
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

223

Manuscript received November 5, 2010
Manuscript revised November 20, 2010

Developing Software Architecture Comparison Analysis Method
for Critical Socio-Technical Systems

Ahmed El-Abbassy1

Higher Institute of Computer Science
& Information Technology, El-

Shorouk Academy

Shady Gomaa Abdulaziz2

College of Computing & Information
Technology, Arab Academy

Abdelfatah A. Hegazy3

College of Computing & Information

Technology, Arab Academy

Summary
Software Architecture Comparison Analysis Methods provide
organizations with a rationale for an architecture selection
process by comparing the fitness of software architecture
candidates for required systems. Comparing software
architectures for any nontrivial system is a difficult task.
Software architectures are designed with particular requirements
and constraints, and are often poorly documented. With the lack
of data about software architecture, developing comparison
methods based on a black box approach is considered very
helpful, and architectures can be compared based on a set of
criteria derived from the business goals of an organization. A
popular method for comparing software architectures as black
box is the Software Architecture Comparison Analysis Method
(SACAM) developed by the Software Engineering Institute
(SEI). SACAM compares the architectures of software systems
and not the implementation code. SACAM does not address
enterprise architecture issues such as implemented software
evolution and maintenance. This paper discusses and presents a
proposed adaptation of SACAM to be applied in the context of
critical socio-technical systems where issues of architecture
evolution and maintenance are considered important factors in
selecting a strategy to software modernization. The proposed
method is called software Architecture Comparison Analysis
Method for Critical Systems (SACAM-CS). SACAM-CS is an
architecture selection method based on multi-criteria decision
analysis. The proposed method has been validated using a
suitable case study to compare among two check-in systems used
in international airports.
Key words:
Software Engineering, Software Architecture Comparison,
Software Evolution, Legacy Software, Socio-Technical Systems,
Airport Check-in Systems.

1. Introduction

Critical systems are technical or socio-technical systems
that people or businesses depend on. If these systems fail
to deliver their services as expected then serious problems
and significant losses may result. Typically there are three
main categories of critical systems: Safety-critical systems,
Mission-critical systems and Business-critical systems[1].
Socio-Technical systems are systems that

include hardware, software components, procedures and
operational processes.
The most important emergent property of a critical socio-
technical system is its dependability. Dependability was
proposed to cover the related system attributes of
availability, reliability, safety and security[2]. Reliability
and availability are usually considered to be the most
important dimensions of dependability.
Critical Socio-Technical systems are complex systems
usually with a long lifetime[3]. Its development continues
throughout their life with changes to accommodate new
requirements, new operating platforms, and so forth. With
time Socio-Technical software becomes legacy software
that has been developed in the past using older or obsolete
technology. Legacy software is often business-critical
software, maintained because it is too risky to replace it.
Modernizing legacy software should be based on
periodical assessment in order to decide the most
appropriate strategy for evolving these systems.
Assessment should include both business value assessment
and system quality assessment by measuring factors such
as performance, interoperability, failure rate and
maintenance costs. As illustrated in figure 1 system
stakeholders have typically four strategic options (choices)
when considering software modernization.

Figure 1: Legacy system clusters & modernization options

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

224

The Software Architecture Comparison Analysis Methods
are used in the analysis and comparison among software
products, and are used in software modernization situation
assessment. These methods provide organizations with a
rationale for an architecture selection process by
comparing the fitness of software architecture candidates
being used in envisioned systems[4].
Software architectural evaluation can be conducted at
different phases of software life cycle. Software
architecture can be evaluated before its implementation
(early evaluation), or after its implementation (late
evaluation) [4, 20, 23]. Early software architectural
evaluation can be conducted on the basis of the
specification and description of the software architecture,
and other sources of information, such as interviews with
architects. Late software architectural evaluation is
performed based on metrics[20, 22, 25] and can be used
for evaluation of existing systems before future
maintenance or enhancement of the system as well as for
identifying architectural drift and erosion[20, 22].
Software architectures are often poorly documented and
with the lack of data about software architecture,
developing evaluation methods based on a black box
approach is considered very helpful[24].
For both early and late software architectural evaluations,
two basic categories are suggested[15]: qualitative
evaluation and quantitative evaluation. Qualitative
evaluation generates qualitative questions about software
architecture to assess any given quality, whereas
quantitative evaluation uses quantitative measurements to
be taken from software architecture to address specific
software qualities.
Techniques for generating qualitative questions include
scenarios, questionnaires, and checklists. Scenarios appear
to be the most utilized form for acquiring data [16]. There
are also empirically-based approaches [17, 21] that define
some relevant metrics for software architecture evaluation.
The metrics are defined based on the goal of the
evaluation.
A popular Scenario-based, early evaluation method is the
Software Architecture Comparison Analysis Method
(SACAM) developed by the Software Engineering
Institute (SEI)[5]. SACAM uses several architecture
techniques developed by SEI to compare the architecture
candidates. SACAM compares the architectures of
software systems and not the implementation code.
Software can be compared on several different levels. It is
possible to compare the requirements, but that does not
address how well the software actually realizes the
requirements. On the other hand, at the implementation
level, it is clear how well requirements are fulfilled, but
comparing different software is almost impossible because
of the huge amount of information. Comparing software
architectures provides a manageable level of information.

SACAM does not address enterprise architecture issues
such as implemented software evolution and maintenance.
These issues are discussed in this paper where a proposed
adaptation of SACAM is presented. The proposed method
is called Software Architecture Comparison Analysis
Method for Critical Systems (SACAM-CS). SACAM-CS
will be applied in the context of critical socio-technical
systems where architecture evolution and maintenance are
considered important factors in selecting a strategy to
software modernization. SACAM-CS is an architecture
selection method based on multi-criteria decision analysis.
The proposed method has been validated using a suitable
case study to compare between two check-in systems used
in international airports.
The rest of this work is structured as follows: Section 2
presents an overview of SACAM. In section 3 SACAM-
CS is discussed before describing the case study and the
experiment in Sections 4, 5 and Section 6 describes the
conclusion and future work on this topic.

2. SACAM Overview

SACAM is an early evaluation, Scenario-based method
that was created to provide the rationale for an architecture
selection process by comparing the fitness of architecture
candidates for required systems[5].
The comparison is performed in a series of steps as
follows:
Step 1 (Preparation) examines the available inputs to
prepare a successful application of the method. The inputs
to the method include: (1) architecture candidates – the
architectures that should be compared; (2) business goals
– the source of the comparison criteria.
Step 2 (Criteria Collation), a set of criteria for the
architecture comparison is identified. A criterion
formulates a requirement for the architecture to support
the organization’s business goals. Criteria are refined into
quality attribute scenarios.
Step 3 (Determination of Extraction Directives)
determines the architectural views, tactics, styles, and
patterns that are looked for during the following
extractions to find supporting evidence for the scenarios of
Step2.
Step 4 (View and Indicator Extraction) extracts the
architectural views for each candidate according to the
extraction directives from step 3; detects indicators that
support the quality attribute scenarios from Step 2;
Architecture recovery techniques may be needed to
generate relevant views.
Step 5 (Scoring), each criterion is scored for an
architecture candidate. The scoring is based on the
evidence provided by Step 4, and the quality attribute
scenarios determined during step 2. The scoring might

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

225

consider weights that are provided by stakeholders for the
criteria. The scoring provides the reasoning and the
resulting score for how well the criteria scenarios are
supported by a candidate.
Step 6 (Summary) summarizes the results of the analysis.

SACAM uses techniques as illustrated in Figure 2. Each
technique contributes to the comparison of software
architectures.

Figure 2: Architecture Techniques used by the SACAM

These techniques are used to generate the necessary
artifacts that are then analyzed to provide the final scores
for each architecture. SACAM techniques are summarized
hereafter.
1) Scenario Generation: SACAM requires criteria that are
derived from the business goals of an organization for an
envisioned system. The criteria are articulated in quality
attributes that are further refined into quality attribute
scenarios. Scenario generation is a technique for capturing
quality attributes and refining them into quality attribute
scenarios. SEI methods that incorporate scenarios
generation are the architecture tradeoff method[6] and the
quality attribute workshop(QAW)[7].
 2) Tactics: To achieve particular qualities that are
addressed with scenarios, the notion of tactics strategies to
achieve quality attribute goals is introduced[8]. SACAM
uses tactics in the analysis as indicators to evaluate if the
extracted views support a criterion articulated as a quality
attribute scenario. Collections of tactics are available for a
variety of quality attributes[9].
3) Metrics: Metrics support quantitative analysis that
provides useful indicators of overall complexity where
change might be difficult or most likely. Metrics are used
in SACAM on the code level, if available, or on a detailed
design level[10, 11].
4) Architectural Documentation Standards: SACAM
requires the availability of architectural documentation to

perform the comparison criteria analysis. Experience
shows that architectural documentation across system is
heterogeneous. For example, there are differences in
notations, stakeholders, level of documentation detail, and
scope. One of the SACAM's challenges is to obtain
comparable architectural documentation. SACAM uses the
"views and beyond" architectural documentation
approach[12].
5) Architecture Reconstruction: The architectural
documentation used to perform the comparison might be
unavailable, insufficient, or out of date. In these cases the
architecture has to be reconstructed. However not all
architectural views have to be reconstructed, only the
relevant views. For example if the intension is to find the
architecture that is best suited to support modifiability,
views showing module dependencies are more important
than process views. This goal-oriented approach is used in
the Quality-Attribute-driven Software Reconstruction
(QADSAR) method [13].

The outputs of SACAM include a recommendation for the
decision-making process, the scores and the related
reasoning for each candidate, and the generated artifacts
such as architectural views, tactics and scenarios.

SACAM is a standard framework that allow for comparing
several architectures. This important feature permits with
some adaptation to use SACAM in both early architecture
evaluation (before its implementation) and late
architecture evaluation (after its implementation).
The proposed adaptation is described in the next section.

3. SACAM-CS

SACAM-CS is a proposed adaptation of SACAM that
permits to apply SACAM not only as an early architecture
evaluation method, but also as a late architecture
evaluation method.
Late software architecture evaluation can use data
measured on the implementation of software architecture,
and metrics can be used to reconstruct the actual software
architecture, allowing it to be compared to a planned
architecture[17, 18, 19].
SACAM-CS complements the steps and the techniques
used by SACAM in order to allow the comparison among
implemented software products, and consequently could
be used in software modernization situation assessment.
AS illustrated in figure 3, the evolution/maintenance
history is included in the comparison and analysis of
candidate architectures. The rational for including the
evolution/ maintenance history is that implemented
Software systems undergo constant change causing the
architecture of the system to degenerate over time.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

226

Figure 3: Architecture Techniques used by the SACAM

In what follows the complementary techniques proposed
by SACAM-CS are presented.

3.1 Scenario Generation

The SACAM-CS will be applied to compare between two
implemented systems. The goal of the scenario is to show
which system is more reliable, efficient and achieved all
quality attribute conditions by using quality attribute
scenarios such as:
(1) Availability is concerned with system failure and
duration of system failures.
 (2) Modifiability is concerned with cost of change, both
in time and money.
(3) Performance is concerned with response time.
(4) Security is the ability of the system to prevent or resist
unauthorized access while providing access to legitimate
users. An attack is an attempt to breach security.
(5) Testability refers to the ease with which the software
can be made to demonstrate its faults or lack thereof. To
be testable the system must control inputs and be able to
observe outputs.
(6) Usability is how easy it is for the user to accomplish
tasks and what support the system provides for the user to
accomplish this.

3.2 Metrics

When you are assessing implemented software products,
we should consider both product business value and
product technical quality.
To assess the business value of a system, stakeholders are
interviewed to discuss the use of the system, the business

processes that are supported, the system dependability and
the importance of the system outputs.
To assess a software system from a technical perspective,
we need to consider both the application system itself and
the environment in which the system operates.
The environment is important because many system
changes result from changes to the environment, such as
upgrades to hardware or operating system. If possible, in
the process of environmental assessment, you should make
measurements of the system and its maintenance
processes. Examples of data that may be useful include the
costs of maintaining the system hardware and support
software, the number of hardware faults that occur over
some time period and the frequency of patches and fixes to
the system support software.
To assess the technical quality of an application system,
you have to assess a range of factors that are primarily
related to the system dependability and the system
documentation. You may also collect quantitative system
data that will help you judge the quality of the system.
Examples of data that might be collected are: the number
of system change requests, the number of user interfaces,
and the volume of data used by the system.
The business value of a legacy system and the quality of
the application software and its environment should be
assessed to determine whether the system should be
replaced, transformed or maintained.

4. Case Study Background

The aviation industry has grown at an unprecedented rate.
To cope up with the growth airports have to expand the
terminal facilities and meet new standards of operational
efficiency. Airports need software systems that support
their ability to evolve in response to their rapidly changing
environment. Legacy systems that limit a business’s
adaptability are seen as significant problems. In response
to this situation, airports have started implementing new
technologies at the terminals for convenience of the
passenger. The new solutions strive to improve operational
efficiency and reduce queues at the airport. The new
technologies like self-service and web check-in are being
installed at many airports to increase Check-in capacity.
There are two major check-in systems commonly in use by
international airports: The Common User Terminal
Equipment (CUTE) system; and the Common Use Self
Service (CUSS) system [14].
 As illustrated in figure 4, with the CUTE system the
passenger arrives at the airport and approaches the check-
in counter .The check-in process is a one-step process
where he/she can interact with the check-in agent and
decide on seats and drop bags .With the CUSS system
passengers with baggage can drop the bags at the baggage
drop-off and proceed to the security check.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

227

Figure 4: Check-in Context Diagram

4.1 The CUTE System

 CUTE was 1st implemented in 1984 for the Los Angeles
Summer Olympic Games. From 1984 until the present,
approximately 400 airports worldwide have installed some
level of CUTE. CUTE systems allow an airport to make
gates and ticket counters in common use. These systems
are known as “agent- facing” systems, because they are
used by the airline agents to manage the passenger check-
in and boarding process. Whenever an airline agent logs
onto the CUTE system, the terminal is re-configured and
connected to the airline’s host system. From an agent’s
point of view, the agent is working within his airline’s
information technology (IT) network.
The Air Transport Association (IATA) describes the
factors to be considered for the design of the check-in area
for the check-in desks with CUTE. IATA provides some
standard thumb rules based on the queuing theories and
which are very useful in sizing the overall terminal at the
initial stages.

4.2 The CUSS System

This evolving pattern enables passengers to obtain
boarding passes, check baggage, and conduct other
transactions at times and places of their convenience.
Passenger check in procedures will gradually shift from
check in procedures performed at check in counters, to
check in procedures performed at home from the internet,
by mobile phone, or through self service check in facilities
at the airport such as CUSS Kiosk.
The trend is towards common use equipment which may
consist of free standing column type or counter type
workstations with built-in Automated Ticket and Boarding

pass (ATB) printer. The CUSS provides ticketed
passengers the ability to perform many tasks, not limited
to, check-in for flights, select or change a seat assignment,
and obtain a boarding pass for their departures. The CUSS
will be used by self-service passengers to check-in, seat
allocation, boarding pass printing, and baggage check-in
in a common use environment. Self-service is becoming
the common check-in mechanism in Europe, US and in
many airports. In the MEA-Middle East Area region it
started as a dedicated self-service and the first CUSS
kiosks have been installed at Cairo Airport International
TB3. The CUSS will be designed for the use of different
types of passengers with or without luggage where
passengers with luggage could use the new use facility of
the Common Use Baggage System. The CUSS platform
software is responsible for managing the entire Kiosks
System, The final configuration of the CUSS kiosk will
vary depending on airport operational and security
requirements. The equipment required for CUSS consists
of two redundant servers (usually the same servers used
for CUTE system), located in the MER – Main Equipment
Room and self service kiosks.

5. Experience at Cairo International Airport

We have developed an experience at Cairo International
Airport (CAI) to compare between the two check-in
systems (the CUTE system and the CUSS system)
discussed in section 4. To assess the business value and
the technical quality, a survey has been elaborated and
operational metrics have been collected for both systems
that are deployed by Egypt Air Airlines.
The assessed quality attributes and the metrics used are
listed in table 1:

Table 1: Experiment quality attributes and used metrics
Quality Attribute Used Metrics
Passenger Satisfaction - Process Time

- Queuing Time
System reliability Failure rates during 6 months
Service availability Uptime during one month

5.1 Measuring Customer Satisfaction

From the survey the majority of passengers consider the
CUSS System process is faster than the CUTE System as
shown in Table 2 with 68% strongly agree versus 10.75%
for the CUTE System.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

228

Table 2: Rate of Process Speed

Also the survey indicates that the majority of passengers
are satisfied with the CUSS "Change/Select seat" service
as shown in Table 3 with 92% strongly agree versus 0%
for the CUTE.

Table 3: Rate of passenger satisfaction

Check-in counters were used by Egypt Air Airlines and
there were a maximum of six counters open at the time of
observation. As shown in figure 5, the average process
time per passenger for the CUTE System is 2.74 minutes.
The CUTE average process time is smaller than the CUSS
System. This is a result of the efficiency of the check-in
agent and the interaction with the passenger. This human
element causes significant variations in check-in times that
are shown in figure 5. However the comparison of CUSS
without bags and CUTE indicates clearly that the CUSS
process time is faster than the CUTE as illustrated in
figure 6. The standard deviation in process time is shown
in figure 7.

Figure 5: Comparison between CUSS with Bags and CUTE

The standard deviation for the CUTE System is 1.7 while
the CUSS without is 1.3 bag and the Total (CUSS+BAG)
is 2.3.

Figure 6: Comparison between CUSS without Bags and CUTE

Figure 7: Standard Deviation of Process Time

As shown in Table 4 and figure 8, the processing time for
the CUTE is often between one and two minutes per
passenger while the CUSS takes less than a minute.
That Passengers using kiosks need to go to baggage drop-
off if required to check in bags. The processing time for
each process is shown in Table 4. The characteristics for
each method are discussed in detail in this section.

Table 4: All ranges of processing time for all Check-In System

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

229

Figure 8: All ranges of processing time for all Check-In Systems

5.2 Analyzing Failure Rates

Failure rate is the frequency with which an engineered
system or component fails, expressed for example in
failures per hour. It is often denoted by the Greek letter λ
(lambda) and is important in reliability engineering.
The failure rate of a system usually depends on time, with
the rate varying over the system age. The measurement of
failure rates (hardware, software) for all workstation using
CUTE or CUSS System for 6 months is shown in figure 8.

Figure 8: The Failure rate of Check-In System

5.3 Analyzing System Service Availability

Availability means that a system is on-line and ready for
access. A variety of factors can take a system off-line,
ranging from planned downtime for maintenance to
catastrophic failure. The goals of high availability
solutions are to minimize this downtime and/or to
minimize the time needed to recover from an outage.
Exactly how much downtime can be tolerated will dictate
the comprehensiveness, complexity and cost of the
solution.
The following steps are used to measure availability.
Step1: Collecting and Presenting system service
availability data for each check-in system (CUTE and
CUSS) for one month as shown in Figure 9.

Figure 9: Time Chart for CUTE/CUSS System in January 2010

Step2: Calculate the failure rate data for each server in
each system in each month as shown in table 5.
These systems require processing, 24 hours a day, 7 days a
week; it means these systems require 24 × 7 availability
with 99.9% uptime.

Table 5: All Servers of Check-In Systems

5.4 Queuing Time

Queuing theory deals with the mathematics involved in the
study of waiting lines, or queues. The basis of the problem
is a customer that arrives and joins a queue waiting for
service, and then he receives the service and exits. To
study queuing systems, information is required on the
arrival process, the service process and the queue
discipline. The arrival process deals with how arrivals are
distributed over time. Most of the work in queuing theory
has revolved around a Poisson distribution; this means that
the inter-arrival time between successive arrivals is
unrelated and exponentially distributed.
The service process requires information on the service
time, again a Poisson distribution is commonly used, the
number of servers and whether the servers are in series or
parallel.
The queue discipline deals with how items are chosen
from the queue for service. Common rules are FIFO (First
In First Out) and LIFO (Last In First Out). Other

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

230

considerations are the capacity of the queue, customers
avoiding the queue due to length and customers leaving
the queue due to waiting too long.
Queuing theory answers questions about the system such
as: a customer’s mean waiting time in the queue, a
customer’s mean time in the system, and the length of the
queue or server utilization. With this knowledge changes
to the system can be investigated, such as implementing
additional servers, prioritizing customers or adjusting the
size of the waiting area.

5.4.1 M/M/1 Model

M/M/1 is Kendall's notation of this queuing model. The
first part represents the input process, the second the
service distribution, and the third the number of servers as
illustrated in figure 10.

Figure 10: one server one line queue system (M/M/1)

The M represents an exponentially distributed inter-arrival
or service time; specifically M is an abbreviation for
Markovian. The M/M/1 Waiting line system has a single
channel, single phase, Poisson arrival rate, exponential
service time, unlimited population, and First-in First-out
queue discipline. For an M/M/1 queue where λ is average
arrival rate into the system and μ is the average service
rate, it is simple to calculate questions about the system.
The average number of customers in the system is given
by (1), and the total time in the system is given by (2).
Similar equations have been developed for variations on
the M/M/1.

The input parameters to the queuing system is illustrated
in table 6.

Table 6: Input parameter to queuing Time system

This simulated experiment examines the MM1 queuing
system and here is the explanation for the above table
input data:

1) Arrival Rate (λ) = 6 Passengers per Minute.
2) Service Rate (μ) =8 Serviced Passengers per Minute.
3) Experiment Duration= 3600 Minute = 60 Hour
4) Maximum Queue Length= 100 Passenger in System
Waiting “Area” Queue
The results are illustrated in table 7.

Table 7: Basic Result

The computed results came from the formulas of MM1
queuing system. And the simulated results come by
experimental approach from random sample of space.
And the results were satisfying mostly if we knew that the:
1) Passengers in system (Ls) =3.01at the same time taking
service
2) Passengers in queue (Lq) =2.256 passenger waiting to
start being serviced.
3) Time in system (Ws) =0.502 to finish the service.
4) Time in queue (Wq) =0 .376 waiting time inside the
passengers waiting area.
5) Idle probability (p0) =0.249 the probability that the
system server is being idle.
6) Server utilization (ρ) =0.753 which lead to a great
performance on the other hand.

5.5 Summary

From the results mentioned above, we can deduce the
following: The passenger is satisfied with the process of
self-service check-in using CUSS Kiosk, the process of
self-service is faster, accurate and easier to understand.
Self-service puts control into the hands of the customer.In
the airline industry, this control comes in the form of
enabling the customer to select their own seat, request an
upgrade, or change flights.
Further to this conclusion, the following was observed:

1) The minimum time was 0.38 minutes and on average it
takes 3.1 a minute to complete a transaction and print a
boarding pass from CUSS System.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

231

2) The processing times for the passenger who had some
experience of using a kiosk was significantly less than
average.
3) Most of the passengers need assistance in completing
the process and there were two roving agents helping
passengers.
4) The location of the kiosks made them very accessible
and easily visible before the passengers could see the
check-in counters.

6. Conclusion and Future Work

This paper discusses the need to adapt the Software
Architecture Comparison Analysis Method –SACAM in
order to use it in legacy software modernization context,
where candidate implemented software products are
evaluated.
The main contribution of this paper is proposing an
adaptation by considering the evolution/maintenance history
in architecture evaluation, and introducing complementary
techniques that allow assessing software products from both
business value perspective and technical quality perspective.
The proposed adaptation was demonstrated by conducting a
comparison between two check-in systems used in
international airports as a case study.
The future work includes extending the method to apply in
other system modernization situations such as reengineering
and the comparison between an existing product and a
planned one.

References
[1] Ian Sommerville, (2007), Software Engineering Eighth

Edition, Addison-Wesley(Ch. 3).
[2] Laprie, J.C., (1995), Dependable Computing: Concepts,

Limits, Challenges, Proc. 25th IEEE Symposium on Fault-
Tolerant Computing.

[3] Thayer, R.H., (2002), Software System Engineering: a
tutorial IEEE Computer (Ch.2).

[4] Banani Roy and T.C. Nicholas Graham, (2008), Methods
for Evaluating Software Architecture: A Survey, Technical
Report No. 2008-545, School of Computing, Queen's
University at Kingston, Ontario, Canada

[5] Christoph Stoermer, Felix Bachmann, Chris Verhoef,
(2003), SACAM: The Software Architecture Comparison
Analysis Method, TECHNICAL REPORT, CMU/SEI-
2003-TR-006, ESC-TR-2003-006.

[6] Clements, P.; Kazman, R.; & Klein, M., (2002), Evaluating
Software Architectures. Reading, MA: Addison Wesley.

[7] Barbacci, M.; Ellison, R.; Lattanze, A.; Stafford, J.;
Weinstock, C.; & Wood, W., (2003), Quality Attribute
Workshops (QAWs), Third Edition (CMU/SEI-2003-TR-
016).

[8] Bachmann, F.; Bass, L.; & Klein, M., (2003), Deriving
Architectural Tactics: A Step Toward Methodical
Architectural Design (CMU/SEI-2003-TR-004,
ADA413644

[9] Bass, L.; Clements, P.; & Kazman, R., (2003), Software
Architecture in Practice, Second Edition. Reading MA:
Addison Wesley.

[10] Arora, V.; Kalaichelvan, K.; Goel, N.; & Munikoti, R.,
(1995), Measuring High-Level Design Complexity of Real-
Time Object-Oriented Systems, Proceedings of the Annual
Oregon Workshop on Software Metrics.

[11] Faust, D. & Verhoef, C., (2003), Software Product Line
Migration and Deployment, Software: Practice and
Experience, Volume 33, Issue 10.

[12] Clements, P.; Bachmann, F.; Bass, L.; Garlan, D.; Ivers, J.;
Little, R.; Nord, R.; & Stafford, J., (2002), Documenting
Software Architectures Views and Beyond. Reading, MA:
Addison Wesley.

[13] Stoermer, C.; O’Brien, L.; & Verhoef, C., (2003), Moving
Towards Quality- Attribute-Driven Software Architecture
Reconstruction, Proceedings of the 10th Working
Conference on Reverse Engineering (WCRE) Victoria,
Canada.

[14] Shady G. Abdelaziz, Abdelfatah A .Hegazy and Ahmed
Elabbassy , (2010), Study of Airport Self-service
Technology within Experimental Research of Check-in
Techniques Case Study and Concept, IJCSI International
Journal of Computer Science Issues, Vol. 7, Issue 3, No 1.

[15] G. Abowd, L. Bass, P. Clements, Rick Kazman, L. Northrop,
and A. Zaremski, (1996), Recommended Best Industrial
Practice for Software Architecture Evaluation (CMU/SEI-
96-TR-025). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University.

[16] M. A. Babar, L. Zhu and R. Jeffery, (2004), A Framework
for Classifying and Comparing Software Architecture
Evaluation Methods, In the Proceedings on Australian
Software engineering, pp. 309-318.

[17] M. Lindvall, R. T. Tvedt and P. Costa, (2003), An
empirically-based process for software architecture
evaluation, Empirical Software Engineering VOL.8, No.1.

[18] R.T. Tvedt, M. Lindvall, and P. Costa, (2002), A Process
for Software Architecture Evaluation using Metrics, In the
proceedings of 27th Annual NASA Goddard/IEEE.

[19] Davide Falessi1, Muhammad Ali Babar2, Giovanni
Cantone1, Philippe Kruchten3, (2009), Applying Empirical
Software Engineering to Software Architecture: Challenges
and Lessons Learned, Technical Report 09.80, Dipartimento
Di Informatica, Sistemi E Produzione, Universita Degli
Studi Di Roma "Tor Vergata".

[20] Eric Bouwers, Joost Visser, Arie van Deursen, (2009),
Criteria for the Evaluation of Implemented Architectures,
ReportTUD-SERG-2009-018, Delft University of
Technology, Software Engineering Research Group.
Accepted for publication in the Proceedings of the
International Conference on Software Maintenance (ICSM),
2009, IEEE Computer Society

[21] Muhammad Ali Babar, Patricia Lago, Paris Avgeriou,
(2009), Empirical Assessment in Software Architecture:
Importance and Challenges,Wicsa7 Workshop:Empirical
Assessment in Software Architecture.

[22] Marwan Abi-Antoun, Talia Selitsky, Thomas LaToza,
(2010), Developer Refinement of Runtime Architectural
Structure, SHARK’10 May 2, 2010, Cape Town, South
Africa.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.11, November 2010

232

[23] Michael Mattsson, Håkan Grahn, and Frans Mårtensson,
(2006), Software Architecture Evaluation Methods for
Performance, Maintainability, Testability, and Portability,
Second International Conference on the Quality of Software
Architectures (QoSA 2006), Västerås, Sweden.

[24] Antonia Bertolino1, Henry Muccini2, and Andrea Polini1,
(2006), Architectural Verification of Black-box Component-
Based Systems, RISE'06 Proceedings of the 3rd
international conference on Rapid integration of software
engineering techniques.

[25] Komaldeep Purewal, Dr. Lili Yang, Dr. Alan Grigg, (2009),
Quantitative Assessment of Quality Attributes in Systems
Architecture using Evidential Reasoning, 7th Annual
Conference on Systems Engineering Research (CSER
2009).

Ahmed Elabbassy received the Ph.D. Degree Computer
Sciences from ENSAE, France, 1979, now is a professor in the
Department of Computer Science, Elshourouk Academy, Egypt,
His research interest includes: Software Engineering, Operating
Systems and Information Management.

Shady G. Abdelaziz is a graduate student in the College of
Computer Science at Arab Academy for Science Technology and
Maritime Transport, where he is studying basic and applied
research in Software Engineering and Aviation Information
Technology. His current research interests include Aviation
Information Technology and system analysis/synthesis.

Abdelfatah A .Hegazy received the B.E. degrees, from the
Military Technical Collage, Cairo, Egypt, 1978. In 1982 he
received the M.Sc. In Computer Sciences from George
Washington University, USA. Dr. Hegazy received the Ph.D.
Degree Computer Sciences from George Washington
University, USA, in 1985. After working as an assistant
professor (from 1985) in the Dept. of computer engineering
operation research, the Military Technical Collage., and an
associate professor (from 1990), he has been a professor at
College of Engineering at the Arab Academy for Science and
technology. Since 1998. His research interest includes:
Information Systems Planning; E-Commerce, E-Government,
Information Systems Security, network security, knowledge
Management, Web Intelligent Systems and Enterprise Resource
Planning Systems. He is a member of IEEE, ACM, AIS, AANIS,
and CSS-Computer Scientific Society Egypt.

