
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

68

Manuscript received December 5, 2010
Manuscript revised December 20, 2010

An Evaluation of Agile Software Methodology Techniques

A Sutharshan, S P Maj

Edith Cowan University, Perth, Western Australia

Summary
It is well documented that software projects are often over budget,
over schedule and many fail to meet the functional requirements.
In an attempt to address this problem numerous software
methods have been introduced such as Extreme Programming
(XP), Lean Development, Scrum etc. The main problem however
has been to provide guidelines for efficient and effective team
management. The Agile software philosophy was therefore
developed. Uniquely Agile is a framework of principles that
employs a range of different software methods. This approach
allows the strengths of different software methods to be
identified and aggregated. Hence a project manager can identify
the best software method depending on the type of project.
Key words:
Agile philosophy, Agile methods, XP, Scrum, DSDM, FDD,
Crystal, Lean, project management.

1. Introduction

Ever since firms started using computers to process their
business data, successful implementation of information
systems has been a concern of both researchers and
practitioners [1]. In the early days of information systems,
IT professionals alone were responsible for the
information systems and staff in the rest of the
organization took care of the business processes and their
outcomes [2]. This arrangement was fine until businesses
became more dependent on Information Technology for
their operations. Meeting business needs became harder.
There are numerous factors that can potentially handicap a
successful IT department. Developing software systems is
an expensive, and often a difficult process [3]. Although
corporate expenditure on information technology (IT) has
dropped in recent years, firms spend more than a trillion
US dollars a year on IT [4].

Why are managing software projects so difficult? Why are
we seeing so many project failures, especially in software
development? Despite advances in software engineering,
project failure remains a critical challenge for the software
development community. Despite experiencing many
successful projects, software engineers still struggle to
ensure the consistent success of their projects. The history
of failure of information systems development over the
last 20 years is well recorded [5]. A survey of over 8000
projects undertaken in the year 2000 by 350 US companies

revealed that one third of the projects were never
completed and one half succeeded only partially, that is,
with partial functionalities, major cost overruns, and
significant delays [6]. Over the years, researchers have
studied several aspects of software implementation, be it
measuring success or developing and testing models that
explain IS project success or failure. The need for the
participation and involvement of users in IT development
was recognized even in 70s [7]. Human related skills
became important as a result of increased user
involvement in the IS development process [8]. Cheney
also identified the changing emphasis towards general
interpersonal skills and, specifically, the ability to
communicate with end users involved in the IS
development process[8]. For a good software project to be
successful, it has been indicated that focus should be
placed on the processes, technology and people in order to
achieve better performance, and the people-focus is by far
the component that gets the least attention [9].
Software project management continues to be a
challenging area for practitioners: more than half of all
software projects experience severe difficulties and/or
failure [10]. The Standish Group’s “CHAOS Report,” [10]
a widely respected survey of software projects in industry
and government, estimated that, in the year 2004, only
29% of software projects in large enterprises succeeded
(i.e., produced acceptable results that were delivered close
to on-time and on-budget). 53% were “challenged”
(significantly over budget and schedule), and 18% failed to
deliver any usable result. The projects that are in trouble
have an average budget overrun of 56%. This represents a
serious and chronic problem.

2. Agile Philosophy

Despite the existence of a wide range of different software
methods organizations still find it difficult to deliver
quality projects within time, budget and user expectations
[11]. The main problems with project management have
changed. During the 1980’s the major factors were related
to execution problems, during the 1990’s the problem
domain had significantly increased and included:

• lack of top management,
• commitment to the project,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

69

• failure to gain user commitment,
• misunderstanding the requirements,
• lack of adequate user involvement,
• failure to manage end user expectations,
• changing scope/objections,
• lack of required knowledge/skills in the project

personnel,
• lack of frozen requirements,
• introduction of new technology,
• insufficient/inappropriate staffing,
• conflict between user departments

[12].

Significantly most issues identified are human related
concerns. In an attempt to address this problem numerous
software methods were introduced such as Extreme
Programming (XP), Lean Programming and Scrum.
Methods such as these were to some degree successful
[13]. However no single method is available that can
address all software project management expectations. For
example XP encompasses pair programming but does not
empower developers to make decisions.

Hence the Agile philosophy evolved based on four key
values:

1. Individuals and interactions over processes and
tools

2. Working software over comprehensive
documentation

3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

In recent years, processes based on the Agile Manifesto
have been gaining acceptance among practitioners [14].
The principles behind this manifesto suggest that change
should be welcomed at every stage of the software
development cycle, that working software should be
delivered frequently, and that conveying information via
face-to-face conversation is more efficient than through
written documentation [14]. Agile processes are
characterized as informal and minimally documented, in
addition, these processes put more emphasis on verbal and
social communication on the development team [14].
Uniquely therefore Agile is a framework of principles that
employs a range of different software methods – referred
to as Agile methods. A 2003 global survey of experience
using agile methodologies carried out by an Australian
company produced the results that have been summarized
below:

• 88% of organizations cited improved productivity
• 84% of organizations reported improved quality of

software products

• 46% of respondents reported that development
costs were unchanged using agile methodologies,
while 49 percent stated that costs were reduced or
significantly reduced

• 83% stated that business satisfaction was higher or
significantly higher

• 48% cited that the most positive feature of agile
methodologies was their ability to ‘respond to
change rather than follow a predefined plan’ [13].

The benefits of agile are multi dimensional, but the most
important change is that it focuses the entire organization
on meaningful delivery to the customer. Agile
methodology helps to achieve customer perceived value
[15]. Agile software development methodologies have
since their inception claimed to improve the quality of the
software product [16].

Results from a survey done in 2006 at Microsoft to
identify what the participants thought were the top 10
benefits with agile development are listed below in table 1
[17]. The top benefit was improved communication and
coordination among team members. It was seen useful to
bring testers and developers together. The second most
cited benefit was quick releases. This was a consequence
of continuous integration where workable software was
released every few weeks than months or years.

No. Benefits with agile development Participant

number
1. Improved communications 121
2. Quick releases 101
3. Flexibility of design 86
4. More reasonable process 65
5. Increased quality 62
7. Better customer focus 50
8. Increased productivity 28
9. Better morale 23
10. Testing first 22
Table 1: Benefits to agile development methodologies [17]

The authors found that there is little comparative analysis
of agile methods; some work have been done by
Abrahamsson’s group [18, 19]. However, to date it has not
been possible to identify techniques unique or common to
each Agile method.

3. Evaluation of Agile Methods

There are many Agile methods. For this study six of the
most common Agile methods were selected:

1. XP
2. Scrum

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

70

3. DSDM
4. FDD
5. Crystal
6. Lean

Each of these methods was analyzed in detail and hence
twenty five techniques were identified (table 2). The
authors define a technique as a unique and important
requirement in software development projects, for example
iterative development, daily team meetings etc.
Techniques were defined as general and specific based on
how detail the techniques were defined in the methods.

 Technique General Specific
1 Daily builds of complete system
2 Iterative development
3 Iteration of fixed length
4 Incremental development
5 Customer on-site
6 Frequent delivery
7 Whole team works same location
8 Dedicate meeting place
9 Daily team meetings
10 Testing is integrated
11 Project management emphasis
12 Communication
13 Collaboration
14 Coordination
15 Knowledge sharing
16 Working with uncertainty
17 Empowered to make decisions
18 Courage to make mistakes
19 Requirements as prototypes rather

than text

20 40 Hours week
21 Pair programming
22 Refactoring
23 Small software product releases
24 Collective ownership of code
25 Champion role

Table 2: List of techniques

Based on these techniques these six Agile methods were
evaluated (table 3). Hence it is possible to identify the
techniques unique to each Agile method. For example the
technique specific to XP is ‘40 hours week’ and to DSDM
is ‘dedicated meeting place’. There are other techniques
which are common to limited methods. Scrum and FDD
are characterized with technique ‘champion role’ and
Scrum and DSDM are characterized with technique ‘ daily
team meetings’. Techniques such as ‘pair programming’
will need to be investigated to identify suitability for the
project and team.
A study was previously done comparing XP and Scrum
using a framework based on the agile manifesto [20]. The
study found to meet most, but not all of the criteria in the
manifesto. When amalgamating two or more methods, it
gives a solid basis. There are further practical reasons for
combining methods. XP lacks support for project

management [19], Scrum lacks specific practices for
managing iterative and incremental projects. A
combination of XP and Scrum [20], XP and Crystal
methods [21], XP and ASD [22] are few of the proposed
method combination that have been considered in the past.
Only XP offers concrete guidance over whole lifecycle
[19] and this explains why XP is the method most often
proposed in combination with other agile methods.
Recommendations to combine methods or use techniques
from one method in another method have come from a
need to address these weaknesses.

Hence a project manager can select a specific method or
combination of methods best suited to the project.

Technique

X
P

Sc
ru

m

D
SD

M

F
D

D

C
ry

st
al

Le
an

Daily builds of complete
system

Iterative development
Iteration of fixed length
Incremental development
Customer on-site
Frequent delivery
Whole team works same
location

Dedicate meeting place
Daily team meetings
Testing is integrated
PM emphasis
Communication
Collaboration
Coordination
Knowledge sharing
Working with uncertainty
Empowered to make decisions
Courage to make mistakes
Requirements as prototypes
rather than text

40 Hours week
Pair programming
Refactoring
Small software product releases
Collective ownership of code
Champion role

Table 3: Evaluation of Agile methods

Conclusions

The Agile methods have proved to be of value to the
software development community. However there was no
systematic method available to guide the selection of the
most appropriate one or combination of for a given type of
project. The identification of techniques allows each Agile
method to be characterized and hence selected on the basis
of the required techniques. This therefore is an aid to

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

71

improving project management. However further work is
needed.

References

[1] Rivard, S., et al. Project Managers' Influence Tactics and

Authority: A Comparison. 1998.
[2] Avital, M. and B. Vandenbosch. The relationship between

psychological ownership and IT-driven value. in
Proceedings of the twenty first international conference on
Information systems 2000. Brisbane, Queensland, Australia

[3] Cerpa, N. and J.M. Verner, Why did your project fail?
Communications of the ACM, 2009. 52(12): p. 130 - 134.

[4] Love, P.E.D., A. Ghoneim, and Z. Irani, Information
technology evaluation: classifying indirect costs using the
structured case method. Journal of Enterprise Information
Management, 2004. 17(4): p. 312-325.

[5] Morien, R. Agile Management and the Toyota way for
Software project management. in 3rd IEEE International
conference on Industrial Informatics. 2005.

[6] Lamsweerde, A.v., Requirements engineering in the year
00: a research perspective, in Proceedings of the 22nd
international conference on Software engineering. 2000,
ACM: Limerick, Ireland.

[7] Lucas, H.C., A User-Oriented Approach to Systems Design,
in Proceedings of the 1971 annual conference. 1971, ACM
Press. p. 325 - 338.

[8] Cheney, P.H. Information Systems Skills Requirements:
1980 & 1988. 1988: ACM.

[9] Leonard, A. Enabling End Users To Be More Efficient
During Systems Development. in Proceedings of SAICSIT
2002,. 2002: ACM.

[10] Standish, G., 2004 Third Quarter Research Report. 2004,
The Standish Group International: West Yarmouth, MA,
USA.

[11] Johnstone, D., S. Huff, and B. Hope. IT Projects: Conflict,
Governance, and Systems Thinking. in Proceesings of the
39th Hawaii International Conference on System Sciences.
2006: IEEE.

[12] Keil, M., et al., A Framework for identifying software
project risk. Communication of the ACM, 1998. 41(11): p.
76 - 83.

[13] Shine Technologies. Agile methodologies - Survey results.
2003 [cited 2010 27th May 2010]; Available from:
http://www.shinetech.com/attachments/104_ShineTechAgil
eSurvey2003-01-17.pdf

[14] Valencia, R.E.G., V. Olivera, and S.E. Sim. Are Use Cases
Beneficial for Developers Using Agile Requirements? in
Fifth International Workshop on Comparative Evaluation in
Requirements Engineering. 2007: IEEE.

[15] Gat, I. How BMC is Scaling Agile Development. in
Proceedings of AGILE 2006 Conference. 2006: IEEE.

[16] Mnkandla, E. and B. Dwolatzky. Defining Agile Software
Quality Assurance. in Proceedings of the International
conference on Software AEngineering Advances. 2006:
IEEE.

[17] Begel, A. and N. Nagappan. Usage and Perceptions of Agile
Software Development in an Industrial Context: An
Exploratory Study. in First International Symposium on
Empirical Software Engineering and Management. 2007:
IEEE.

[18] Abrahamsson, P., et al., Agile software development
methods - Review and Analysis. 2002, University of Oulu.

[19] Abrahamsson, P., et al. New Directions on Agile Methods:
A Comparative Analysis. 2003: IEEE.

[20] Visconti, M. and C.R. Cook, An ideal process model for
agile methods, in 5th International conference on product
focussed software process improvement PROFES. 2004,
Springer-Verlag: Berlin. p. 431 - 441.

[21] Cockburn, A., Agile Software Development. 2002, Boston:
Addison-Wesley.

[22] Highsmith, J., What is Agile Development? The journal of
Defense Software Engineering, 2002.

Mrs. Anu Sutharshan is studying PhD at
Edith Cowan University as a part time
student. Her interest includes agile
methodology, cultural studies, project
management and team management. She
has been in IT business for the past 20
years employed by Government and private
sectors. She is currently working as Team
Leader at Department of Transport,
Western Australia, managing Application

development and support team members. Anu has been involved
in managing many complex medium to large software
development projects.

A/Prof S. P. Maj has been highly
successful in linking applied research with
curriculum development. In 2000 he was
nominated ECU University Research Leader
of the Year award He was awarded an ECU
Vice-Chancellor’s Excellence in Teaching
Award in 2002, and again in 2009. He
received a National Carrick Citation in 2006
for “the development of world class

curriculum and the design and implementation of associated
world-class network teaching laboratories”. He is the only
Australian judge for the annual IEEE International Student
Competition and was the first Australian reviewer for the
American National Science Foundation (NSF) Courses,
Curriculum and Laboratory Improvement (CCLI) program.

