
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

132

Manuscript received November 5, 2010
Manuscript revised November 20, 2010

Component-Based Software Development

Virendra Kumar Sharma+, Narendra Prakash Gupta++

+ Faculty of Engineering, BIT, Bhagwantpuram, Muzaffarnagar -UP, India

++School of Computer Science, Bhawant University , Ajmer – India

Summary
Component-based software development (CBSD) or
component-based software engineering (CBSE) is concerned
with the assembly of pre-existing software components into
larger pieces of software. Underlying this process is the notion
that software components are written in such a way that they
provide functions common to many different systems. Borrowing
ideas from hardware components, the goal of CBSD is to allow
parts (components) of a software system to be replaced by newer,
functionally equivalent, components
Key words:
API - Application Programming Interface
CBD - Component Based Development
CBSE - Component-based Software Engineering
COM - Component Object Model
CORBA - Common Object Request Broker Architecture
COSE - Component-oriented Software Engineering
COTS - Commercial Off-the-Shelf
UML - Unified Modeling Language

1. Introduction

Component-based software engineering (CBSE) is an
approach to software development that relies on software
reuse. It emerged from the failure of object-oriented
development to support effective reuse. Single object
classes are too detailed and specific. Components are more
abstract than object classes and can be considered to be
stand-alone service providers. Apart from the benefits of
reuse, CBSE is based on sound software engineering
design principles Components are independent so do not
interfere with each other. Component implementations are
hidden. Communication is through well-defined interfaces.
Component platforms are shared and reduce development
costs.

2. Component

A software component is a program element with the
following two properties:
• It may be used by other program elements, or clients.
• The clients and their authors do not need to be known to
the component's authors.
•A component is a non-trivial, nearly independent,
replaceable part of a system that fulfills a clear function in

the context of a well-defined architecture. A component
conforms to and provides the physical realization of a set
of interfaces.

3. Software Development

Component based software development encompasses two
processes
a. Assembling software systems from software
components and
b. Developing reusable components.

The activity of developing systems as assemblies of
components may be broadly classified in terms of four
activities.
 3.1Component qualification,
 3.2 Component adaptation,
 3.3 Component assembly, and
 3.4 System evolution and maintenance.

Although the process differs from traditional software
development, there are still problems common to both
CBSD and traditional methods. For example, the problem
of managing change and maintenance in developed
software. In the following subsections a brief description
of each of the above activities is given.

3.1 Component Qualification

Qualification is the process for determining the suitability
of a component for use within the intended final system.
When a marketplace of competing products exists, it also
involves the selection of the most suitable component.
Selection is dependent on the condition that measures exist
for comparing one component against another and
evaluating the fitness of use of components. It is during
this activity that the issues of trust and certification arise.
The process of certification is two-fold (Bachman et al.
2000):
i). To establish facts about a component and to determine
that the properties a component possesses is also
conformant with its published specification; and
ii). To establish trust in the validity of these facts,
perhaps by having a trusted third-party organization attest

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

133

the truth of this conformance and to provide a certificate to
verify this.
The motivation for component certification is that there is
a causal link between a component's certified properties
and the properties of the end system. If enough is known
about the (certified) components selected for assembly
then it may be possible to predict the properties of the final
assembled system. Accuracy in prediction is founded on
the degree of trust in a component and also how well the
glue that joins the components is understood. For many of
components in the marketplace prediction is difficult
because of lack of information about a component's
capabilities and lack of trust in this information.

Conventional software doctrine states that component
specifications should be sufficient and complete, static—
writable once and frozen, and homogenous. However, full
specifications may be impractical: some components may
exhibit (non-functional) properties which are infeasible to
document, let alone to document in a homogenous notation
(some practitioners go as far to say that reusable
components do not exist yet). One method for addressing
this issue is to use credentials (Shaw 1996)
—knowledge-based specifications that evolve as more is
discovered about a component.

3.2 Component Adaptation

Individual components are written to meet different
requirements, each one making certain assumptions about
the context in which it is deployed. The purpose of
adaptation is to ensure that conflicts among components
are minimized. Different approaches to adaptation depend
upon the accessibility of the internal structure of a
component.

White-box components may be significantly rewritten to
operate with other components.

Grey-box components provide their own extension
language or application programming interface (API).

Black-box, or binary, components have no extension
language or API.

Ideally, a component is a black box, its services are only
accessible through some well-defined interface. However,
as shall be seen in the sequel, there is nothing to stop us
from considering white or grey box components.

3.3 Component Assembly

Assembly is the integration of components through some
well defined infrastructure, which provides the binding
that forms a system from disparate components. COTS
components, for example, are usually written to some

component model defined by e.g., Enterprise JavaBeans,
COM, CORBA, or, more recently, .NET.

3.4 System Evolution and Maintenance

Because components are the units of change, system
evolution is based around the replacing of outdated
components by new ones, or, at least, ideally. The
treatment of components as plug-replaceable units is a
simplistic view of system evolution. In practice, replacing
a component may be a non-trivial task, especially when
there is a mismatch between the new component and old
one, triggering another stage of adaptation with the new
component.

4. Software Components

A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies. An interface is a set of named operations
that can be invoked by clients. Context dependencies are
specifications of what the deployment environment needs
to provide, such that the components can function.
Most definitions converge to some degree but differences
arise in the fact that there are different conceptions about
what a component can be. Traditionally, a component is
considered to be an implementation-level unit of
deployment. However, it is not unheard of for some to
consider abstract specifications or even design documents
to be components in their own right. Reusable artifacts
may occur at any level of the development cycle, in
particular there is an increased interest in business-level
components which are independent of any specific
implementation or middleware technology. This has
prompted the distinction between component-based
systems engineering and component-based software
engineering, where the former refers to the process of
reusing requirements and specifications. There, changes
are made at the requirements or specification level and
code where they may be validated and the resulting code
may either be generated automatically or manually.

5. CBSD Research Areas

As alluded to in the preceding sections, component-based
software development encompasses many areas of
research, some of which have been active research areas in
traditional software development paradigms. Below are
descriptions of some of these research topics.

5.1 Component Modeling and Specification

The Unified Modeling Language (UML) has become the
de facto standard for nearly all application modeling and

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

134

has been employed in CBD methods such as the Catalysis
method Prior to UML version 2.0. However, there has
been a need to extend UML to allow for more appropriate
descriptions of a component's dependencies and also of its
interface specification. These issues have been addressed
in UML Components.
Besides UML, however, there is a large body of work on
how the component-based development process can be
approached formally. Specification-wise this work
includes the specification of a component's interface — its
operations' functional specifications or the specification of
its interaction protocols, i.e., constraints on how and when
an operation may be invoked.

5.2 Retrieval Techniques and Specification Matching

The issue of how to retrieve reusable artifacts has long
been a research area in software reuse. Much of the work
on retrieval has focused on what forms component
descriptions should take in order that components can be
retrieved from repositories while specification matching
techniques are employed to search for components based
on functional or behavioral criteria.

5.3 Generative Approaches to Component
Development

Generative approaches are concerned with the generation
of software from specifications. These techniques are
employed within the context of component-based systems
engineering described above. A brief mission statement on
generative and component-based software engineering and
associated research areas see the home page of the
Working Group on Generative and Component Based
Software Engineering.

5.4 Adaptation Techniques

As mentioned previously, different adaptation techniques
can be employed for black, grey, or white box components.
Research on adaptation can range from wrapping
techniques to more sophisticated methods such as
identifying appropriate adapters for specification matching.
Related work on adaptation techniques includes how the
reusability of a component can be improved by
considering how freely they can be adapted while they are
being developed.

5.5 Coordination and Composition Languages

In the absence of a defined component infrastructure, e.g.,
COM and CORBA, coordination and composition
languages may be used to describe the wiring or glue for
component assembly. These languages may also be used to
define the ways in which software may be composed

within some given framework or how components interact
across systems.

5.6 Verification, Testing, and Certification

CBSD implies that a component undergoes two test phases.
The first phase occurs during development, verifying
whether a component meets its specification and fulfils its
functional requirements. A component may be certified by
a third party according to how the component performs
during this round of testing. The second phase is
concerned with testing how the component integrates with
others during the development of a component-based
system. Different testing strategies may be employed
according to the visibility of the component's internal
structure. Usually, for COTS components, black-box
techniques are employed. For source code components,
white-box techniques may be used.

6. Conclusion

Component-based approach can increase
software-building performance with effective component
repository. This implementation can provide
interoperability between two different systems. With this
approach maintenance cost is expected to be reduced since
components are designed to be independent.

Acknowledgment

The authors would like to express their cordial thanks to S.
P. Gupta for his valuable advice.

References
[1] PRESSMAN Roger, Software Engineering, McGraw Hill.
[2] SCHACH Stephen R., Classical and Object Oriented

Software Engineering,4th Edition, McGraw Hill.
[3] SZYPERSKI Clemens, Component Software – Beyond

Object-Oriented Programming, Addison Wesley.

