
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010 
 

 
 

188

Manuscript received November 5, 2010 
Manuscript revised November 20, 2010 

Optimizing the process parameters of ELID grinding using 
neuro-fuzzy network 

P.Babu Aurtherson †, S.Sundaram ††, A.M.Shanawaz†††, M.Sivapragash †††† 
  

†, ††, ††† Department of Manufacturing Engineering, Annamali University, Tamilnadu,India 
†††† Department of Mechanical Engineering, Nooral Islam University, Tamilnadu,India    

Summary 
Composite materials have been used in many industrial 
applications due to their light weight and high tensile strength. 
However, the machining costs of these materials may be high and 
the grinding of these materials is much more susceptible to 
surface damage as compared to metals. Electrolytic In- Process 
Dressing (ELID) grinding can be used to machine hard and 
brittle materials to achieve high surface quality and high material 
removal rate. In the present work, to conduct experiments, the 
Design of Experiments (DOE) technique is developed for five 
factors at three levels. Experiments have been conducted for 
measuring surface roughness, hardness and metal removal rate 
based on the DOE technique in an ELID grinding machine using 
a carbon boron nitride wheel. The experimentally measured 
values are also used to train the feed forward back propagation 
neuro-fuzzy for prediction of surface roughness. The predictive 
neuro fuzzy model was found to be capable of better prediction 
of surface roughness, hardness and metal removal rate within the 
trained range 
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1. Introduction 

The metal grinding process is one of the vital 
manufacturing processes in industries. The present 
scenario enlighten that application of composite materials 
has increased significantly due to their light weight ratio 
and better mechanical properties [1]. Grinding composite 
materials using conventional surface grinding process 
shows poor surface finish and accuracy [2]. 
To obtain better surface finish, ELID grinding technique 
has been adopted. A good understanding of the relationship 
between the work materials and cutting tool materials, 
cutting conditions and the process parameter are the 
essential requirements for the optimization of the grinding 
process [3-5]. More work has been carried out to 
determine the effect of ELID grinding in ductile mode on 
brittle materials that decreases the surface fracture and 
fragmentation and enables higher material removal rate 
[6]. 
Neuro-fuzzy is one of the most powerful computer 
modeling technique, based on statistical approach, 
currently being used in many fields of engineering for 

modeling complex relationships which are difficult to 
describe with physical models. Neuro-fuzzy has been 
extensively applied in modeling many metal cutting 
operations [7].  Process optimization has also been 
studied extensively for various manufacturing processes 
including grinding [8,9]. Optimization of ELID grinding 
on ceramics by using the process models built with 
Neuro-fuzzy theory, an optimization algorithm is 
constructed for multiple objectives function [10]. 
This research aims at the problems in surface finish in 
grinding composite materials. It is shown that the 
proposed method can greatly reduce the effort of the 
optimization procedure. Furthermore, the results of the 
confirmation experiments reveal that the obtained optimal 
combination of the grinding parameters can effectively 
improve surface finish and metal removal rate. 

2. ELID Grinding Mechanism  

The mechanism of ELID grinding for a metal bonded 
diamond wheel is shown in Fig. 1. After truing, the grains 
and bonding material of the wheel surface are flattened.  
 

 
 

Fig. 1 ELID grinding process. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010 
 

 

189

 

 
It is necessary for the trued wheel to be electrically pre 
dressed to protrude the grains on the wheel surface. When 
pre-dressing starts [Fig. 1(a)], the bonding material flows 
out from the grinding wheel and an insulating layer 
composed of oxidized bonding material is formed on the 
wheel surface [Fig. 1(b)]. This insulating layer reduces the 
electrical conductivity of the wheel surface and excessive 
flow-out of the bonding material from the wheel. As 
grinding begins [Fig. 1(c)], diamond grains wear out and 
the layer also becomes worn out [Fig. 1(d)], as a result of 
which the electrical conductivity of the wheel surface 
increases and the electrolytic dressing starts with the 
flow-out of bonding material from the grinding wheel. The 
protrusion of diamond grains from the grinding wheel 
therefore remains constant. This cycle is repeated during 
the grinding process to achieve stable grinding. 

3. Experimental Procedure 

3.1. ELID grinding process 
The experimental set up is shown in Fig. 2. The 
experiment was carried out on a precision surface grinding 
machine. An electrode made of copper, covering 1/6 of the 
perimeter of the grinding wheel, was used. The metal 
bonded cubic boron nitride wheel was mounted on a 
horizontal spindle and the gap between the grinding wheel 
and the copper electrode was adjusted to 0.2 mm. The 
carbon brush was made in such a way to have smooth 
contact with the grinding wheel shaft. The dynamometer, 
vice and the work piece assembly were fixed on the 
machine table. An electric current in the form of a square 
pulse wave was supplied from the ELID power supply to 
the positive and negative poles. A standard coolant namely 
CG-7 was prepared with ordinary tap water in a ratio of 
1:50 and used as electrolyte and coolant for the experiment. 
Electrolyte was applied in between the grinding wheel and 
the electrode to start the electrolysis.                   
 

 
Fig. 2 Schematic illustration of ELID grinding 

 
The experiment was performed on Al–10%SiCP 
composites, to study the metal removal rate, surface 

roughness and hardness. The normal force and tangential 
force were observed using a digital dynamometer. The 
surface roughness was measured with a Mitutoyo surftest. 
The micro hardness was measured using a Vickers micro 
hardness tester.  

3.2. Design of experiment 

In this experiment with five factors at two levels each, the 
fractional factorial design used is a standard L18 
orthogonal array [11].  This orthogonal array is chosen 
due to its capability to check the interactions among 
factors. Each row of the matrix represents one trial. 
However, the sequence in which these trials are carried out 
is randomized. The factors and levels are assigned as in 
Table 1. The L18 orthogonal array is adopted for 
experimental layout of the machining parameters is shown 
in Table 2. 
 

     Table. 1 Machining parameters and their levels 
Sl.
No Symbols Factors Level 

I 
Level 

II 
Level 

III 
1. N No of Pass 50 100 150 
2. 

W 
Work 
Speed  
(mm/min) 

200 300 400 

3. 
D 

Depth of 
Cut (µm) 2 4 6 

4. 
C 

Current 
Duty Ratio 
(%) 

30 40 50 

5. V Voltage (V) 70 80 90 
 

Table 2 L18 orthogonal array for experimental layout 
    

Exp.
No 

No of 
Pass 

Work 
Speed

Depth 
of 

Cut 

Current 
Duty 
Ratio 

Voltage

1. 1 1 1 1 1 
2. 1 1 2 2 2 
3. 1 1 3 3 3 
4. 1 2 1 1 2 
5. 1 2 2 2 3 
6. 1 2 3 3 1 
7. 2 3 1 2 1 
8. 2 3 2 3 2 
9. 2 3 3 1 3 
10. 2 1 1 3 3 
11. 2 1 2 1 1 
12. 2 1 3 2 2 
13. 3 2 1 2 3 
14. 3 2 2 3 1 
15. 3 2 3 1 2 
16. 3 3 1 3 2 
17. 3 3 2 1 3 
18. 3 3 3 2 1 
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4. Artificial Neural Network Model 

Predicting accurately the quality of the machining 
parts and finding the optimal process parameters is very 
vital; this is needed to build a model of the complete 
grinding process. The ANN approach ensures efficient and 
fast selection of the optimal process parameter of a process 
[12]. The approach which is dealt with here is having the 
following aims [13]. 
 

i) Maximizing the rate of production. 
ii) Reducing the cost of production. 
iii) Improving the quality of the product. 

For prediction and to obtain optimal process parameter, 
back propagation neural network algorithm is used. Input 
parameters are number of pars, work speed, depth of cut, 
current duty ratio and voltage. These are needed to train 
neural network.  
 
 

Table 3 Experimental and Trained data using neural network 
 
Sl. 
No 
 

 
Roughness 

 
Hardness 

 
Metal Removal Rate 

 
Normal Force 

 
Tangential Force 
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1 1.965 1.949 
 

0.783 120.33 122.509 1.811 2.786 2.760 0.897 6.69 
 

6.536 6.09 0.99 0.957 3.303 

2 1.424 1.452 
 

2.029 131.62 131.985 0.277 2.581 2.501 3.099 5.78 5.785 0.096 0.82 0.805 1.780 

3 1.45 1.452 0.001 131.51 131.985 
 

0.361 2.43 2.420 0.411 5.28 5.303 0.482 0.74 0.736 0.486 

4 1.98 1.961 0.924 120.68 129.061 0.069 3.62 3.662 1.160 4.8 4.580 4.583 0.78 0.773 0.782 

5 1.46 1.472 0.863 139.38 138.538 0.603 2.65 2.630 0.754 6.28 5.864 6.622 0.88 0.897 1.988 

6 1.82 1.819 0.820 132.68 132.083 0.449 2.62 2.612 0.305 7.12 7.144 0.342 1.12 1.129 0.848 

7 1.92 1.918 0.083 135.16 129.061 4.511 3.98 3.662 7.899 5.98 5.761 3.655 0.86 0.840 2.325 

8 1.78 1.773 0.365 128.22 129.061 0.656 2.79 2,789 0.035 6.37 6.040 5.179 0.84 0.845 0.617 

9 1.33 1.338 0.654 139.13 129.061 7.236 3.386 3.662 8.151 8.24 8.373 1.617 1.08 1.077 0.231 

10 1.35 1.339 0.814 125.53 122.509 2.406 2.81 2.798 0.427 4.98 5.186 4.148 0.86 0.845 1.744 

11 1.95 1.961 2.182 131.22 129.061 1.644 2.91 2.817 0.429 8.86 8.753 1.197 1.14 1.128 1.008 

12 1.62 1.619 0.055 138.22 129.061 6.625 2.92 2.892 0.941 9.25 8.926 3.496 1.21 1.115 7.851 

13 1.56 1.447 7.243 119.33 129.061 8.155 3.059 3.285 0.997 7.92 7.672 3.127 0.91 0.895 1.648 

14 1.36 1.433 5.389 113.67 120.061 5.623 2.864 2.844 0.680 7.29 7.962 9.222 0.82 0.815 0.609 

15 1.68 1.674 0.339 123.34 129.061 4.639 2.947 2.932 0.458 10.02 9.736 2.827 1.25 1.248 0.152 

16 1.37 1.369 0.072 131.63 129.061 1.951 3.232 3.208 0.734 7.82 7.703 1.494 0.79 0.805 1.898 

17 1.42 1.426 1.426 130.12 129.061 0.813 3.52 3.501 0.508 7.51 8.181 8.976 0.77 0.755 1.948 

18 1.31 1.290 1.290 137.18 129.061 5.917 3.12 3.040 2.5 10.8 10.94
2 

1.322 1.34 1.359 1.455 

 
The output parameters are surface roughness, hardness, 
metal removal rate normal force and tangential force (via 
fig 3). To train the network, the TRAINLM function of 
MATLAB was used. For generating the training data in 
neural network 18 experiments were used. Table 3 shows 

the training data. The TRAINLM function of MATLAB 
works on back propagation Algorithm [14]. Fig. 4 shows 
trained value of surface roughness with measured value, 
the training continued for   ten thousand epochs with a 
performance of 0.038 out of  0.001 goal. 
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Fig. 3 Configuration of the neural network 

 

 
Fig.4 Trained value of surface roughness 

The prediction error has been defined as follows: 
 
Prediction error %=[( Experimental result – Predicted  
               result)/(Experimental result)]*100  (1)       

 
When the neural network gets trained if can provide the 
result for any arbitrary value of input data set. It is 
observed that the prediction based on an ANN model is 
quite close to the experimental observation. To predict the 
response parameters like number of pass, work speed, 
depth of cut, current duty ratio and voltage for all possible 
combinations of the input parameters the ANN model was 
used. For attaining better parameter level the optimal 
combinations were found out. The each of five input 
parameters has been considered into three levels and this 
helps in generating more predictions (35=243) more 
combinations were analyzed to get a better optimization 
process. Since surface roughness is vital when compared 
with other outputs, the output hardness, metal removal rate, 
normal force and tangential fore are excluded.  

5. Fuzzy Logic Model 

A fuzzy logic unit comprise of a fuzzifier, membership 
functions, a fuzzy rule base, an inference engine and a 
defuzzifier. In the fuzzy logic analysis, the tested values of 

neural network are fuzzified by the membership functions 
of fuzzifier. Then inference engine performs a fuzzy 
reasoning using fuzzy rules to generate a fuzzy value. 
Finally, the defuzzifier converts the fuzzy value into single 
grade. The structure built for this study is a five input- 
one-output fuzzy logic unit. The function of the fuzzifier is 
to convert outside crisp sets of input data into proper 
linguistic fuzzy sets of information. The input variables of 
the fuzzy logic system in this study are surface roughness, 
hardness, metal removal rate, normal force and tangential 
force. They are converted into linguistic fuzzy subsets 
using membership functions of a triangle form, that are 
shown in Fig. 5 (a), (b), (c), (d) & (e) are uniformly 
assigned into three fuzzy subsets—Low, Medium and 
High grade. 
 

 
Fig 5 (a) Membership function for surface roughness 

 

 
Fig 5 (b) Membership functions for hardness 

 

 
Fig 5 (c) Membership function for MRR 

 

 
Fig 5 (d) Membership function for normal force 
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Fig 5 (e) Membership function for tangential force 

 

 
Fig.6 Membership function for output 

 
The fuzzy rule base consists of a group of if-then control 
rules to express the inference relationship between input 
and output. A typical linguistic fuzzy rule called Mamdani 
is described as 
 

Rule 1: if x1 is A1 and x2 is B1 then y is C1 else 
Rule 2: if x1 is A2 and x2 is B2 then y is C2 else 
Rule n: if x1is An and x2 is Bn then y is Cn else 

 
Ai, Bi, and Ci are fuzzy subsets defined by the 
corresponding membership functions ie ,µAi, µBi and µCi. 
The fig.6 shows output grade, which was converted into 
linguistic fuzzy subsets using membership functions of a 
triangle form. The output grade are assigned into five 
subsets i.e., Very Low, Low, Medium, High, Very High 
grade. 
Thirty two fuzzy rules are derived to achieve better 
process response. A fuzzy multi response out put is 
obtained from these rules by using max-min inference 
operation 
 
µD0(y) = (µA1(x1) ΛµB1(x2) ΛµC1(x2) ΛµD1(y)) · · · 　
V 
(µAn(x1) ΛµBn(x2) ΛµCn(x3) ΛµDn(y))          (2)  
                       
where Λ is the minimum operation and V is the maximum 
operation. 
Finally, a centroid defuzzification method is adopted to 
transform the fuzzy multi-response output µD0(y) into a 
nonfuzzy value y0, that is: 
 
 y0 = ΣyµD0(y)/ µD0(y)                        (3) 
                                                                                                               
In this paper, the non-fuzzy value y0 is called a fuzzy 
reasoning grade. Based on the study, higher fuzzy 

reasoning grade produce better process response. Table 5 
shows the predicted data and fuzzy reasoning grade using 
the trained neural data.  

6. Conclusion 

In this paper an attempt is made to present the use of 
Neuro - Fuzzy method for the optimization of the ELID 
grinding process. Machining data is closer to measured 
values. Neural network is used to train and predict 
machining data. In order to find out the optimum 
combination from these 243 predictions a program has 
been developed. Ten optimum parametric combinations 
were sorted out among these 243 combinations. 
 The fuzzy logic unit in fact, performs a fuzzy 
reasoning of the multi performance characteristics. The 
end result of the optimization methodology developed in 
this investigation is its essential used in improving the 
multi performance characteristic of the ELID grinding 
process. 
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