
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

56

Manuscript received November 5, 2010
Manuscript revised November 20, 2010

Hori-Vertical Distributed Frequent Itemsets Mining Algorithm
on Heterogeneous Distributed Shared Memory System

Margahny H. Mohamed† and Hosam E. Refaat††

Dept. of Computer Science, Faculty of Computers and Information, Assuit University, Egypt

Summary
The big challenge in discovering association rules is to find the
largest frequent itemsets. Sequential algorithms do not have
analytical ability, especially in terms of run-time performance,
for such very large databases. Therefore, we must rely on high
performance parallel and distributed computing. We present a
new parallel algorithm for frequent itemset mining, called
HoriVertical algorithm. The algorithm passes the database only
one time and starts a new stage with the finished itemsets while
some other itemsets in the same stage have not been finished yet.
Also, the new algorithm is based on partitioning the database
vertically and horizontally. We present the result on the
performance of our algorithm on various databases, and compare
it against well known algorithms.
Key words:
Parallel Systems, Distributed shared memory, data mining,
Association rule, Linda system, Tuple-space, Jini, JavaSpace.

1. Introduction

Business organizations are increasingly turning to
the automatic extraction of information from large
volumes of routinely collected business data. Association
rule mining (ARM) finds interesting associations and/or
correlation relationships among large set of data items.
Association rules show attribute value conditions that
occur frequently together in a given dataset. Discovering
this association rules in data can guide the decision
making. A typical and widely-used example of association
rule mining is Market Basket Analysis. The problem of
mining association rules can be formally stated as follows:
Let },...,,{ 21 miiiI = be a set of items. Let DB be a
database transactions, where each transaction consists of a
set of items such that IT ⊆ . The support of an itemset
X , denoted)(Xσ , is the percentage of transactions in
DB which it occurs as a subset. Given an itemset

IX ⊆ , a transaction T contains X iff TX ⊆ . A X
frequent or large if its support is more than a user-
specified minimum support (min_sup) value(S). An
itemset is maximal if it is not a subset of any other itemset
[1].

An association rule is an implication of the form
YX ⇒ has support S in the DB if the probability of

the transaction in DB contains both X and Y is
SYX =∪)(σ . Where, IYX ⊆, and φ=∩YX .

The confidence of the rule is the conditional probability
that a transaction contains Y , given that it contains X ,
and is given as)(/)(YYX σσ ∪ . A rule is frequent if
its support is greater than min_sup, and it is strong if its
confidence is more than a user-specified minimum
confidence (min_conf). The task of mining association
rules is to find all the association rules whose support is
larger than a minimum support threshold and whose
confidence is larger than a minimum confidence threshold.
The data mining task for association rules can be broken
into two steps. The first step consists of finding all large
itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support.
The second step consists of forming implication rules
among the large itemsets [10]. In this paper, we only deal
with the first step.

An interesting algorithm, Apriori [3], has been
proposed for computing large itemsets at mining
association rules in a transaction database. Because
databases are increasing in terms of both dimension
(number of attributes) and size (number of records), one of
the main issues in a frequent itemset mining algorithm is
the ability to analyze very large databases. Sequential
algorithms do not have this ability, especially in terms of
run-time performance, for such very large databases [10],
[8]. The only way to have efficient ARM algorithm is to
make it parallel. To construct a parallel system, there are
three models, namely; distributed memory systems(DMS),
shared memory systems (SMS), and distributed shared
memory systems (DSMS). The distributed shared memory
is the newest parallel technique [20].

In distributed memory systems, each node in the
system has its private memory. If any node needs data
from another node, it will send a request message to it.
Hence, this system is also called”message passing”. In the
message passing systems, if any node needs to send a
message to another node, it must know the receiver node
address. The direct connection between nodes will
increase the performance but the parallel application will

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

57

depend on the system structure (machine addresses) [12].
The second type is ”shared memory”. The shared memory
systems are based on the existence of a global memory
shared among all nodes in the system. A shared memory
system has various advantages, such as; it is simple, it
eases the data sharing and it eases the implementation of
the parallel application. If any node needs to send a
message to another node, it sends the message to the
shared memory and the receiver node takes it from the
shared memory. In another words, no synchronization
required between nodes [5].

The DSMS systems have some countable advantages
over the DMS based ones, these are; the application level
ease of use, the DSMS is portable, and it is easy to share
data and processes. Since the sender does not need to
know the address of the receiver, then the structure of the
application becomes more simpler and the application
code is more readable. Also, in DSMS based systems, it is
easy to share data and processes among the nodes by
inserting the data or processes in the shared memory like
SMS. This is done by constructing a virtual shared memo-
ry using the available distributed memories system. More-
over, the DSMS has standard operations that make parallel
programming portable and more comfortable [17]. The
Jini system is an extension of the Java environment. The
DSMS had been implemented as a service in Jini system.
A JavaSpace is a service in Jini system that implements
the DSMS model. A JavaSpace inherits the advantages of
Jini and the Java platforms [16].

Most parallel data mining algorithms is based on
database partitioning (vertically or horizontally) [11], [2],
[7], [22], [6], [19], [18], [21]. Both vertical and horizontal
partitioning algorithms require all system nodes to be
synchronized at the end of database pass to exchange the
count or frequent itemsets. In the heterogeneous systems
all node hasn’t equivalent resources. This means that if the
system has a slow node, all other nodes will block until the
slow node finished. In huge database, the vertical or
horizontal partitioning may yield a big enough task to poor
resources node to block all system. The solution of this
problem is in the following points. The first point is to
minimize the I/O operations. In other words, the number
of database scanning must be minimized. The tasks that
will be distributed must be in a reasonable size for all n-
odes to load it in its local memory. The second point is to
minimize the dependency between system nodes. In other
words, some node can start a new stage (k - itemset)
while the other nodes do not finish the previous
stage(1−k itemset). Our algorithm can control the
number of database scanning to be one. Also, the database
division is done vertically and horizontally. So, the task of
finding frequent itemsets is divided into reasonable task
size.

The HoriVertical algorithm can start a new stage
while the current stage is not finished yet. For example,
suppose that at the first stage (1L) the items BA, are
finished and both of them are large and the other items
like DC, are not finished yet. Then the algorithm can
create a new task for counting the itemset " AB ", that can
be processed by any system clients. When the other item
like C is finished and becomes large, the algorithm can
start joining these items with the all finished items like

BA, and then pruning to create the new tasks. This
allows creating new tasks for different stages. So, no node
will be idle, because there are lots of new independent
tasks in the distributed shared memory that can be taken to
process.

To compare our algorithm performance we choose
one of the most important algorithms that makes vertical
database partitioning that called Eclat algorithm [23]. Also,
we use one of the newest parallel association rule
algorithm, introduced by Limine, that called ”Workload
Management Distributed Frequent itemsets mining”
(WMDF) [4]. The WMDF algorithm is based on the
horizontal database partitioning and it makes load
balancing between system nodes.

Section(2) introduces a JavaSpace service as a DSMS
implementation over the Jini system. Section(3) introduces
our new algorithm, that is called HoriVertical algorithm.
Section(4) shows the result of our algorithm compared by
the Eclat, WMDF and Apriori algorithms.

Fig. 1. Jini system architecture

2. Jini-JavaSpace System

The Jini system is an extension of the Java
environment. A JavaSpace is a service in Jini system that
implements the DSMS model. This section introduces the
Jini system and the JavaSpace service.

2.1 Jini System:

Jini system is a distributed system based on the idea
of federating group of users and the resources required by
these users to have a large monolithic system [16], [15].
Jini system extends the Java environment from a single

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

58

virtual machine to a network of virtual machines. Jini
provides a framework to construct distributed applications
of any size. This is done by the lookup service which is the
core of the Jini system since it is responsible for finding
and resolving the service. The Jini system uses Remote
Method Invocation (RMI) to accomplish the communica-
tion among services, see figure 1. RMI enables passing
full objects (code and data) around the network. The pow-
er of the Jini comes from the services, since services can
be anything joined to the network. The lookup service is
the ”main service” in the Jini system. The services can be
joined to the lookup service by the discover/join protocols.
This gives the Jini system hierarchical lookup. The lookup
service is essential since it is a meta-service or naming
service that keeps track of all existing Jini services on the
network. Sun Microsystems default implementation of this
lookup service is called REGGIE [15].

2.2 JavaSpace Service:

Fig. 2. JavaSpace model

JavaSpace is a distributed shared memory service that

is implemented over Jini System [14]. The object that can
be written in JavaSpace service is called ”entry”. The
entry can contain data or/and processes. Sometimes the
entry is called tuple. JavaSpace contains the following
operations: take, takeIfExists, read, readIfExists, write,
notify, snapshot. The write operation is to write an entry in
JavaSpace. To read an entry from the JavaSpace, the
read() or readIfExists() operation is used. The consecutive
reading operation of the same template may return
different entries even if JavaSpace contents are not
changed. The difference between these two versions of
reading is that; readIfExist-s() is not blocked if the tuple is
not found in the space, it returns a null tuple if there is no
matching tuple. Take() or takeIfExists() are two operations
that extract entries from JavaSpace. In other words, these
operations are similar to read and readIfExists() operations
except that; taking operations remove the entry from the
space. The snapshot operation is to take a copy of existing
entry, but this copy is not updated in spite of the changes
that may occur in the original entry. The notify operation

is used to define an event that triggers when a specific
entry is written [14]. See figure 2.

3. The Horizontal-Vertical Distributed
Frequent Itemset Mining Algorithm

In this section we introduce a new parallel frequent
itemset mining algorithm. Our algorithm only scans the
database in the initial stage (1=k). In the other stages
(1>k) the algorithm depends on the distributed shared
memory, because the size of the database will be shrunk.
So, in the initial stage of HoriVertical algorithm the
database is divided horizontally and vertically at the same
time, see figure 3. So, the first stage of our algorithm is to
create a task for each database partition. Then, write the
tasks in the distributed shared memory to be executed by
the clients. These tasks in the form of JavaSpace entry are
called ”taskEntry”. Each client will take one taskEntry
after anther to execute it. The initial stage of the
HoriVertical algorithm, is called Initial_task_creation
procedure, and is shown in algorithm(1).

Fig. 3. Database partitioning

Algorithm 1: Initial_task_creation procedure in

HoriVertical algorithm
 for all i ∈ I do /*all item in the database*/

 for j = 1;j ≤ N;j ++ do
 Create taskEntry(DBj,i)
 Write taskEntry(DBj,i) in the JavaSpace
 end
end

The database partitioning is done in two dimensions
(vertically and horizontally). At the first dimension, hori-
zontally division, the database is divided in to N parts. So,
the database DB will be divided into
(21, DBDB , , NDB). Then, i

N
i DBDB 1=∪= . As the

number of database parts increases, the size of each part
decreases. If the size of database partition is very small, all
nodes will waste their time in taking and retrieving the
JavaSpace tasks. The best choice of N will depend on the
number of nodes and its resources [4]. For a given

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

59

minimum support threshold S , an itemset x is globally
frequent if it is frequent in DB ; its support x.sup is

greater than DBS × , and is locally frequent in a node iN

if it is frequent in iDB ; its support ix sup. is greater

than iDBS × .
- Property 1: A globally frequent itemset must be

locally frequent in at least one node [7].
- Property 2: All subsets of a globally frequent

itemset are globally frequent [7].
The second dimension is the vertical partitioning. The

database will be divided vertically depending on the items.
For example, to determine the transaction Id list (TIDList)
of item Ii∈ , the transaction ID that contains this item
must be count in all horizontal partitions.

Algorithm 2: The taskEntry Algorithm
 if (k=l) then

 /*The 1-itemsets (need database scan)*/

 for all transactions iDBt ∈ do
if item ti∈ t then
 resultList.add(TID) /* Add transaction Id into

result itemset list*/
 end
 end
else

/*At the stages k > 1. We have two itemsets X and
Y must be joined into new itemset XY and count
it’s frequent*/
resultList = X.TIDList ∩ Y.TIDList

end
Encapsulate the resultList into a resultEntry.
Return a resultEntry that to the DSMS (JavaSpace)

Algorithm3:The master Process in HoriVertical algorithm

kCV
 /*Vector of stages Candidate itemsets */

Call Initial_task_creation() procedure ;
Call ResultCollector() thread ;
Call taskCreator() thread;
while true do
 if all tasks finished and Ck.size < 1 then
 Kill ResultCollector() thread
 Kill taskCreator() thread
 Break the loop
 end
end

The ”taskEntry” is a JavaSpace entry that contains al-
gorithm for counting the frequency of the itemset i . The
taskEntry algorithm contains two cases, see algorithm(2).
The first case, when 1=k , the algorithm must scan its
database partition to determine the TID list (that is

called ”resultList”). The second case, if 1>k . At this
stage the taskEntry contains two TID lists of two itemsets
(X and Y). Also at this case, the client must create a
resultList that contains the intersection between the two
itemset(YX ,) TIDLists. Then, the client will create an
entry called ”resultEntry” that encapsulates the resultList.
The resultEntry must be written to the JavaSpace by the
client.
Algorithm4: The ResultCollector thread in HoriVertical

algorithm
 while true do

 if new resultEntry written then
 Take resultEntry;
 Update kCV ;
 end
end

Algorithm 5: The taskCreator thread in HoriVertical

algorithm
 while true do

if new itemset finished then /*All taskEntries for
this itemset finished*/

if the itemset is large then
 Join the itemset with the other finished

itemSets in the same stage;
 Prune the new candidate;
 Create a taskEntry for the new candidate;
 Write the new taskEntry into JavaSpace;
 update kCV ;
else

 Delete this itemset from the kCV ;
 end
end

end

What we have discussed so far is the initial stage of
the HoriVertical algorithm, and the mechanism of
database partitioning. Also, we have introduced the
taskEntry algorithm that discusses the work of the system
clients. Now, we will discuss the main structure of the
HoriVertical algorithm. As seen in algorithm(3), it uses a
vector kCV to register candidates and the related
information for each stage. The algorithm starts by calling
the Initial task creation procedure to start creating the 1-
itemset tasks, as seen in algorithm(1). The next step the
algorithm calls the resultCollector thread, see algorithm(4).
This thread is responsible for collecting the resultEntry
from the JavaS-pace and update the kCV vector. Then, the
HoriVertical algorithm calls the taskCreator thread. The
taskCreator thread checks if there is any finished itemset.
The itemset is finished if all entryTasks that count this
itemset are finished. If the finished itemset is not large, it

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

60

deletes this itemset from the kCV vector. If the itemset is
large, it will join this itemset to the other finished large
itemset in the same stage. After joining, the algorithm
must make prune to the new candidates. Then, it creates a
new taskEntry for the new candidates and puts it in the
JavaSpace. The taskCreator thread is seen in algorithm (5).
The algorithm will finish if all tasks in the kCV are
finished and the size of the last stage of this vector is less
than 1. This means that, all taskEntries created by the
algorithm are finished and the last stage of the algorithm
does not have any candidates. At this point, the algorithm
must kill all the threads it has and the large frequent
itemsets is exists in kCV vector.

2.1 A Method of Performance Enhancement:

The most costly stage in the HoriVertical algorithm is
the initial stage for finding the first frequent itemset (1L).
This is because it needs to scan the database (I/O oper-
ations). In this section, we discuss the best method of
partitioning for enhancing the performance of this stage.

Suppose that the size of the database is DDB =||
(number of transactions). So, the time needed for scanning
all the database one time is:

T = P*D (1)
Where P is the time for reading one transaction.

Suppose that, the required time for reading one transaction
from the database is one unit of time (regardless how
many items the transaction has). Then, the time needed for
s-canning all the database is D . If database is partitioned
only horizontally into N partitions. Where, N is the
number of nodes in the parallel system. Theoretically, the
time for scanning the database one time in this parallel
system will be.

 ∑
=

≅
N

i
ii DBPT

1
* (2)

Let 1=iP },...,1{ Ni =∀ . In other words, all nodes
take a unit of time in reading a transaction from its
database partition. So, the required parallel execution time
for scanning the database using all nodes is:

N
DT ≅ (3)

Let the number of items in the database is m . And
let the database is divided into N horizontal partitions and
m vertical partitions in the initial stage of HoriVertical al-
gorithm. This means that, for a horizontal database par-
tition iDB will be scanned m time, because it is divided

into m vertical partitions. So, the approximated parallel
execution time required for this stage is:

N
DmT .

≅ (3)

This time is very large. For example, let the number
of items in the database is 100 items and the number of
nodes equals 10 in our system. Then, the total approx-
imated time in the initial stage will be like scanning the
database 10 times. So, the best case in this stage is when
the number of vertical partitions equals 1. In this case, the
database is divided only horizontally. But, if there is a
slow node, all other nodes will be idle until this node is
finished. Moreover, the algorithm can not start finding the
2-itemset (2L) until finishing 1-itemset (1L). This is
because the total frequent count of all items is not finished.
The worst case in this stage is to divide the database
vertically depending on all items (m partitions). Then, the
parallel execution time for the initial stage of our
algorithm is like scanning the database Nm / times. As we
promised, that our algorithm will scan the database only
one time. So, the database will be partitioned into N
vertical and horizontal partitions.

3. Experimental Results

In this section, we compare the performance of our
algorithm with the Eclat, WMDF and Apriori algorithms.
All experiments have been performed on five PCs. These
PCs can be heterogeneous, but in performance test we
would like to unify the resource of the system nodes. This
because to highlight the effect of other parameter like,
database size, minimum support and number of nodes in
the system. These PCs have a CPU of type Intel(R)
Core(TM) 2Duo 1.6 G.H and 2GB RAM. The
intercommunication between the machines is done by 100
Mbps Ethernet. The software environment is as follows;
Windows XP professional, Java JDK 1.4.2 04 [13],
Jini(TM) Technology Starter Kit v2.0.2 [16] and a free
visual platform for Jini 2.0 is called Inca X(TM) [9].

Fig. 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

61

Fig. 5.

To measure the performance of the algorithms we use
three synthetic datasets: D1=T10I4D10K,
D2=T10I4D100K, D3=T10I10D1000K. The dataset
T10I4D10K meant an average transaction size of 10, an
average size of the maximum potentially frequent itemsets
of 4, and 10000 generated transactions. These datasets
generated from the IBM Almaden Quest research group.
Also, we use one real datasets called ”Chess”. The Chess
datasets contains 3196 transactions, the average
transaction size is 34 and it contains 75 items. Each
experiment has been performed 4 times. The average of
the four runs is taken and used for analysis.

Fig. 6.

Fig. 7.

The first of the experimental results is shown in Fig-
ure 4. This experiment compares our algorithm with the
other three algorithms using D1 datasets. From this figure,
we can notice that the Eclat algorithm is better than the
WMDF. This is because the Eclat algorithm scans the
database only three times. But at the big minimum support,
the performance of the WMDF is going to be better than
Eclat. Figure 5 shows the same test using D2 as datasets.
We can notice that, at the big minimum support the
performance of the Eclat, WMDF and Apriori algorithms
are closed. The performance comparison using big
datasets (D3) is shown in figure 6. The real datasets test
done on the Chess database is seen in figure 7. In all of the
previous figures we notice that, the HoriVertical algorithm
has the best performance. Also, the Apriori algorithm has
the worst performance, because this algorithm is a se-
quential and runs on one machine. The Eclat algorithm
have performance better than the WMDF algorithm. This
is because, the Eclat algorithm scans the database three
times and the WMDF algorithm scans the database a lot of
times.

Fig. 8.

Because of apriori is a sequential algorithm (run on

one processor), it is unfair to compare it with the parallel
algorithms on multiple processors. So, we measure the
performance of the parallel algorithms (Ecalt, WMDF,
HoriVertical) using different number of clients in the
system, as seen in figure 8. This test is done using the
biggest dataset we have (D3) and in case of minimum
support equals 0.5%. From this figure we can notice that,
the WMDF curve is not smooth because the redistribution
of the database blocks can raise the communications. Also,
our algorithm has the best performance.

4. Conclusion

Through this paper, we have presented HoriVertical
algorithm. It is based on DSMS which has various advan-
tages over the other parallel models. It has powerful fea-
tures, such as; scanning the database only one time and
processing different stages of large itemsets at the same

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

62

time. Also, we have introduced a new database partition-
ing that is based on dividing the database vertically and
horizontally into equivalent parts. Such new partitioning
technique reduces the dependencies between nodes in the
distributed system. Also, there is no synchronization at the
end of each stage. Moreover, we have compared our
algorithm with a well-known algorithm Eclat, Apriori al-
gorithm and a new load balanced algorithm called WMDF.
Finally, we have shown how the HoriVertical algorithm
has better performance than the Apriori, WMDF and Eclat
algorithms.
References
[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules

between sets of items in large databases., In Proc. of the ACM
SIGMOD Conference on Management of Data, pages 207-216,
Washington (1993).

[2] R. Agrawal and J. C. Shafer, Parallel mining of association rules,
IEEE Transactions On Knowledge And Data Engineering, Volume
8 pages:962-969 (1996).

[3] R. Agrawal and R. Srikant, Fast algorithms for mining association
rules in large databases, Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499 (1994).

[4] L. M. Aouad, N Le-Khac, and T. M. Kechadi, Distributed frequent
itemsets mining in heterogeneous platforms, Engineering, Computer
and Architecture, Volume 1 (2007).

[5] U. Badawi., A single system image supporting distributed objects,
Ph.D. thesis, Dept. of Mathematics, Faculty of Science,Cairo
University, nov. 2000.

[6] D. W. Cheung and Y. Xiao, Effect of data skewness in parallel
mining of association rules, Lecture Notes in Computer Science,
Volume 1394 (1998).

[7] T. Vincent W. Ada D. Cheung, H. Jiawei and Y. Yongjian, A fast
distributed algorithm for mining association rules., 4th Intl. Conf.
Parallel and Distributed Info. Systems, (1996.).

[8] M. Hahsler, G. Bettina, K. Hornik, and C. Buchta, Introduction to
arules a computational environment for mining association rules
and frequent item sets, 2010.

[9] inca X, Inca x(tm) community edition, available from Incax WWW
Site (http://www.incax.com/download.com), 2007.

[10] H. Jiawei and M. Kamber, Data mining: Concepts and techniques,
second edition (the morgan kaufmann series in data management
systems), 2 ed., vol. 2, Morgan Kaufmann; 2 edition, November
2005.

[11] S. Kotsiantis and D. Kanellopoulos, Association rules mining: A
recent overview, GESTS International Transactions on Computer
Science and Engineering, Volume 32 Pages:71–82 (2006).

[12] T. G. Mattson, Programming environments for parallel and dis-
tributed computing: A comparison of p4, pvm, linda and tcgms-g.,
ftp Server, ftp.cs.yale.edu (1995).

[13] Sun Microsystems., Java development kit, vol. 1.4.2 04, available
from Sun Microsystems WWW Site
(http://www.sun.com/products/jdk), 2004.

[14] Sun Microsystems, Javaspaces specification, vol. 2.0.2, available
from Sun Microsystems WWW Site
(http://java.sun.com/products/javaspaces), jun 2008.

[15] Sun Microsystems, Jini architecture specification, vol.
v2.0.2, available from Sun Microsystems WWW
Site (http://www.sun.com/jini/), jun 2008.

[16] Sun Microsystems, Jini technology core platform specification., vol.
v2.0.2, available from Sun Microsystems WWW Site
(http://www.sun.com/jini/), jun 2008.

[17] H. E. Refaat, New mechanism to integrate fault tolerance in a
distributed shared memory based system, Computer science, Cairo
Uni, 2007.

[18] A. Schuster and R. Wolff, Communication-efficient distributed
mining of association rules, ACM SIGMOD Int’l. Conference on
Management of Data, Santa Barbara, California, pp. 473-484.
(2001).

[19] P. Tang and M. Turkia, Parallelizing frequent item-set mining with
fp-trees., Technical Report titus.compsci.ualr.edu/ ptang/papers/par-
fi.pdf, Department of Computer Science,University of Arkansas at
Little Rock (2005).

[20] M. Tomasevic, J. Protic, and V. Milutinovic., Distributed shared
memory: Concepts and systems., IEEE Parallel and Distributed
technology, 4(2):63-79 (1996).

[21] D. YaJun and L. HaiMing, Strategy for mining association rules for
web pages based on formal concept analysis, Appl. Soft Com-put.
volume 10 pages:772–783 (2010).

[22] M. J. Zaki, Parallel and distributed association mining: A survey,
IEEE Concurrency 7 (1999), 14–25.

[23] M. J. Zaki, S. Parthasarathy, and L. Wei, A localized algorithm for
parallel association mining, In Proceedings of the 9th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1997, pp.
321–330.

Marghny H. Mohamed, Dept. of Computer
Science, Faculty of Computers and
Information Science, Asyut
University, Asyut, Egypt., date of birth:
June 1965, received the PhD degree in
computer science from the University of
Kyushu, Japan, in 2001, and the MS from
Asyut university in computer science, in
1993 and BS degrees in Mathematics from

Asyut University, Egypt, in 1988. He is an associate professor in
the Department of Computer Science, University of Asyut. He
has many publications which in the fields of Data Mining, Text
Mining, Information Retrieval, Web Mining, Machine Learning,
Pattern Recognition, Neural Networks, Evolutionary
Computation, Fuzzy Systems. Dr. Marghny is a member of the
Egyptian mathematical society and Egyptian syndicate of
scientific professions., he is a member of some research projects
in Asyut university, Egypt. He is a Manager of the
project entitled "Medical Diagnostic System for Endemic
Diseases in Egypt Using Self Organizing Data Mining".

Hosam E Refaat, has been graduated from
the faculty of Science, Asyut university,
Egypt, in 1998. In October 2006, he has
finished his master degree in the field of
distributed systems from the faculty of
Science, Cairo University, Egypt. Currently,
he is a lecturer of Computer Science in King
Khalid University– Kingdom of Saudi
Arabia.

