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Summary 
This paper explores the theoretical approach to improve existing 
Delay and Disruption Tolerant Networking routing algorithms 
using Search Theory. Search Theory is a discipline within the 
field of operations research, whose applications range from 
deep-ocean search for submerged objects to deep space 
surveillance for artificial satellites. DTN deals with networks in 
challenged environment. DTN focuses on deep space to a 
broader class of heterogeneous networks that may suffer 
disruptions, affected by design decisions such as naming and 
addressing, message formats, data encoding methods, routing, 
congestion management and security. DTN is part of the Inter 
Planetary Internet with primary application being deep space 
networks. The hypothesis behind modeling DTN routing as a 
search game is based on the understanding that when the DTN 
agents are in the mode of Search game, routing decision based on 
Search theory becomes a prudent choice. 
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1. Introduction 

Delay and Disruption Tolerant Networking (DTN) [7] [18] 
refers to broad class of Wireless Ad-hoc networks that 
operate in challenged environments plagued by delays and 
disruptions [12]. DTN is part of the Inter Planetary 
Internet, an initiative started at the Jet Propulsion 
Laboratory (JPL) by Vint Cerf et.al a few decades ago. 
DTN has evolved over the years with major research 
contributions from academicians and Industry. DTN is a 
network of regional networks. It acts as a overlay on 
regional networks. DTN supports interoperability by 
accommodating mobility and low Radio Frequency (RF) 
power capabilities of the nodes involved. DTN includes 
RF, Ultra Wide Band (UWB) networks, Optical and 
Acoustic networks. Though simultaneous connectivity 
may be absent, a combination of store & forward, along 
with node mobility makes message delivery possible. The 
bundle protocol [8] is a DTN protocol based on overlay 

technique. It can be used on any convergence layer such as 
TCP, UDP and LTP. The Lick-Lider Transmission protocol 
[11] is another DTN specific protocol operating at 
convergence layer. While the bundle protocol moves data 
packets (bundles) end to end, the LTP is more of a point to 
point type. While the space applications which are the 
primary beneficiaries of the DTN [10] have provided 
ample scope for its research, many terrestrial applications 
has been conceived that use and contribute to DTN 
research. Few of such terrestrial applications [11] include: 
(i) Reindeer herd tracking by the Saami tribesmen in 

Arctic Circle.  
(ii) Zebra tracking to monitor the movement of zebra and 

manage their habitat effectively in Africa. 
(iii) Early detection of the invasion of Australian cane 

toads, a pest and invasive species in non-native 
regions. 

(iv) Seismic monitoring in Mexico for early warning 
system against earth quakes, volcano and land slides. 

(v) SenDT – an initiative by the Trinity College Dublin 
Ireland to monitor lakes in Ireland.  

(vi) DTN - Simple Text Message application over android 
OS introduced in Nexus One Cellular phones by 
Google Inc. 

(vii) AUDTWMN[4] – A proposed water monitoring 
application Test bed for DTN research [1][2][3]. 

  Based on DTN’s applicability for a multitude of 
terrestrial applications [9], the authors devised upon a 
DTN based Habitat monitoring network that will serve the 
dual purposes of Wildlife conservation and research. It can 
be used to monitor habitat parameters of Blackbuck 
(Antelope cervicapra) in wildlife context and as a test bed 
for DTN in research context. Monitoring habitat of 
Blackbuck in Vallanadu Sanctuary in district of Tuticorin 
[24] seemed to be an important wildlife conservation need 
due to the following reasons:  
(i) Blackbuck population has been hugely decimated in 

India due to indiscriminate hunting prior to 
Independence, developmental pressure and 
agricultural needs.  

(ii) The Vallanadu sanctuary is small with area of 16.41 
square kilometers with small population of Blackbuck 
restricted to the hillock comprising the sanctuary. 
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(iii) The vegetation is mainly scrub forest with thick acacia 
growth that prevents assessment of the Blackbuck 
number. 

(iv) The sanctuary receives scant rainfall and is 
characterized by hot, dry summers and cold, wet 
winters. 

(v) The Blackbucks have regular habit of coming out of 
the scrubs and graze on the fallow lands on the eastern 
side of the sanctuary.  

With all the above factors, combined with absence of 
sophisticated surveillance methods, constant monitoring of 
habitat parameters and knowledge of their territorial 
behavior helps to better manage them for conservation and 
preservation. The rest of the paper describes the design 
considerations for the proposed AUDTHMN and its 
routing based on Search Theory. 
 
2. Design Considerations 
 
The application intends to monitor the movement of the 
Blackbucks [22] in the Vallanadu Sanctuary. The 
application is also scalable so as to accommodate other 
habitat parameters such the water holes, the salt pits and 
noise levels in the sanctuary. The application must lend 
itself to be a research tool by enabling simple interface and 
reconfigurable components. With all these pre-requisites 
the following design has been conceived by the authors. 

 
Fig. 1 Schematic of the proposed AUDTHMN. 

As discussed, Vallanadu is one of the few places in Tamil 
Nadu, where natural population of Blackbucks still exists. 
The Vallanadu Blackbuck sanctuary is an isolated hillock 

with scrub forest in Tuticorin district. The forest type is 
throrn scrub composed of thorny hardwood and xerophytes. 
The thick acacia growth makes it difficult to assess the 
exact numbers. The Blackbucks have regular habit of 
coming out of the scrub and grazing in fallow lands on the 
eastern side of the sanctuary. The proposed application 
involves fitting a percentage of the Blackbuck population 
with radio collared DTN nodes. The DTN nodes comprise 
of GPS data logger that keeps recording the location of the 
Blackbuck at regular intervals of time. The collected data 
is then transferred to the Data collector who may be a wild 
life staff in-charge of maintaining the statistics of the 
Blackbucks. No permanent or semi permanent 
infrastructure is used as data mule between the Blackbuck 
nodes and data collector. Hence the Data collector goes in 
search of the Blackbucks on scheduled frequency such as 
monthly or quarterly basis. Hence the routing of data from 
Blackbucks to the Data collector is influenced by the 
search methods of the Data collector and the hiding 
behavior of the Blackbucks. The authors propose to use 
dtn2.5 on the nodes. The dtn2.5 running on Ubuntu Linux 
9.10 platform serves as excellent DTN nodes [6]. In lab 
environment, DTN bundles were successfully sent across 
using the bundle protocol. 
 
3. Search Theory  
 
Search Theory [21] came into being during World War II 
with the work of B.O Koopman and his colleagues in the 
antisubmarine Warfare Operations Research Group 
(ASWORG). Search Theory is a major discipline within 
the field of operations research, whose application range 
from deep-ocean search for submerged objects to 
deep-space surveillance for artificial satellites. Since 
World War II, the principles of search theory have been 
applied successfully in numerous important operations 
including the 1966 search for the lost H-bomb in the 
Mediterranean near Palmoares, the 1968 search for the lost 
nuclear submarine Scorpion near the Azores and the 1974 
underwater search for unexploded ordnance during 
clearing of Suez Canal. The US coast guard employs 
search theory in its open ocean search and rescue planning. 
Search theory is also used in astronomy and in radar 
search for satellites. Numerous additional applications 
include industry, medicine and mineral exploration. Work 
in Search theory can be classified according to the 
assumptions made about measures of effectiveness, target 
motion, and the way in which search effort is characterized 
 
3.1 Measure of Effectiveness 
Among the many measures of effectiveness that are used 
in search analysis, the most common are: 
(i) Probability of detection. 
(iii) Expected time to detection. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010 
 

 

204

 

(iii) Probability of correctly estimating target 
“whereabouts”. 

(iv) Entropy of posterior target location probability 
distribution. 

 
The Objective of an optimal search is to maximize the 
probability of detection with some constraints imposed on 
the amount of search effort available. For a stationary 
target, when the detection function is concave or the 
search space and search effort are continuous, a plan that 
maximizes the probability of detection in each of 
successive increments of search effort will also be optimal 
for the total effort contained in the increments. For 
stationary targets, it often theoretically possible to 
construct a “uniformly optimal” search plan. This is a plan 
for which probability of detection is maximized at each 
moment during its period of application. If a uniformly 
optimal search plan exists, it will: 
(i) Maximize the probability of detection over any period 

of application. 
(iv) Minimize the expected time to detection. 
In a “whereabouts” search, the objective is to estimate 
correctly the target’s location in a collection of cells given 
a constraint on search cost. The searcher may succeed 
either by finding the target during search or by correctly 
guessing the target’s location after search. The optimal 
whereabouts search consists of an optimal detection search 
among all cells exclusive of the cell with the highest prior 
target location probability. If the search fails to find the 
target, one guesses that it is in the excluded 
highest-probability cell. Optimal whereabouts search plan 
for moving target may be found by solving finite number 
of optimal detection search problems, one for each cell in 
the grid. Consideration of entropy as a measure of 
effectiveness is useful in certain situations and can be used 
to draw a distinction between search and surveillance. For 
certain stationary target detection search problems with an 
exponential detection function, the search plan that 
maximizes the entropy of the posterior target location 
probability distribution conditioned upon search failure is 
the same as the search plan that maximizes the probability 
of detection. In surveillance search, the objectives are 
usually more complex than in a detection search.. For 
example, one may wish to estimate target location 
correctly at the end of a period of search in order to take 
some further action. 
 
3.2 Target Motion 
 
Assumptions about target motion have considerable 
influence on the characteristics of search plans and the 
difficulty of computation. Results were usually obtained 
by considering transformation that would convert the 
problem into an equivalent stationary target problem. The 
first computationally practical solution to the optimal 

search problem for stochastic target motion involving a 
large number of cells and time periods is based on 
exponential detection functions, finding whose necessary 
and sufficient conditions for search plans for discrete time 
and space, and provided an iterative method for optimizing 
search for targets whose motion is described by mixtures 
of discrete time and space Markov chains. General 
treatment of moving target search is based on allowing 
efficient numerical solution in a wide class of practical 
moving target problems which include non-pMarkovian 
and non exponential detection functions. The existence of 
optimal search plans for moving targets is not to be taken 
for granted as there are cases with no allocation function 
satisfying necessary conditions. There may appear to exist 
optimal plans, however they may concentrate on sets of 
measure zero and which may be outside the class of search 
allocation functions that are being considered. There are 
theoretical evidence that show the existence of optimal 
plans whenever the search density is constrained to be 
bounded. 
 
3.3 Search Effort 
 
Search effort may be either discrete (looks, scans, etc.) or 
continuous (time, track length, etc.). In problems involving 
discrete search effort, the target is usually considered to be 
located in one of the several cells or boxes. The search 
consists of specifying a sequence of looks in the cells. 
Each cell has a prior probability of containing the target. A 
detection function b is specified, where b(j,k) is the 
conditional probability of detecting the target on or before 
the kth look in cell j, given that the target is located in cell 
j. A cost function c is also specified, where c(j,k) is the 
cost of performing k looks in cell j. An early solution to 
this problem for independent glimpses and uniform cost 
has been given. In this case, for 0 ≤ aj ≤ 1, b(j,k) – b(j,k-1) 
= aj(1-aj)k-1 for all j and for k > 0; c(j,k) = k for all j and k 
≥ 0.  A variant of the Neyman-Pearson lemma is used to 
obtain an optimal plan for the general case where 
b(j,k)-b(j,k-1) is a decreasing function of k for all j. In 
problems involving continuous effort, the target may be 
located in Euclidean n-space or in cells as in the case of 
discrete search. In the first case, it is assumed that the 
search effort is “infinitely divisible” in the sense that it 
may be allocated as finely as necessary over the entire 
search space. Similar to discrete search effort, there is a 
detection function b, where b(x,z) is the probability of 
detecting the target with z amount of effort applied to the 
point x, given that the target is located at x. If x is a cell 
index, then z represents the amount of time or track length 
allocated to the cell. If x is a point in Euclidean n-space, 
then z is a density. The original solution to the search 
problem made use of an exponential function for b of the 
form b(x,z)=1-exp(κz), where κ is a positive constant that 
may depend on x. 
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3.4 Solution to an Optimal Search Problem 
 
Optimal theory can be applied to an important class of 
stationary target search problems where the prior 
probability distribution function for target location is 
normal and the detection function b is exponential. Many 
search problems that occur in practice are of this form. Let 
X denote the plane, and let A be some arbitrary region of 
interest. Then the prior probability that the target’s location 
~x is in A is given by Pr[~xЄA] = ∫Ap(x)dx, where 
p(x)=1/2πσ2 exp (-|x|2/2σ2) is the circular normal density 
function with mean at the origin and variance σ2 in both 
coordinate directions. The distance of x from the origin is 
denoted by |x|. Let F be the class of non negative function 
defined on X with finite integral. By definition, this is the 
class of search allocation functions, and for f Є F, ∫Af(x) dx 
is the amount of search effort placed in region A. It is 
assumed that the unit of search effort is “time” and thus 
the “cost” C associated with the search is the total amount 
of time consumed. In this case c(x,z) = z, and the cost 
functional C is defined by C[f] = ∫xc(x,f(x))dx=∫xf(x)dx. 
The measure of effectiveness will be probability of 
detection. Hence the “effectiveness functional” D is 
assumed to have the form D[f] = ∫xb(x,f(x))p(x)dx, where b 
is the detection function. As mentioned earlier, the 
detection function is assumed to be exponential, and hence 
for R > 0, b(x,z) = 1 – exp (-Rz). The coefficient of R is 
called the “sweep rate” and measures the rate at which 
search is carried. If suppose the search allocation function 
f is constant over A, zero outside of A, and corresponds to 
a finite amount of search time T, then for x Є A, 
f(x)=T/area(A), since by definition T = 
∫xf(x)dx=f(x0)∫Adx=f(x0)area(A) for any x0 Є A. The 
detection functional can be written D[f]=∫xb(x,f(x))p(x)dx 
= ∫A{1-exp[-RT/area(A)]}p(x)dx = 
{1-exp[-RT/area(A)]}∫Ap(x)dx = 
{1-exp[-RT/area(A)]}Pr[~xЄA], which is called the 
“random search formula”. 
 
  Using Lagrange multipliers, one can find sufficient 
condition for optimal search plans for stationary targets 
that provide efficient methods for computing these plans. 
The point wise Lagrange l is defined as follows: 
l(x,z,λ)=p(x)b(x,z)-λc(x,z) for all x Є X, z ≥ 0, and λ ≥ 0. 
If we had an allocation f*λ that maximizes the point wise 
Lagrangian for some value of λ ≥ 0, which is, l(x,f*λ(c), λ) 
≥ l(x,z,λ) for all x Є X and z ≥ 0, then we can show that 
D[f*λ] is optimal for its cost C[f*λ], that is, D[f*λ] ≥ D[f] 
for any f Є F such that C[f] ≤ C[f*λ]. The plan f*λ 
maximizes the detection probability over all plans using 
effort C[f*λ] or less. The proof is based on considering that 
f Є F and C[f]≤C[f*]. As f(x) ≥ 0, 
p(x)b(x,f*λ(x))-λc(x,f*λ(x))≥p(x)b(x,f(x))-λc(x,f(x)) for x 
Є X. Integrating both sides over X, we obtain 

D[f*λ]-λC[f*λ]≥D[f]-λC[f] which along with λ≥0 and 
C[f]≤C[f*λ], implies that D[f*λ]-D[f]≥λ(C[f*λ]-C[f])≥0. 
This proves that f*λ is an optimal plan for its cost C[f*λ]. 
The way to calculate optimal search plan is to choose aλ≥0 
and find f*λ to maximize the point wise Lagrangian for λ. 
For each x Є X, finding fλ(x) is one-dimensional 
optimization problem. If the detection function is well 
behaved (e.g. exponential), one can solve for f*λ 
analytically. Since C[f*λ] is usually a decreasing function 
of λ, one can perform a binary search to find the value of λ 
that yields cost C[f*λ] equal to the amount of search effort 
available. The resulting f*λ is the optimal search plan. 
 
 In the case of bi-variate normal target distribution and 
exponential detection function, C[f*λ] and the optimal plan 
can be computed. The result is that for T amount of search 
time, the optimal allocation function f* (dropping the 
subscript, which depends on T) is given by 

 
Where all search is confined to a disk of radius r0 defined 
by r2

0=2σ√(RT/π). The probability of detection 
corresponding to f* is 

  
And the expected time to detection ~τ = 6πσ2/R. 
For a given amount of search effort T, the optimal search 
plan concentrates search in the disk of radius r0, which 
then expands as more effort becomes available. The 
optimal search plan can be approximated by a succession 
of expanding and overlapping coverage. Search is repeated 
in the high probability areas for optimal search in many 
situations. The probability of detection depends on the 
ratio r0/σ and increases to 1 as search effort increases 
without bound. The expected time to detection is finite and 
varies directly with σ2 and inversely with the sweep rate R 
[23]. 
  However, the Blackbuck is not stationary and hence this 
cannot be taken as criteria for routing. Hence the Optimal 
search for moving target is analyzed. 
 
4. Optimal Search for Moving Targets  
 
 Optimal search problems divide into 4 categories 
depending on target’s behavior. The first division depends 
on whether the target is evading or not, that is, whether 
there is a 2 sided optimization of both the searcher’s and 
target’s strategy, and whether the target’s behavior is 
independent of the searcher’s action. Within each of these 
categories the target can be stationary or moving. For 
stationary target, its location is specified by probability 
distribution. However, the Blackbuck is a moving target 
for the searcher (data collector). The movement and 
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location of the target (Blackbuck) is specified by 
stochastic process X = {Xt : t ≥ 0}. The random variable Xt 
gives the target’s location at time t. For moving target 
problems, the time horizon is specified. The search is to 
take place in the time interval [0,T], and we wish to 
maximize the probability of detecting the target by time T. 
Being considered as discrete time search problem, t = 0, 1, 
2, 3, ..., T. The results stated for discrete can be 
appropriated for continuous time. The results are stated  
for continuous search space Y. A search plan ψ specifies 
the allocation of search effort in space and time. ψ(y,t) = 
effort density placed at point y at time t for y Є Y, t = 0, …, 
T. Search effort is constrained by the rate at which effort 
can be applied. As per function m, m(t) = effort available 
for search at time t, for t = 0, …., T, and search plans, ψ, 
must satisfy ∫yψ(y,t)dy ≤ m(t) for t = 0, …, T. Again ψ(y,t) 
≥ 0 is required for all y and t. Let ψ(m) be the set of search 
plans that satisfy the foregoing constraint. For each sample 
path ώ of the process X, the probability of detecting the 
target by time t, given that it follows that path, is a 
function of the weighted total effort density, 
ζ(ψ,ώ,t)=t∑s=0W(Xs(ώ), s) ψ(Xs(ώ),s), which accumulates 
by time t on the target over the course of the path. The 
weight W(y,s) represents the relative detectability or sweep 
width against the target if it is located at point y at time s. 
There is a detection function b: [0,∞]  [0,1] such that 
b(ζ(ψ,ώ,t) is the probability of detecting the target by t 
given that it follows path ώ and that search plan ψ is 
executed. Letting E denote expectation over the sample 
paths of X, we define P[ψ]=E[b(ζ(ψ,.,T))] to be the 
probability of detecting the target by time T with plan ψ. 
The optimal detection problem is to find a plan ψ*Єψ(m) 
such that P[ψ*]≥P[ψ] for all ψЄψ(m). Such a plan is called 
T-optimal. A Practical set of efficient algorithms for 
calculating optimal search plans. 
  The targets namely the Blackbucks are shy creatures 
and hence try to evade the searcher (Data collector). As the 
target is trying to avoid detection, this becomes a 2 sided 
search for moving target. In the case of stationary target’s 
objective is to choose its location to make the search as 
difficult as possible. This problem is usually modeled as a 
2 person game with target wishing to maximize the mean 
time to detection and the searcher wishing to minimize it. 
The solutions are typically mixed strategies for searcher 
and target. When the target moves, the 2 sided game 
becomes more complex.  
 
5. Search Games 
 
The Data Collector would like to detect the mobile hider 
namely the Blackbuck as soon as possible. It is basically a 
“hide and seek” game that can be formulated as 
mathematical problem. Search games [20] can be 
considered in graphs, bounded regions and unbounded 
domains. While some problems have complete solutions, 

some only have upper and lower limits. The search game 
is formulated with the following considerations. The 
search takes place in a set Q to be called the “search 
space”. The search space Q is usually either a graph (a 
connected set of arcs of arbitrary type) or a compact region 
in R (Sanctuary), but it can also be an unbounded domain. 
The searcher (data collector) usually starts moving from a 
specified point O, called the origin, and is free to choose 
any continuous trajectory inside Q, subject to a maximal 
velocity constraint (on foot and in scrub forest) which is 
normalized to 1. As to the hider (Blackbuck), in some of 
the problems it will be assumed that the hider is immobile 
(resting, grazing, nursing) and can only choose his (its) 
hiding point, but we shall also consider games with a 
mobile hider who can choose any continuous trajectory 
inside Q. It will always be assumed that neither the 
searcher (data collector) nor the hider (Blackbuck) has any 
knowledge about the movement of the other player until 
their distance apart is less than or equal to the discovery 
radius r (this is the radio range of the Wi-Fi in the DTN 
nodes), and that very moment capture (detection and hence 
data transfer) happens. The Lebesgue measure of Q is 
denoted by u. If Q is a graph, u is the total arc length, 
while if Q is a region in R, then u is the area, volume, and 
so on. The discovery rate, denoted by g, is the maximal 
Lebesgue measure of a set that can be swept by the 
searcher is 1, it follows that g=1 for a graph. In the case 
that Q is a two-dimensional region, the sweep in one unit 
of time is 2r. By similar reasoning, g is equal to πr2 for the 
three-dimensional regions, and so on. The expression u/g 
is closely related to the value of several search games. 
Actually, u/g is equal to the length of a closed trajectory, 
denoted by a “tour,” that sweeps all the points of Q 
without overlap. Such a tour exists for Eulerian graphs. (A 
tour with a very little overlap exists for two-dimensional 
regions.) 
  Each search problem is presented as a two-person 
zero-sum game. A pure strategy of the searcher is a 
continuous trajectory, S, with velocity not exceeding 1. As 
to the hider, we have to distinguish between 2 cases: If the 
hider is immobile, he (it) can only choose his (its) hiding 
point H, whereas if he (it) is mobile, his (its) strategy H is 
a continuous trajectory. The next step in describing the 
search game is to present a cost function (the payoff) 
C(S,H) which has to represent the loss of the searcher (or 
the effort spent in searching) if the searcher uses strategy S 
and the hider uses strategy H. Since the game is assumed 
to be zero-sum, C(S,H) also represents the gain of the 
hider, so that players have opposite goals: The searcher 
wishes to make the cost as small as possible , while the 
hider wishes to make it large. The natural choice for the 
cost function is the time spent until the hider is captured. 
For the case of a bounded search space Q, this choice 
presents no problem, but if Q is unbounded and if no 
restrictions are imposed on the hider, he can make the 
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capture time as large as desired by choosing points that are 
very far from the origin. We overcome that difficulty by 
imposing a restriction on the expected distance of the hider 
from the origin or by normalizing the cost function. Given 
the available pure strategies and the cost function C(S,H), 
the value v(S) guaranteed by a fixed trajectory S is defined 
as the maximal cost that could be paid by the searcher if he 
uses the trajectory S; thus v(S)=supH C(S,H). The value 
VP=infS v(S) represents the minimal capture time that can 
be guaranteed by the searcher if he uses a fixed trajectory, 
but in all the interesting search games the searcher can do 
better on the average if he uses random choices out of his 
pure strategies. These choices are called “mixed 
strategies.” A mixed strategy of the searcher is denoted by 
s and a mixed strategy of the hider is denoted by h. If the 
players use mixed strategies, the capture time is a random 
variable, so that each player cannot guarantee a fixed cost 
but only an expected cost. The expected cost of using the 
mixed strategies s and h is denoted by c(s,h). The maximal 
expected cost v(s) of using a search strategy s, v(s)=suph 
c(s,h) = supH c(s,H), is called the “value of strategy s,” and 
the minimal expected cost v(h) of using a hiding strategy h, 
v(h) = infs c(s,h) = infS c(S,h),is called the “value of 
strategy h.” If there exists a real number v that satisfies v = 
infs v(s) = suph v(h), we say that the game has a value v. In 
this case, for any ε > 0, there exists a search strategy sε and 
a hiding strategy hε which satisfy v(sε)<(1+ε)v and 
v(hε)>(1-ε)v. Such strategies will be called “ε-optimal 
strategies.” In the case that there exists s* (respectively, 
h*) such that v(s*)=v [respectively, v(h*)=v], then s* 
(respectively, h*) is called an “optimal strategy.” In 
general, if the sets of pure strategies of both players are 
infinite, the game need not have value. However, using Ky 
Fan’s minimax theorem, it has been proven that any search 
game of the discussed type has a value and an optimal 
search strategy. The existence theorem remains valid if one 
allows the searcher to use only trajectories that belong to a 
specific subset of all the trajectories on the condition that 
this sub-set is compact.  
 
6. Search for Blackbuck in a Sanctuary 
 
The search space Q is a multidimensional region and the 
detection radius r is small (40-250m) in comparison with 
Q (16 Sq Km) in magnitude. Searching for an immobile 
hider (A resting Blackbuck) in a two-dimensional region is 
relatively simple because in this case it is possible to find a 
tour L with length smaller than (1+ε)u/2r which sweeps all 
the points of Q (in the sense that if the searcher goes along 
L, he will surely find the hider). u is the total arc length of 
Q. This property makes the problem very similar to the 
search on Eulerian graph. Thus, choosing each one of the 
directions, of encircling L, with probability ½ guarantees a 
value (1+ε)u/4r. On the other hand, it is true for an 
immobile hider in general that by choosing a completely 

randomized strategy (uniform hiding distribution in Q) he 
can make sure that the capture time is at least u/2g, which 
is equal to u/4r for a two dimensional region. Thus the 
value of the search game for an immobile hider in a two 
dimensional region is u/4r. The foregoing result is based 
on the fact that two dimensional regions can be covered by 
narrow strips with little overlap. The analogous 
construction for three dimensions would require covering 
the region with narrow cylinders, but in this case the 
overlap would not be negligible. The value of the search 
game exceeds u/2g (because the hider can use the 
completely randomized strategy) and is below u/g (which 
is the value for a mobile hider), but the exact value for 
three or more dimensions is still an open problem. 
  Also analyzed is a mobile hider like Blackbuck in a 
multidimensional region. The princess and monster game 
for two or more dimensions, which had remained an open 
problem since 1965 had been solved by Gal in 1979. The 
details of the proofs are rather complicated, but the results 
can be explained quite easily. The value v, of the princess 
and monster game in two or more dimensions satisfies v = 
(u/g), where u is the Lebesgue measure of the search space 
and g is the discovery rate. The search strategy, s*, which 
guarantees an expected capture time of less than (1+ε)u/g, 
can be constructed as follows: 

 
Fig. 2 Search Strategy for Blackbuck in Vallanadu Sanctuary  

 
The search space Q is covered by a set of parallel and 
similar narrow rectangles Q1,…., Qm,…., QM; a rectangle 
Qm is randomly chosen (Figure x) and examined by 
moving n times forward and backward along trajectories 
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parallel to a, with height b chosen randomly each time; 
then another rectangle is randomly chosen, and so on. It 
turns out that for each rectangle, the search strategy is 
“efficient”. Thus if n is chosen properly (large enough to 
“absorb” the effect of the time spent in going from one 
rectangle to another but not too large), the expected 
capture time guaranteed by s* is less than (1+ε)u/g. The 
strategy h* of the hider, which keeps the capture time 
above (1-ε)u/g (on the condition that the hider’s velocity is 
not too small), is described as follows. Choose a random 
(uniformly distributed) point Z1 and stay there a time 
period D; then choose another random point Z2 
(independently of Z1), move as fast as you can towards it, 
and stay there another time period D, and so on. The 
“resting time” should not be too long, so that the area 
swept by the searcher in a time interval of length D will be 
small relative to the volume of Q; but on the other hand, to 
keep the probability of capture during motion relatively 
small, the hider should not move too frequently and thus D 
should not be too short. An important property of 
multidimensional princess and monster game is the 
following. There exists a function P(t), which decreases 
exponentially in 1, such that for all t both the searcher and 
the hider can keep the possibility of capture after t around 
P(t). This property can be used to show that the optimal 
strategies described above are still optimal even if we 
replace the capture time by a more general cost function. It 
should also be noted that above a small threshold, the 
value is independent of the hider’s velocity. The results 
were extended in several directions where-in the detection 
radius is not uniform in Q, with several searchers etc., 
which are beyond the scope of this paper.  
 
7. Search based Routing 
 
The proposed AUDTHMN is represented as graph in 
figure 3. The preliminary design consists of 4 layers. The 
first layer is the source layer that comprises of the 
Blackbucks carry radio collared DTN nodes. The radio 
collars carry the electronics payload that log their habitat 
data namely their movement in the sanctuary. This can be 
carried out by COTS SiRF star III GPS data loggers some 
of which are only 21 grams in weight and have the form 
factor of a matchbox. DTN2.5 can be run on a SBC, which 
can take the GPS data log from the flash memory of the 
logger and encapsulate them into DTN bundles and 
forward it appropriately. The intelligent forwarding part, 
which constitutes the routing scheme, is designed based on 
the search theory aspects that were discussed. Logically 
each modified DTN application shall maintain a table that 
has the capture time for each Blackbuck. The capture time 
is below (1+ε)u/g based on search strategy s* and above 
(1-ε)u/g based on hide strategy h*. The schematic shown 
in figure 3 depicts 7 Blackbucks under consideration. The 
hide strategy of each Blackbuck is different being dictated 

by its behavioral aspects. The hide strategies for 
Blackbucks B1 to B7 is denoted as h1* to h7*. In this 
simple scenario, only one data collector C1 goes in search 
of the Blackbucks to establish radio contact and retrieve 
the habitat data. Hence the collector search strategy is s* 
being dictated by scientific methods that best suits the 
topography of the sanctuary and stamina of the searcher. 
All the DTN nodes carried by both the Blackbucks and the 
data collector maintains the individual capture time of all 
the Blackbucks. The hop layer in this case is dynamically 
created by identifying the Blackbucks with least capture 
times and making them as Hop Layer 1. Now, the other 
Blackbucks that carry their own habitat data forwards it to 
the Hop Layer 1 Blackbucks when they come in radio 
contact. The Hop layer 1 Blackbucks have least capture 
times and come in radio contact with the data collector 
more often than the pure source layer bucks. Thus a 
dynamic routing scheme based on the capture time comes 
into effect. Multiple layers of hop layer can be created 
based on preference, however it adds to the computational 
complexity in the nodes. This routing scheme can be 
scaled to multiple data collectors too who may have 
different search strategies. 
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Fig. 3 AUDTHMN represented as Graph 

In Ideal scenarios, the maximum capture time (1+ε)u/g 
guaranteed by search strategy s* equals minimum capture 
time of (1-ε)u/g guaranteed by hide strategy of h*, in 
which case ε = 0. However, the basic assumption is that ε 
> 0 and hence the ideal scenario does not theoretically 
work which is in-line with the practicality. The more the 
behavioral differences among Blackbucks, the more are 
the hiding strategies which make the search based routing 
even more effective.  
 
6. Conclusion 
 
This paper theoretically explores the use of Search Theory 
as routing policy [14] for DTN bundle routing. Being a 
theoretical overview, the paper does not discuss 
experimental treatment or results which may be beyond its 
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scope. A glimpse of the proposed Alagappa University 
Delay Tolerant Habitat Monitoring Network, an 
environmentally significant application, has also been 
presented. This research is at the early concept stage for 
AUDTHMN.  The future scope of work proposed by the 
authors includes: 
(i) Detailed analysis of the Search Theory Routing 

with respect to different forms and sides.  
(ii) Simulate the Game Theory based routing using 

Alunivdtnsim [5] and analyze its performance in 
comparison to other existing DTN routing protocols 
[16][17] such as (a) Spray and Wait [15], (c) 
PRoPHET [19] and (d) MaxProp [13] and proposed 
[18] DTN routing schemes.  

(iii) Experimentation and subsequent implementation of 
the same in DTN bundles. 

(iv) The results of Search Theory Routing schemes 
applied in AUDTHMN to be theoretically 
extrapolated to the Inter-planetary counterparts. 

(vi) Field testing of AUDTHMN and its delivery 
performance 

(vii) Physical realization of AUDTHMN, deployment 
and operation. 

(viii) Search Theory routing for other applications such as 
smart sensors in Battle field, ZebraNet, etc., 
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