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Abstract

This paper proposes a verilog implementation of a normalised
Least Mean Square (NLMS) adaptive algorithm. The envisaged
application in the wireless communication identification system.
The good convergence of NLMS algorithm has made us to choose
it. It also has good stability. Adaptive filtering constitutes one of
the core technologies in digital signal processing and finds
numerous application areas in science as well as in industry. In this
paper NLMS algorithm is used to reduce the error at the output of
the receiver in wire less communication system. A verilog
implementation is developed for a Sth order NLMS adaptive filter.
As compared conventional LMS it has been proven that NLMS
Algorithm has good behaviour. Model Sim simulations results
altogether with plots obtained in Mat lab prove the same.
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1. Introduction

Even though many interesting adaptive algorithms are
present around us. The applications with

limited precision and processing power, the Normalized
Least-Mean- Square (NLMS) algorithm [3] and some
versions of it (e.g., frequency-domain or sub-band versions
[1]) are usually used. The step-size parameter will control
the algorithm, in terms of convergence rate, maladjustment,
and stability. Within the stability conditions, the choice of
this parameter reflects a trade-off between fast convergence
rate and good tracking ability on the one hand and low
maladjustment on the other hand. To meet these conflicting
requirements, the step size needs to be controlled. This
algorithm gives good performance.

Reducing an error in receiver system has been a
central issue in wireless communication networks and
teleconferencing etc. reducing an error in the procedure of
specifying the receiver model in terms of the available
experimental evidence, that is, a set of measurements of the
input output desired response signals and an appropriately
error that is optimized with respect to Receiver parameters.
Adaptive identification refers to a particular procedure
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where we learn more about the model as each new
pair of measurements is received and we update the
knowledge to incorporate the newly received
information.

2. Need for NLMS

In this paper, we will be describing the more stabled
adaptive algorithm Normalized Least Mean Square
(NLMS) algorithm. The paramount reasons for this
decision are as follows:
1. The LMS adaptive FIR filter is the most
popular adaptive estimation technique and is likely
to remain so in the foreseeable future [9]. Despite
speculations that the LMS algorithm is losing its
established status as the workhorse for the design of
linear adaptive systems, there are still numerous
ongoing researches and state-of-the-art advances in
this algorithm [7]. A forthcoming new book titled
—Least-Mean-Square Adaptive Filters, edited by
Bernard Widrow (originator of LMS) and Simon
Haykin,is a good representative of the devoted
interests in this adaptive algorithm shown by
researchers around the world.

2. The LMS algorithm can be easily modified
to a normalized step-size version known as the
Normalized LMS (NLMS) algorithm. NLMS, not
only provides a potentially faster adaptive
algorithm, but also guarantees a more stable
convergence in response to variations of input
signal power.

2.1 Following this approach, the main objectives
of this paper are:

1. Study of LMS /NLMS adaptive algorithms.
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2. Implement an NLMS-based adaptive algorithm for
receiver system in wireless communication to show its good
convergence rate and reduction in error.

3. Design of modified LMSalgorithm

In this section the derivation of modified LMS has been
given and it is named as normalised least mean square
algorithm (NLMS).

In many adaptive filter algorithms Normalized least mean
square algorithm (NLMS) is also derived from conventional
LMS algorithm. The objective of the alternative LMS-based
algorithms is either to reduce computational complexity or
convergence time. The normalized LMS, (NLMS),
algorithm utilizes a variable convergence factor that
minimizes the instantaneous error. Such a convergence
factor usually reduces the convergence time but increases
the misadjustment. In order to improve the convergence rate
the updating equation of the conventional LMS algorithm

can be employed variable convergence factor H it is derived
as below.

po2x directly affects the convergence rate and stability of
the LMS adaptive filter. As the name may imply, the NLMS
algorithm is an effective approach to overcome this
dependence, particularly when the variation of input signal
power is large, by normalizing the update step-size with an
estimate of the input signal variance, o2x(n) [10]. In
practice, the correction term applied to the estimated tap-
weight vector w(n) at the n-th iteration is ‘normalized’ with
respect to the squared Euclidean norm of the tap input x(n)
at the (n-1)-th iteration [8],
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Apparently, the convergence rate of the NLMS algorithm is

directly proportional to the NLMS adaptation constant ;', ie.

the NLMS algorithm is independent of the input signal
power. Theoretically, by choosing £ so as to optimize the

convergence rates of the algorithms, the NLMS algorithm
converges more quickly than the LMS algorithm [10].
Indeed as reported in [11], by taking into account the
variation of signal level at the filter input and selecting a
normalized correction term, we get a stable as well as a
potentially faster converging adaptation algorithm for both
uncorrelated and correlated input signal. It has also been
stated that the NLMS is convergent in the mean square if the
adaptation constant U (note that it is no longer called the step
size) satisfies the following condition [12]:

o<fl<2 L. 32

Despite this particular edge that NLMS exhibits, it
does have a slight problem of its own. Consider the
case when the input vector x(n) is small. Instability
may occur since we are trying to perform numerical
division by a small value of the Euclidean Norm
Hx(n)112.

However, this can be easily overcome [8] by
appending a positive constant to the denominator in
W(n+1) = w(n) +pe(n)x(n) such that

W(n+1) = win) + meﬁn}x(n}

....... 33

where ¢ = |lx (n)l % is the normalization factor.

With this, we obtain a more robust and reliable
implementation of the NLMS algorithm.
In summary, we can write the LMS algorithm for
every search iteration, in the form of three operations:
Initial Condition: 0 < p <2

x(0)=w (0)=[0, ...... ,01,

¢ = a small constant

1. Filter Output: y(n) = w(n) x' (n)
2. Error Estimation: e(n) = d(n) - y(n)
3. Tap-weight adaptation:

w(n+ 1) =w(n) + c+||,\:§f:n)“2 e (m)x(n)

4. DETAILED DESIGN AND
IMPLEMENTATION

The below block diagram (figure 4.1)shows the inputs
and outputs of the NLMS algorithm. It has four inputs
and two outputs. Inputs are x in (input data to
adaptive filter),d in (desired input), clk(clock) and
adpt_enable (input bit used for ......... ). Outputs are
error_out (difference between output of filter(y-out)
and desired input (d_in) ) and final out (...).

The inputs x_in and d_in and outputs error_out and
final out are 8bit data.clock and adpt enable are
single bit data.

The NLMS block consists of two shift registers,
calculator, adder and a multiplexer. The inner
structure of the NLMS is as shown in figure 4.2
below
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Figure.4.1: Input and output of NLMS Adaptive Algorithm
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Figure.4.2: Inner Structure of NLMS

The above block shows the inner structure of arrangements
of the internal blocks of NLMS. Here the input to the
adaptive filter x_in is given to the 20-bit shift register and
desired input d_in is given to the 21-bit shift register. The
two outputs of the 21-bit shift register are given to the
calculator block which generates the output y out. The
output of the 20-bit shift register is subtracted with the
output of calculator y_out. The subtracted output is given to

the multiplexer where the enable bit is used as a select
line. The other input of the multiplexer is “00000000”.
The calculator block is used for calculation of y_out
at several iterations. Here we used for five iterations.
We can call the calculator block as the core filter
block because it generates the filter output y_out.

When we considering the calculator block as main
block which is used for several iterations, it consist of
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five inputs and four outputs. In which only clock is the
single bit input, all others are 8-bit data. The calculator
block is as shown in figure 4.3.

ue )
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y_ =4 (Core — x
filter)

C—> ﬂy_

Figure.4.3: Block Diagram of Calculator

The inputs of core filter are assigned to different sub-blocks
of it. Outputs of core_filter are used as the inputs for next
iterations. At last iteration only y_out is considered as the
output of the core_filter.

The inner structure of the core filter block is as shown in fig
4.4. As mentioned above the unit calculator is used 5 times
in single core filter for the calculation of y out. the other
outputs are left open which are of no use.

The calculator block has several internal blocks which
performs the different arithmetic operations inside it.

The different blocks inside the core_filter are adder,
multiplier, shift register, saturation, scaling, and
truncation. The single calculator block uses some
signals which are used for the calculation. The signals
are shiftx(32), shiftxn(32), shiftue(24), shifty(16),
coeff16(16), coeff8(8), xnin_ue(16),
xnin_ue_scaled(16), new_coeff (16),
delayed new_coeff (16), y outl6(16) and y_out8(8).
The numbers in bracket refers to the bit size of that
signal.These signals are used during the different
arithmetic operation of the input data at the calculator
block.

The first block of the calculator is multiplier which
multiplies the 8bit datas x N_in and ue_in. the output
signal xnin ue is 16bit data. The second stage is
scaling. In scaling stage the out may be upgrade or
degrade of the input signal. Here we always degrade
the output of the multiplier stage. The output is
xnin_ue scaled is also 16-bit, which is added to the
16-bit co-efficient signal coeffl6 at next stage. The
signal new_coeff is the output of the adder stage
which is delayed by using shift register in next step.
The delayed new coefficient which is the output of
shift block is 16-bit data which is used in calculation
of the next coefficient for core filter. The output
checked for its limit in saturation stage. In saturation
stage care is taken about the data not to exceed the
limit of the coefficient. The saturated data is truncated
to 8-bit in next stage.

The next stage is 8bit multiplier which multiplies the
8bit truncated coefficient with 8MSB bits of shiftx
signal which gives 16-bit product. These 16 bit output
i.e y_out 16 is truncated to 8-bit in next stage. The 8-
bit output is the final output of the core_filter after Sth
iterations.
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Figure 4.4: Inner Structure of the NLMS Core Filter
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programs are synthesised separately for each block.
5. SYNTHESIS AND SIMULATION The synthesis result observed for core filter of the
RESULTS NLMS block and the total NLMS block separately are
shown below
The implemented VHDL program for NLMS adaptive
algorithm is now synthesised using Xilinx 10.1. Modelsim
is used to study the waveforms of each stage. The VHDL
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Figure 5.1Top Level Structure for NLMS Algorithm.
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7. Conclusion

A review of adaptive filters shows that the NLMS algorithm
is still a popular choice for its stable performance and high-
speed capability. The other advantage of the NLMS over
other adaptive algorithm is its high convergence rate.

The high-speed capability and register rich architecture of
the FPGA is ideal for implementing NLMS. A hybrid
adaptive filter is designed with a direct-form FIR filter
coded in verilog and with the NLMS algorithm written in
verilog code executing on the Xilinx output is simulated on
MATLAB.

The fig 5.9 and fig 5.13 shows the ouput waveform for
NLMS with 2K Hz and 20K Hz frequency input. We can
see in the snapshot it contains of 3 different inputs namely
expected input(the output of demodulator), desired input(),
and clock with the oupts namely error signal showing the
error generated due to the difference between the disered
input and the expected input. We can also see that the error
signal is slowly turned to O after some long iteration. Also
we can see the final wave in

the graph called as y output of the NLSM. The fig 5.10
shows the graph of error curve generated as the output of
Error signal at NLMS. We can see from the snapshot the
error is approximately equal to O or less than zero. This is
because we have directly considered the output of RRC
demodulator which contains very less amount error.

The fig 5.11 and fig 5.14 shows the output of the system.
We can see from the graph it contains two wave red as the
true output and blue as the estimated output. The analysis
done form the graph is that there is very silight difference
between the two signal because of less error. If the error
increases then the difference can go on increasing. Above
fig 5.12 and fig 5.15 show the snpashot for the value of the
weights for the NLMS. We can see from the snpashot that
the difference between the two is very less as the error is
less and the data is approximately the same as the desired
input so the weights are not varied much. As the error in the
wave goes on inreasing the difference aslo goes on
increasing so the the outpt can be approximated to the
desired signal.
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