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Summary 
The big challenge in discovering association rules is to find the 
largest frequent itemsets. Sequential algorithms do not have 
analytical ability, especially in terms of run-time performance, 
for such very large databases. Therefore, we must rely on high 
performance parallel and distributed computing. We present a 
new parallel algorithm for frequent itemset mining, called 
HoriVertical algorithm. The algorithm passes the database only 
one time and starts a new stage with the finished itemsets while 
some other itemsets in the same stage have not been finished yet. 
Also, the new algorithm is based on partitioning the database 
vertically and horizontally. We present the result on the 
performance of our algorithm on various databases, and compare 
it against well known algorithms. 
Key words: 
Parallel Systems, Distributed shared memory, data mining, 
Association rule, Linda system, Tuple-space, Jini, JavaSpace. 

1. Introduction 

Business organizations  are increasingly turning to 
the automatic extraction of information from large 
volumes of routinely collected business data. Association 
rule mining (ARM) finds interesting associations and/or 
correlation relationships among large set of data items. 
Association rules show attribute value conditions that 
occur frequently together in a given dataset. Discovering 
this association rules in data can guide the decision 
making. A typical and widely-used example of association 
rule mining is Market Basket Analysis. The problem of 
mining association rules can be formally stated as follows: 
Let },...,,{ 21 miiiI =  be a set of items. Let DB  be a 
database transactions, where each transaction consists of a 
set of items such that IT ⊆ . The support of an itemset 
X , denoted )(Xσ , is the percentage of transactions in 
DB  which it occurs as a subset. Given an itemset 

IX ⊆ , a transaction T  contains X  iff TX ⊆ . A X  
frequent or large if its support is more than a user-
specified minimum support (min_sup) value( S ). An 
itemset is maximal if it is not a subset of any other itemset 
[1]. 

An association rule is an implication of the form 
YX ⇒  has support S in the DB  if the probability of 

the transaction in DB  contains both X and Y  is 
SYX =∪ )(σ . Where, IYX ⊆, and φ=∩YX . 

The confidence of the rule is the conditional probability 
that a transaction contains Y , given that it contains X , 
and is given as )(/)( YYX σσ ∪ . A rule is frequent if 
its support is greater than min_sup, and it is strong if its 
confidence is more than a user-specified minimum 
confidence (min_conf). The task of mining association 
rules is to find all the association rules whose support is 
larger than a minimum support threshold and whose 
confidence is larger than a minimum confidence threshold. 
The data mining task for association rules can be broken 
into two steps. The first step consists of finding all large 
itemsets, i.e., itemsets that occur in the database with a 
certain user-specified frequency, called minimum support. 
The second step consists of forming implication rules 
among the large itemsets [10]. In this paper, we only deal 
with the first step. 

An interesting algorithm, Apriori [3], has been 
proposed for computing large itemsets at mining 
association rules in a transaction database. Because 
databases are increasing in terms of both dimension 
(number of attributes) and size (number of records), one of 
the main issues in a frequent itemset mining algorithm is 
the ability to analyze very large databases. Sequential 
algorithms do not have this ability, especially in terms of 
run-time performance, for such very large databases [10], 
[8]. The only way to have efficient ARM algorithm is to 
make it parallel. To construct a parallel system, there are 
three models, namely; distributed memory systems(DMS), 
shared memory systems (SMS), and distributed shared 
memory systems (DSMS). The distributed shared memory 
is the newest parallel technique [20]. 

In distributed memory systems, each node in the 
system has its private memory. If any node needs data 
from another node, it will send a request message to it. 
Hence, this system is also called”message passing”. In the 
message passing systems, if any node needs to send a 
message to another node, it must know the receiver node 
address. The direct connection between nodes will 
increase the performance but the parallel application will 
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depend on the system structure (machine addresses) [12]. 
The second type is ”shared memory”. The shared memory 
systems are based on the existence of a global memory 
shared among all nodes in the system. A shared memory 
system has various advantages, such as; it is simple, it 
eases the data sharing and it eases the implementation of 
the parallel application. If any node needs to send a 
message to another node, it sends the message to the 
shared memory and the receiver node takes it from the 
shared memory. In another words, no synchronization 
required between nodes [5]. 

The DSMS systems have some countable advantages 
over the DMS based ones, these are; the application level 
ease of use, the DSMS is portable, and it is easy to share 
data and processes. Since the sender does not need to 
know the address of the receiver, then the structure of the 
application becomes more simpler and the application 
code is more readable. Also, in DSMS based systems, it is 
easy to share data and processes among the nodes by 
inserting the data or processes in the shared memory like 
SMS. This is done by constructing a virtual shared memo-
ry using the available distributed memories system. More-
over, the DSMS has standard operations that make parallel 
programming portable and more comfortable [17]. The 
Jini system is an extension of the Java environment. The 
DSMS had been implemented as a service in Jini system. 
A JavaSpace is a service in Jini system that implements 
the DSMS model. A JavaSpace inherits the advantages of 
Jini and the Java platforms [16]. 

Most parallel data mining algorithms is based on 
database partitioning (vertically or horizontally) [11], [2], 
[7], [22], [6], [19], [18], [21]. Both vertical and horizontal 
partitioning algorithms require all system nodes to be 
synchronized at the end of database pass to exchange the 
count or frequent itemsets. In the heterogeneous systems 
all node hasn’t equivalent resources. This means that if the 
system has a slow node, all other nodes will block until the 
slow node finished. In huge database, the vertical or 
horizontal partitioning may yield a big enough task to poor 
resources node to block all system. The solution of this 
problem is in the following points. The first point is to 
minimize the I/O operations. In other words, the number 
of database scanning must be minimized. The tasks that 
will be distributed must be in a reasonable size for all n-
odes to load it in its local memory. The second point is to 
minimize the dependency between system nodes. In other 
words, some node can start a new stage ( k - itemset) 
while the other nodes do not finish the previous 
stage( 1−k  itemset). Our algorithm can control the 
number of database scanning to be one. Also, the database 
division is done vertically and horizontally. So, the task of 
finding frequent itemsets is divided into reasonable task 
size. 

The HoriVertical algorithm can start a new stage 
while the current stage is not finished yet. For example, 
suppose that at the first stage ( 1L ) the items BA, are 
finished and both of them are large and the other items 
like DC,  are not finished yet. Then the algorithm can 
create a new task for counting the itemset " AB ", that can 
be processed by any system clients. When the other item 
like C is finished and becomes large, the algorithm can 
start joining these items with the all finished items like 

BA,  and then pruning to create the new tasks. This 
allows creating new tasks for different stages. So, no node 
will be idle, because there are lots of new independent 
tasks in the distributed shared memory that can be taken to 
process. 

To compare our algorithm performance we choose 
one of the most important algorithms that makes vertical 
database partitioning that called Eclat algorithm [23]. Also, 
we use one of the newest parallel association rule 
algorithm, introduced by Limine, that called ”Workload 
Management Distributed Frequent itemsets mining” 
(WMDF) [4]. The WMDF algorithm is based on the 
horizontal database partitioning and it makes load 
balancing between system nodes. 

Section(2) introduces a JavaSpace service as a DSMS 
implementation over the Jini system. Section(3) introduces 
our new algorithm, that is called HoriVertical algorithm. 
Section(4) shows the result of our algorithm compared by 
the Eclat, WMDF and Apriori algorithms. 

Fig. 1.   Jini system architecture 

2. Jini-JavaSpace System 

The Jini system is an extension of the Java 
environment. A JavaSpace is a service in Jini system that 
implements the DSMS model. This section introduces the 
Jini system and the JavaSpace service. 

2.1 Jini System: 

Jini system is a distributed system based on the idea 
of federating group of users and the resources required by 
these users to have a large monolithic system [16], [15]. 
Jini system extends the Java environment from a single 
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virtual machine to a network of virtual machines. Jini 
provides a framework to construct distributed applications 
of any size. This is done by the lookup service which is the 
core of the Jini system since it is responsible for finding 
and resolving the service. The Jini system uses Remote 
Method Invocation (RMI) to accomplish the communica-
tion among services, see figure 1. RMI enables passing 
full objects (code and data) around the network. The pow-
er of the Jini comes from the services, since services can 
be anything joined to the network. The lookup service is 
the ”main service” in the Jini system. The services can be 
joined to the lookup service by the discover/join protocols. 
This gives the Jini system hierarchical lookup. The lookup 
service is essential since it is a meta-service or naming 
service that keeps track of all existing Jini services on the 
network. Sun Microsystems default implementation of this 
lookup service is called REGGIE [15]. 

2.2 JavaSpace Service: 

Fig. 2.   JavaSpace model 
 
JavaSpace is a distributed shared memory service that 

is implemented over Jini System [14]. The object that can 
be written in JavaSpace service is called ”entry”. The 
entry can contain data or/and processes. Sometimes the 
entry is called tuple. JavaSpace contains the following 
operations: take, takeIfExists, read, readIfExists, write, 
notify, snapshot. The write operation is to write an entry in 
JavaSpace. To read an entry from the JavaSpace, the 
read() or readIfExists() operation is used. The consecutive 
reading operation of the same template may return 
different entries even if JavaSpace contents are not 
changed. The difference between these two versions of 
reading is that; readIfExist-s() is not blocked if the tuple is 
not found in the space, it returns a null tuple if there is no 
matching tuple. Take() or takeIfExists() are two operations 
that extract entries from JavaSpace. In other words, these 
operations are similar to read and readIfExists() operations 
except that; taking operations remove the entry from the 
space. The snapshot operation is to take a copy of existing 
entry, but this copy is not updated in spite of the changes 
that may occur in the original entry. The notify operation 

is used to define an event that triggers when a specific 
entry is written [14]. See figure 2. 

3. The Horizontal-Vertical Distributed 
Frequent Itemset Mining Algorithm 

In this section we introduce a new parallel frequent 
itemset mining algorithm. Our algorithm only scans the 
database in the initial stage ( 1=k ). In the other stages 
( 1>k ) the algorithm depends on the distributed shared 
memory, because the size of the database will be shrunk. 
So, in the initial stage of HoriVertical algorithm the 
database is divided horizontally and vertically at the same 
time, see figure 3. So, the first stage of our algorithm is to 
create a task for each database partition. Then, write the 
tasks in the distributed shared memory to be executed by 
the clients. These tasks in the form of JavaSpace entry are 
called ”taskEntry”. Each client will take one taskEntry 
after anther to execute it. The initial stage of the 
HoriVertical algorithm, is called Initial_task_creation 
procedure, and is shown in algorithm(1). 

 
Fig. 3.   Database partitioning 

 
Algorithm 1: Initial_task_creation   procedure   in 

HoriVertical algorithm 
 for all i ∈ I do  /*all item in the database*/    

      for j = 1;j ≤ N;j ++ do  
           Create taskEntry( DBj,i)  
            Write taskEntry( DBj,i ) in the JavaSpace 
      end  
end 

 

The database partitioning is done in two dimensions 
(vertically and horizontally). At the first dimension, hori-
zontally division, the database is divided in to N parts. So, 
the database DB will be divided into 
( 21, DBDB , .... , NDB ). Then, i

N
i DBDB 1=∪= . As the 

number of database parts increases, the size of each part 
decreases. If the size of database partition is very small, all 
nodes will waste their time in taking and retrieving the 
JavaSpace tasks. The best choice of N will depend on the 
number of nodes and its resources [4]. For a given 
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minimum support threshold S , an itemset x is globally 
frequent if it is frequent in DB ; its support x.sup is 

greater than DBS × , and is locally frequent in a node iN  

if it is frequent in iDB ; its support ix sup.  is greater 

than iDBS × . 
- Property 1: A globally frequent itemset must be 

locally frequent in at least one node [7]. 
- Property 2: All subsets of a globally frequent 

itemset are globally frequent [7]. 
The second dimension is the vertical partitioning. The 

database will be divided vertically depending on the items. 
For example, to determine the transaction Id list (TIDList) 
of item Ii∈ , the transaction ID that contains this item 
must be count in all horizontal partitions. 

 
Algorithm 2: The taskEntry Algorithm 
 if (k=l)   then   

     /*The 1-itemsets (need database scan)*/  

     for   all transactions  iDBt ∈  do  
if   item  ti∈   t then 
     resultList.add(TID)   /* Add transaction Id into 

result itemset list*/  
        end  
      end  
else 

/*At the stages k > 1. We have two itemsets X and 
Y must be joined into new itemset XY and count 
it’s frequent*/  
resultList = X.TIDList ∩  Y.TIDList 

end 
Encapsulate the resultList into a resultEntry.  
Return a resultEntry that to the DSMS (JavaSpace) 

 

Algorithm3:The master Process in HoriVertical algorithm
 

kCV
 /*Vector of stages Candidate itemsets */  

Call Initial_task_creation() procedure ;  
Call ResultCollector() thread ;  
Call taskCreator() thread;  
while true do 
   if all tasks finished and Ck.size < 1 then  
      Kill ResultCollector() thread  
      Kill taskCreator() thread  
      Break the loop  
   end  
end 

The ”taskEntry” is a JavaSpace entry that contains al-
gorithm for counting the frequency of the itemset i . The 
taskEntry algorithm contains two cases, see algorithm(2). 
The first case, when 1=k , the algorithm must scan its 
database partition to determine the TID list (that is 

called ”resultList”). The second case, if 1>k . At this 
stage the taskEntry contains two TID lists of two itemsets 
( X and Y ). Also at this case, the client must create a 
resultList that contains the intersection between the two 
itemset( YX , ) TIDLists. Then, the client will create an 
entry called ”resultEntry” that encapsulates the resultList. 
The resultEntry must be written to the JavaSpace by the 
client. 
Algorithm4: The ResultCollector thread in HoriVertical 

algorithm 
 while true do 

   if new resultEntry written then  
        Take resultEntry;  
        Update kCV ;  
   end  
end 

 
Algorithm 5: The taskCreator thread in HoriVertical 

algorithm 
 while true do 

if new itemset finished then /*All taskEntries for 
this itemset finished*/   

if the itemset is large then 
    Join the itemset with the other finished 

itemSets in the same stage;  
      Prune the new candidate;  
      Create a taskEntry for the new candidate; 
      Write the new taskEntry into JavaSpace; 
       update kCV ;  
else 

         Delete this itemset from the kCV ;  
      end 
end  

end 
 

What we have discussed so far is the initial stage of 
the HoriVertical algorithm, and the mechanism of 
database partitioning. Also, we have introduced the 
taskEntry algorithm that discusses the work of the system 
clients. Now, we will discuss the main structure of the 
HoriVertical algorithm. As seen in algorithm(3), it uses a 
vector kCV to register candidates and the related 
information for each stage. The algorithm starts by calling 
the Initial task creation procedure to start creating the 1-
itemset tasks, as seen in algorithm(1). The next step the 
algorithm calls the resultCollector thread, see algorithm(4). 
This thread is responsible for collecting the resultEntry 
from the JavaS-pace and update the kCV vector. Then, the 
HoriVertical algorithm calls the taskCreator thread. The 
taskCreator thread checks if there is any finished itemset. 
The itemset is finished if all entryTasks that count this 
itemset are finished. If the finished itemset is not large, it 
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deletes this itemset from the kCV vector. If the itemset is 
large, it will join this itemset to the other finished large 
itemset in the same stage. After joining, the algorithm 
must make prune to the new candidates. Then, it creates a 
new taskEntry for the new candidates and puts it in the 
JavaSpace. The taskCreator thread is seen in algorithm (5). 
The algorithm will finish if all tasks in the kCV  are 
finished and the size of the last stage of this vector is less 
than 1. This means that, all taskEntries created by the 
algorithm are finished and the last stage of the algorithm 
does not have any candidates. At this point, the algorithm 
must kill all the threads it has and the large frequent 
itemsets is exists in kCV vector. 

2.1 A Method of Performance Enhancement: 

The most costly stage in the HoriVertical algorithm is 
the initial stage for finding the first frequent itemset ( 1L ). 
This is because it needs to scan the database (I/O oper-
ations). In this section, we discuss the best method of 
partitioning for enhancing the performance of this stage. 

Suppose that the size of the database is DDB =||  
(number of transactions). So, the time needed for scanning 
all the database one time is: 

T = P*D (1) 
Where P is the time for reading one transaction. 

Suppose that, the required time for reading one transaction 
from the database is one unit of time (regardless how 
many items the transaction has). Then, the time needed for 
s-canning all the database is D . If database is partitioned 
only horizontally into N  partitions. Where, N is the 
number of nodes in the parallel system. Theoretically, the 
time for scanning the database one time in this parallel 
system will be. 

                                 ∑
=

≅
N

i
ii DBPT

1
*    (2) 

Let 1=iP },...,1{ Ni =∀ . In other words, all nodes 
take a unit of time in reading a transaction from its 
database partition. So, the required parallel execution time 
for scanning the database using all nodes is: 

                                     
N
DT ≅                                 (3) 

Let the number of items in the database is m . And 
let the database is divided into N horizontal partitions and 
m vertical partitions in the initial stage of HoriVertical al-
gorithm. This means that, for a horizontal database par-
tition iDB will be scanned m  time, because it is divided 

into m vertical partitions. So, the approximated parallel 
execution time required for this stage is: 

                                     
N
DmT .

≅                                 (3) 

This time is very large. For example, let the number 
of items in the database is 100 items and the number of 
nodes equals 10 in our system. Then, the total approx-
imated time in the initial stage will be like scanning the 
database 10 times. So, the best case in this stage is when 
the number of vertical partitions equals 1. In this case, the 
database is divided only horizontally. But, if there is a 
slow node, all other nodes will be idle until this node is 
finished. Moreover, the algorithm can not start finding the 
2-itemset ( 2L ) until finishing 1-itemset ( 1L ). This is 
because the total frequent count of all items is not finished. 
The worst case in this stage is to divide the database 
vertically depending on all items ( m partitions). Then, the 
parallel execution time for the initial stage of our 
algorithm is like scanning the database Nm / times. As we 
promised, that our algorithm will scan the database only 
one time. So, the database will be partitioned into N  
vertical and horizontal partitions. 

3. Experimental Results 

In this section, we compare the performance of our 
algorithm with the Eclat, WMDF and Apriori algorithms. 
All experiments have been performed on five PCs. These 
PCs can be heterogeneous, but in performance test we 
would like to unify the resource of the system nodes. This 
because to highlight the effect of other parameter like, 
database size, minimum support and number of nodes in 
the system. These PCs have a CPU of type Intel(R) 
Core(TM) 2Duo 1.6 G.H and 2GB RAM. The 
intercommunication between the machines is done by 100 
Mbps Ethernet. The software environment is as follows; 
Windows XP professional, Java JDK 1.4.2 04 [13], 
Jini(TM) Technology Starter Kit v2.0.2 [16] and a free 
visual platform for Jini 2.0 is called Inca X(TM) [9]. 

 
 

 
Fig. 4. 
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Fig. 5. 

 
 

To measure the performance of the algorithms we use 
three synthetic datasets: D1=T10I4D10K, 
D2=T10I4D100K, D3=T10I10D1000K. The dataset 
T10I4D10K meant an average transaction size of 10, an 
average size of the maximum potentially frequent itemsets 
of 4, and 10000 generated transactions. These datasets 
generated from the IBM Almaden Quest research group. 
Also, we use one real datasets called ”Chess”. The Chess 
datasets contains 3196 transactions, the average 
transaction size is 34 and it contains 75 items. Each 
experiment has been performed 4 times. The average of 
the four runs is taken and used for analysis. 

 
Fig. 6. 

 

Fig. 7. 

 

The first of the experimental results is shown in Fig-
ure 4. This experiment compares our algorithm with the 
other three algorithms using D1 datasets. From this figure, 
we can notice that the Eclat algorithm is better than the 
WMDF. This is because the Eclat algorithm scans the 
database only three times. But at the big minimum support, 
the performance of the WMDF is going to be better than 
Eclat. Figure 5 shows the same test using D2 as datasets. 
We can notice that, at the big minimum support the 
performance of the Eclat, WMDF and Apriori algorithms 
are closed. The performance comparison using big 
datasets (D3) is shown in figure 6. The real datasets test 
done on the Chess database is seen in figure 7. In all of the 
previous figures we notice that, the HoriVertical algorithm 
has the best performance. Also, the Apriori algorithm has 
the worst performance, because this algorithm is a se-
quential and runs on one machine. The Eclat algorithm 
have performance better than the WMDF algorithm. This 
is because, the Eclat algorithm scans the database three 
times and the WMDF algorithm scans the database a lot of 
times. 

 

Fig. 8. 
 
Because of apriori is a sequential algorithm (run on 

one processor), it is unfair to compare it with the parallel 
algorithms on multiple processors. So, we measure the 
performance of the parallel algorithms (Ecalt, WMDF, 
HoriVertical) using different number of clients in the 
system, as seen in figure 8. This test is done using the 
biggest dataset we have (D3) and in case of minimum 
support equals 0.5%. From this figure we can notice that, 
the WMDF curve is not smooth because the redistribution 
of the database blocks can raise the communications. Also, 
our algorithm has the best performance. 

4. Conclusion 

Through this paper, we have presented HoriVertical 
algorithm. It is based on DSMS which has various advan-
tages over the other parallel models. It has powerful fea-
tures, such as; scanning the database only one time and 
processing different stages of large itemsets at the same 
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time. Also, we have introduced a new database partition-
ing that is based on dividing the database vertically and 
horizontally into equivalent parts. Such new partitioning 
technique reduces the dependencies between nodes in the 
distributed system. Also, there is no synchronization at the 
end of each stage. Moreover, we have compared our 
algorithm with a well-known algorithm Eclat, Apriori al-
gorithm and a new load balanced algorithm called WMDF. 
Finally, we have shown how the HoriVertical algorithm 
has better performance than the Apriori, WMDF and Eclat 
algorithms. 
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