results. 

 
The results obtained by applying the proposed 
methodology (manual and computational calculations) can 
be considered satisfactory, since they are close to the 
results obtained empirically and described in reference [3]. 

 
Finally, it can be established that Fuzzy Logic has proved 
to be a possible tool for the treatment of signal attenuation 
factors, simplifying the process of characterization of the 
environment obstruction. Moreover, it was noted that the 
rule base has provided a degree of computational 
intelligence by extrapolating the knowledge contained in 
its original rule of base (as could be seen for room 3). 
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