
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

60

Manuscript received December 5, 2010
Manuscript revised December 20, 2010

Ash Sorting: Easy & Less Time Consuming Sorting Algorithm

Dr. Leena Bhatia

Assistant Professor, MCA Institute, S.S.Jain Subodh P.G.
College, Jaipur

Dr. Bindu Jain
Assistant Professor, Maharani’s College, University of

Rajasthan Jaipur

Summary
Sorting is the basic building block around which many
other algorithms are built. By understanding sorting, we
obtain an amazing amount of power to solve other
problems. Sorting is the most thoroughly studied problem
in computer science. Literally dozens of different
algorithms are known, most of which possess some
advantage over all other algorithms in certain situations.
To keep these in mind we are presenting Ash Sorting
algorithm which is comparison based less time consuming
simple algorithm.
Key Words:
Ash assorting, algorithm, linear sort

1. Introduction

Sorting is a computational building block of fundamental
importance and is one of the most widely studied
algorithmic problems. Many algorithms rely on the
availability of efficient sorting routines as a basis for their
own efficiency. Historically, it has proved that computers
spend more time in sorting than doing anything else. As we
know that a quarter of all the mainframe cycles are spent in
sorting the data. Although it is unclear whether this
remains true on smaller computers, sorting remains the
most universally accepted combinatorial algorithm
problem in practice. Sorting is the most thoroughly studied
problem in computer science. Literally dozens of different
algorithms are known, most of which possess some
advantage over all other algorithms in certain situations.
To keep these in mind we are presenting Ash Sorting
algorithm which is comparison based less time consuming
simple algorithm.
The study of sorting techniques has a long history and
countless algorithmic variants have been developed [1, 5].
Many important classes of algorithms rely on sort or
sortlike primitives. Database systems make extensive use
of sorting operations [3]. The construction of spatial data
structures that are essential in computer graphics and
geographic information systems is fundamentally a sorting
process. Efficient sort routines are also a useful building
block in implementing algorithms like sparse matrix
multiplication and parallel programming patterns like
MapReduce [2, 4].

2. Ash Sorting: Concept

Ash sorting is based on the very simple real life smoke
concept that is when we burn the coal the smoke which is
lighter, fly in the air and the heaviest ash remains at the
ground. Ash sorting is also comparison based sorting but
with less number of comparison as compared to selection
or linear sort.

Concept of ash sorting

18 18 3 3 2

33 21 21 21 21

3 3 18 18 18

23 23 23 23 23

2 2 2 2 3

21 33 33 33 33

(a) (b) (c) (d) (e)

Fig 1: I Pass

In ash sorting we start from first element and compare it
with next element (i.e., 2nd element) as well as with last
element (i.e. 6th in the above example) and put least value
at first position, mid value at 2nd position and highest
value at 6th position or the last position.
Now, the 1st element will be compared with next element
(i.e., 3rd). After comparison there might be three basic
options:

Case I. 1st element >3rd element
Case II. 3rd element >1st element
Case III. both are equal

In Case I, if 1st element >3rd element, there is no need to
compare the 3rd element with last element (as last element
is already greater to 1st element) and just swapping of 1st
element with 3rd element is required.

But in Case II, 3rd element must also be compare with last
element) as it could be greater than last element). If the 3rd

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

61

element is also greater than the last element then we have
to swap the values of 3rd element and last element.
In the last case i.e., Case III no swapping or further
comparison is required.

In the present example, First comparison of Pass I (Fig:1 a)
would be among 1st (i.e, 18), 2nd (i.e., 33) and 6th (i.e., 21)
elements and finally we will get least value at first position
(i.e, 18), at 2nd position value 21 will be placed and highest
value i.e, 33 at 6th position.
During second comparison of Pass I (Fig:1 b), we compare
1st element (i.e, 18) with 3rd element (i.e, 3), swapping
would be performed and no comparison between 3rd and 6th
is required (Case I).

Next comparison(Fig:1 c) will be made among 1st (i.e, 3),
4th (i.e, 23) and 6th (i.e., 33) elements but initially between
1st and 4th. As 1st element is less than the 4th element (Case
II) comparison between 4th and 6th is also needed.
Although, no swapping is required in the above example.
In the last comparison (Fig:1 d), only 1st element would be
compared with 5th element (Case I) and swapping will be
performed.

I pass is now completed and after this least and highest
elements will be placed at correct positions (Fig:1 e).

2 2 2
21 3 3
18 18 18
23 23 21
3 21 23
33 33 33
(f) (g) (h)

Fig 2: II Pass

II pass: At the start of II pass, the same procedure will be
followed with 2nd, 3rd and second last element i.e., 5th in the
present example (Fig 2: f) and the values are 21, 18 and 3.
After the first comparison, 2nd position will be occupied by
3, 3rd position will be occupied by 18 and 21 will be stored
at 5th position.
Next comparison would be among 2nd, 4th and 5th elements
(Fig: 2 g). As 3 (2nd element) is less than 23 (4th element)
that’s why 23 will also be compared with 5th element i.e,
21 (Case II). And swapping would be performed between
4th and 5th elements.

II pass is now completed and after this 2nd least and 2nd
highest elements will be placed at correct positions (Fig:
2 h).

2 2
3 3
18 18
23 21
21 23
33 33
(i) (j)

Fig 3: III Pass

III pass: in the third pass only 3rd and 4th elements would
be compared (Fig: 3 i) and positioned at correct places.
After III pass all the elements get sorted and placed at
right positions (Fig 3 j).

3. Algorithm of Ash Sort:

Procedure Ash (Array arr, Number initial_index, Number
lst)
Begin
For i= initial_index to lst/2
Begin
Flag=0
For j=initial_index+1 to lst
Begin

If flag=0 then
 Sort (arr[i],arr[j], arr[lst])
 flag=1
 else
 if arr[i]>arr[j] then Rem Case I
 tmp=arr[i]
 arr[i]=arr[j]
 arr[j]=tmp
 else
 if arr[j]>arr[lst] then Rem: Case II
 tmp=arr[j]
 arr[j]=arr[lst]
 arr[lst]=tmp
 end if
 end if
 end if

end loop
 lst=lst-1
 end loop
 end procedure

4. ‘C’ Program of Ash Sort:

#include<stdio.h>
void main()
{
 int ar[30],flag=0;
/* flag is used to specify whether comparing 3 values or
two at a time */

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

62

 int i,j,tmp,f,l,lst=29999,s;
/* Initially lst will store last value of array index which will
be decremented afterwards */
 clrscr();
 /* Assigning values to the array: worst case */
 for(i=29,j=0;i>=0;i--,j++)
 ar[j]=i;
 /* Ash Sorting outer loop which will be executed
for half number of times to the total number of elements */
 for(i=0;i<15;i++)
 { flag=0;
 for(j=i+1;j<=lst;j++) /* inner loop starts
from i+1 th element to the lst */
 {
 if(flag==0)

/* every 1st comparison of each pass to place
3 values at proper places: Sorting of three elements*/
{
 if(ar[i]>ar[j])
 {
 if(ar[i]>ar[lst])
 {
 if(ar[j]>ar[lst])
 {
 f=ar[lst];
 s=ar[j];
 l=ar[i];
 }
 else
 {
 f=ar[j];
 s=ar[lst];
 l=ar[i];
 }
 }
 else
 {
 f=ar[j];
 s=ar[i];
 l=ar[lst];
 }
 }
else
 if(ar[j]>ar[lst])
 {
 f=ar[i];
 s=ar[lst];
 l=ar[j];
 }
else
{
 f=ar[i];
 s=ar[j];
 l=ar[lst];
 }

 ar[i]=f;
 ar[j]=s;
 ar[lst]=l;
 flag=1;
 }
 else
 {
 /* all comparisons except 1st of each Pass */
 if(ar[i]>ar[j]) /* Case I */
 {
 tmp=ar[i];
 ar[i]=ar[j];
 ar[j]=tmp;
 }
 else
 if(ar[j]>ar[lst]) /* Case II */
 {
 tmp=ar[j];
 ar[j]=ar[lst];
 ar[lst]=tmp;
 }
 }
}
 lst=lst-1;
}
// To Clear The screen and Display the sorted Array
clrscr();
for(i=0;i<30;i++)
printf("%d\t",ar[i]);
getch();
}

5. Observations and Results:

We have conducted linear sort and ash sort on different
number of elements arranged in descending order. In the
first set of experiment we have taken array of 1000
elements having values 0-999 arranged in descending
order (ar[0..999]=999..0) and executed both the programs
for five times and calculated the mean time taken by the
program to sort the array of 1000 elements in ascending
order. Same results were recorded on array of 10000,
20000 and 30000 elements respectively. Table 1 shows
the observations recorded. As the results clearly show that
the ash sorting is consuming less time as compared to
linear sort in all the cases. As we increase the number of
elements, the difference also gets increased.

6. Conclusion

Ash sorting is comparison based algorithm which is very
simple in writing and in implementation too. Results
indicate that it is about two – three times faster (depending
on the number of elements being sorted) algorithm than

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

63

linear sort. In ash sorting, the number of comparisons get
reduced thus enhance the speed of the sorting. This could
be beneficial algorithm where one wants to sort a large
number of elements in less time in comparatively easy
manner.

Table 1: Comparison with Linear sort

No of elements
in array
Mean Time
Taken in
Sorting

1000 10000 20000 30000

Linear Sort (in
Seconds)

0.025 0.72 2.9 6.43

Ash Sort (in
Seconds) 0 0.28 0.99 2.27

References:
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, Second edition, Sept.
2001.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Sixth Symposium on
Operating System Design and Implementation, Dec. 2004.

[3] G. Graefe. Implementing sorting in database systems. ACM
Comput. Surv., 38(3):10, 2006.

[4] B. He, W. Fang, N. K. Govindaraju, Q. Luo, and T. Wang.
Mars: A MapReduce framework on graphics processors.
Technical Report HKUST-CS07-14, Department of
Computer Science and Engineering, HKUST, Nov. 2007.

[5] D. E. Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley, Boston, MA,
Second edition, 1998.

Comparing Time Taking By Sorting Techniques

0

1

2

3

4

5

6

7

1000 10000 20000 30000

Number of Array Elements

Ti
m

e
Ta

ke
n

(In
 S

ec
on

ds
)

Linear Sort (in
Seconds)
Ash Sort (in
Seconds)

Graph 1: Comparing Time Taken By Sorting
Techniques

