
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

115

Manuscript received December 5, 2010
Manuscript revised December 20, 2010

Managing Virtual Environments with Tree-Structured,
Hierarchy-Embedded Virtual Objects

W M Rizhan W Idris†, Md Yazid Mohd Saman††, Aziz Ahmad††, and Ahmad Shukri Mohd Noor††

†Faculty of Informatics, Universiti Sultan Zainal Abidin (UniSZA), 21300 Terengganu, Malaysia
††Faculty of Science and Technology, Universiti Malaysia Terengganu (UMT), 21030 Terengganu, Malaysia

Summary
Virtual reality (VR) refers to the use of computers and other
related devices; and software to generate the world of simulation.
Through VR, users are able to visualize, manipulate and interact
with the computers and complex data to generate another world.
It has been utilized in various applications in architecture,
medicine, advertisement, business, entertainment, and education.
However, developing VR environments is costly and expensive.
Highly-technical persons are needed to create the virtual objects
from scratch. Once a virtual system is created, managing and
modifying it creates furher problems. There is a need for non-
technical users to be able to create and modify their own virtual
environments. This paper discusses a systematic and dynamic
framework to manage virtual objects in virtual environment. It is
called Virtual Reality System-Hierarchy Embedded Virtual
Objects (VRS-HEVO). This VRS-HEVO framework comprises
of two components; the Stand-Alone VRS-HEVO and the
Distributed VRS-HEVO. They allow the virtual reality system to
be implemented both in stand alone environment and distributed
environment respectively. The models in VRS-HEVO include
Data, HEVO and Viewing models. These are the basic models
applied to both components. For Distributed VRS-HEVO, two
other models are introduced; the Gallery and Client-Server
models. They enable the VR system to be viewed in a distributed
environment. To implement the models, object-oriented
programming language was used. Java, Java 3D and Java Swing
as the object-oriented programming languages and Socket
programming are the main platforms in building the VRS-
HEVO framework. For the usability and performance of the
framework, virtual environments have been created to become
as case studies. The tool has been percieved as an easy tool to
use, especially for an environment in education.
Key words:
Virtual reality, Tree structure, Virtual environment, Virtual
object.

1. Introduction

The use of computer technology especially in
development of computer graphics has given a lot of
contributions in implementing virtual reality (VR)
systems. Many fields have utilized the VR systems such
as in architecture, medicine, advertisement, business,
entertainment and education [1]. The existence of
applications or systems based VR has changed humans’

perceptions, working styles and behaviors toward better
effectiveness.
VR has been defined as the usage of computers and other
devices; and software to generate the world of simulation
[2]. Through the VR, users are able to visualize,
manipulate and interact with the computers and complex
data to generate another world [1]. The VR allows users to
enter the computer-generated virtual world to interact with
graphical objects and virtual agents with the sense of
reality [3]. The users can also explore and navigate inside
the virtual world as they walkthrough in actual
environment. The term “Exploration” in the virtual reality
is normally used to describe a user’s displacement within
a small area of space [4]. The combination of terms
“Virtual Exploration” simulates walking or running short
distances and “Navigation” is a term that refers to a long
range travel such as spacecraft, aircraft or sea travel.
Another term that often used in VR is “Walkthrough”.
The concept of “Walkthrough” means the interactive
computer program can generate the experience of
exploring or navigating in a building. It is meaningful
especially for the purposes of visualizing and evaluating
the models of buildings before they are constructed [5].
Artificial Reality, Cyberspace, Virtual World (VW),
Virtual Environment (VE) and Synthetic Environment
(SE) are the other concepts that also refer to the VR [6]. In
fact there is a story behind the appearances of VW, VE
and SE terms. Arns [7] has explained that these terms
have come from an effort to move away the stereotypes
from associating with the VR term. Most popular media
have frequently misused or misunderstood the VR term by
referencing to such activities such as 3D movies, video
games and World Wide Web. Franchi [8] has described
that VR is a computer that creates sensed experiences.
The experiences can cause users to believe and
differentiate between virtual experiences and reality
experiences. The VR uses computer graphics, sounds and
images to reproduce the electronically versions of real life
situations. Although many definitions of the VR have
been given, there are three essential principles of VR
shared in any VR applications:

(i) Immersive - this refers to a situation that allows users

to have feeling of being in a part of generated

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

116

environment. Typically the involvement of
interactions or manipulations in the system may lead
to get better immersion. The capabilities of VR
devices such as desktop computer, head mounted
display (HMD) and wired gloves also contribute to
the immersion.

(ii) Augmentation to the Real World - this refers to the
perception towards the real world. It involves the
integrations of virtual information or virtual models
such as computer graphics, text, and sound in the
physical environment so that users can perceive that
information as existing in real-time [9].

(iii) Through Windows On World (WOW) - WOW is a
VR system used to generate virtual environment.

Several types of the VR systems based on interface
methods used in the system are Desktop VR, Video
Mapping, Immersive VR, Telepresence, Augmented
Reality and Fish Tank VR. There are five components in
VR which are very important in VR applications.

(i) Virtual Object (VO) component refers to 3D model or

3D object that exist in virtual environment [4]. For
examples: The models of people, animals, buildings
and things.

(ii) Virtual Environment (VE) component refers to
environment where models or objects exist [4]. The
VE provides a 3D space to place the models or
objects inside it. For examples: House and room.

(iii) Viewing component is visualization of a task [4]. All
operations or tasks exercised in the VE can be
visualized through the viewing component. This
component can help explain the usage of terms; field
of view; position and orientation; and distance of the
objects. It is possible for the VR systems having
several viewings or commonly pointed out as multi-
views or multi-displays.

(iv) Walkthrough component is related to the interactive
computer program to generate the walkthrough
experience in a constructed building [5]. This
component allows users to explore and navigate in
the VE. The users may go forward and backward or
may turn left and right as if they walk or run in the
real environment. Typically, this component is used
for the visualization and evaluation purposes in the
construction, tourism and research fields [5].

(v) Manipulation component refers to the users’
interactions with VOs in the VE [4]. Some examples
of activities referring to this component are selecting
an object, changing the position of an object, rotating
and scaling an object.

Several examples of VR applications have used in various
fields [1]; the Virtual Football Trainer application for
virtual games; the Barcelona Pavilion, the Great Pyramid

of Khufu and Detroit Midfield Terminal Project
applications for virtual architectures; Medical Readiness
Trainer (MRT) application for virtual medicals; Ship
Motion Simulation, Virtual Prototyping of Automotive
Interiors, Virtual Prototyping of a Concept Car, Virtual
Simulation of Ship Production Processes, Accident
Simulation, Maneuvering Submarine and Virtual
Prototyping of Sailing Yacht applications for simulations
and animations; Lake Michigan Flow Field Visualization,
the Moebius Strip in VRML, Miller Indices in VRML
applications for virtual visualizations; and Robots in
Virtual Manufacturing for virtual Manufactures [10]; The
other VR applications; WebSET project for medical
training, Computer Augmented MRA System for medical
visualization/surgical planning, Integrated Environment
For Rehearsal and Planning Surgical Interventions
(IERAPSI) for surgical simulation and the Virtual Tissues
[11].
Although the achievements in the developments of VR
applications have been tremendous, existing tools in
creating VOs are costly to be purchased. They are also too
technical to be used to create VOs from scratch.
Sometimes, researchers find it inadequate to utilize the
utilities provided in the 3D tools. The VE will be over
loaded and filled with the undesired VOs if there is no
proper management of the VOs. Indirectly such situation
will lead to delivering information unsystematically.
In this paper, a framework to manage virtual objects in
virtual environment is discussed in detail. It is called
Virtual Reality System-Hierarchy Embedded Virtual
Objects (VRS-HEVO). Tree data structure has been
proposed as an approach to be used for managing the VOs
in the VE. This provides a systematic and dynamic
management of VEs.

2. Related Work

The components of VOs, viewing, walkthrough and
manipulation used in the previous works have been
studied. Dynamic Electronic Catalogs system have
utilized pre-made files for creating VOs and VEs,
walkthrough mechanism for navigation in the VE, rotation
operation for manipulation of VOs and single-view mode
for visualization [12]. In Virtual Community Trials
Platform, a walkthrough method called Community 3D
Walkthrough System has been proposed for moving,
recording key walkthrough position nodes and playing
back 3D animation with a walkthrough path. Single-view
mode has been utilized for visualization [13]. However,
there is no tree structure implemented in both VR systems.
Some VR applications have implemented the tree
structure for management of objects, data or information.
In V-REALISM system, the tree structure is used to
manage and manipulate the imported geometric models in

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

117

the VE. The models can be classified into environment
model and system model in the tree structure. The
environment models are used to simulate the maintenance
environment and facilitate the visualization and
exploration. The system models are further decomposed
into component and subassembly models. Each
component model is represented as a geometric mesh
surface model which is displayed as a set of triangular
surfaces. The smallest unit of a geometric model is
triangular surface that is depicted as “TriUnit” in the
hierarchy [14]. This system however can produce only a
VE in a certain time. Yuan et al. [9] have proposed
assembly guidance techniques using the Virtual
Interaction Panel (VirIP) and the Visual Assembly Tree
Structure (VATS). VirIP is used to track the real-time
interaction pen using a Restricted Coulomb Energy (RCE)
neural network. VATS is used to represent the assembly
sequences of complex products. VATS specifically works
for management of assembly information and retrieval for
the AR-assisted assembly guidance system. VATS
comprises nodes that represent the assembly information
such as geometric properties of an assembly part, sub-
assembly and so on. The sample tree proposed by Klein et
al. [15] is used to store a number of polygons in a scene
for rendering complex environment. The rendering
process that provides caching mechanism allows only few
nodes to be loaded from one frame to the next frame. This
caching mechanism has employed the notion “Area Of
Interest” (AOI) to use and render the objects in
corresponding area. Meanwhile, Java 3D features have
been used as main hierarchy structure in managing and
creating the virtual anatomic models [16]. The scene
graph concept has been used to represent the multi-modal
anatomy models. Group node in the structure is similar to
Java 3D scene graph TransformGroup node and
Geometry nodes are composed by the geometry node in
Java 3D with some functions needed by other modal data.
Youn and Wohn [17] have implemented the tree structure
called C-Tree in their collision localization algorithm.
Their research focuses on localizing the possible collision
regions by utilizing C-Tree for the 3D objects so that
users can manipulate the 3D objects directly in real-time
with the 3D glove-cursor.

3. VRS-HEVO Framework

A framework called VRS-HEVO is proposed to manage
VOs in a VE. It describes the whole processes in the
development of VR system for stand-alone environment
and for distributed environment as depicted in Fig. 1. The
framework can be split into two different designs as
follows:

(i) Stand-Alone VRS-HEVO (SAVRS-HEVO) - This
design utilizes the integrations of several models for
developing VR system in stand-alone system
generally and for managing VOs in VE specifically.

(ii) Distributed VRS-HEVO (DVRS-HEVO) - This
design utilizes socket and gallery models to be
integrated with Stand-Alone VRS-HEVO to produce
the VR-based distributed system.

Fig. 1 Framework of VRS-HEVO

Three important models involved in the development of
SAVRS-HEVO are Data Model, HEVO Model and
Viewing Model. Data Model (DM) plays role as a
location or database in a computer to place the VOs. Two
important components in DM that correspond to the VOs
are Loading Objects and Listing Objects. HEVO Model is
particularly responsible to manage properly the loaded
VOs in the VR system. For such purpose, Tree Structure,
Organization of VOs and Sequential File components are
utilized for directly contacting the VOs. Viewing Model
(VM) is used to visualize VOs in VE. Four main
components in VM are Single-View, Multi-Views,
Walkthrough and Manipulation.
DVRS-HEVO design is executed to produce a VR system
in distributed environment. This design technically can be
divided into Server and Client sites. Socket programming
plays an important role as a bridge that connecting
between both sites so that sending and receiving data
activities can be executed smoothly. In general, the server
site comprises the Gallery Model and Client-Server
Model. The client site contains all three models that have
been discussed earlier in the SAVRS-HEVO design which
are Data Model, HEVO Model and Viewing Model.
Gallery Model acts as a place of resources or VOs in the
server site. It functions as a database that contains a
number of directories. Each directory represents a
particular field and is named bases on its field. All virtual
objects are collected in the directories that relevant to their
fields. Client-Server Model (CSM) is a component that
allows VRS-HEVO running in the distributed
environment. For this case, socket is used as a bridge to
connect the server and client sites. Communication,

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

118

sending and receiving data operations can be performed
through the socket. The socket is also functioning to
manage the simultaneous connections of many clients.

3.1 PetriNet Models of Distributed VR Environment

DVRS-HEVO involves multi-users or multi-clients
working on the same data or sources for a certain task at
their own preferred time. The simultaneous operations
carried out in this environment may cause data
inconsistency and deadlock in the system. It is crucial that
the system is designed correctly so that data consistency
and free-deadlock can be achieved in the system. For such
purpose, a tool known as PetriNet (PN) is utilized [18].
This tool allows operations in the distributed environment
to be simulated and animated before the implementation
process begins. The PN models have been created using
Platform Independent PetriNet Editor (PIPE2) software
[19]. PN is a theory introduced by Petri [20]. PN is a
graphical and mathematical tool to simulate and analyze
systems that are sequential, concurrent, asynchronous,
distributed and stochastic [21]. Fig. 2 shows a basic model
of PN. It consists of five main components which are
places, transitions, arcs, weight and marking.

Fig. 2 Basic Model Of PetriNet

Mathematically, PN is defined as PN = (P, T, A, W, M0),
where:

 P = P1, P2, …, Pm is a finite set of places
 T = T1, T2, …, Tn is a finite set of transitions
 A < (P × T) U (T × P) = a set of arcs
 W : A 1, 2, 3 … = a weight function
 M0 : P 0, 1, 2, 3, … = the initial marking
 P ∩ T = Ø and P U T ≠ Ø

Nodes and arcs are two important components in PN used
to generate a graphical representation. The nodes may
comprise place nodes (P) that are drawn as circles and
transition nodes (T) as bars or boxes while arcs may act as
connections between the place and transition nodes. The
places may contain any number of tokens (black dots)
which determines the state of a system. Tokens are moved
from a place to another place by firing of transitions.
Firing a transition is enabled if there is enough token in
the input place.
In a distributed environment, the concurrency happens
when two or more clients connects the server
simultaneously to access the preferred data or VOs.

Simulations of PN models for single user, two users and
three users are presented.
Fig. 3 shows a PN model for the simulation of single-user
accessing the shared resources in the DVRS-HEVO.
Mathematically, Figure 3 demonstrates the PN model with
a set of places, P = {P1, P2, P3, P4, P5, P6, P7, P8, P9,
P10}; a set of transitions, T = {T1, T2, T3, T4, T5, T6}; a
set of arcs, A = {(P1,T1), (P5,T1), (T1,P4), (P4,T4),
(P8,T4), (T4,P5), (T4,P9), (P9,T5), (T1,P2), (P2,T2),
(P7,T2), (T2,P6), (P6,T5), (T5,P10), (T5,P7), (P10,T6),
(T6,P8), (T2,P3), (P3,T3), (T3,P1)}. Default weight
function is one which is used to determine how many
input tokens are needed to enable transition. The
developed PN model for single user has been tested to be
bounded, safe and free deadlock using PIPE2 [22].

Fig. 3 A PN Model Of DVRS-HEVO For Single-User

Fig. 4 shows a PN model for the simulation of two users
accessing the shared resources in the DVRS-HEVO. The
PN model for such condition in mathematical is defined
as a set of places, P = {P1, P10, P11, P12, P13, P2, P3,
P4, P5, P6, P7, P8, P9}; a set of transitions, T = {T1, T2,
T3, T4, T5, T6, T7, T8, T9}; and the initial marking of the
system, M0 = (1,0,1,0,0,0,0,0,1,0,1,1,0).

Fig. 4 A PN Model Of DVRS-HEVO For Two Users

A PN model for the simulation of triple or three users
accessing the shared resources in the DVRS-HEVO is
illustrated in Fig. 5. It demonstrates a set of places, P =
{P1, P10, P11, P12, P13, P14, P15, P16, P2, P3, P4, P5,
P6, P7, P8, P9}; a set of transitions, T = {T1, T10, T11,
T12, T2, T3, T4, T5, T6, T7, T8, T9}; and the initial, M0 =
(1,0,1,0,0,1,0,0,0,0,0,1,0,1,1,0).

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

119

Fig. 5 A PN Model Of DVRS-HEVO For Triple-Users

4. HEVO Model

A hierarchical tree data structure has been proposed as a
new approach to be used specifically for managing the
VOs in the VE. This approach is called Hierarchy-
Embedded Virtual Objects (HEVO). It is one model
designed in the VRS-HEVO framework. In computer
science, a tree is a widely-used data structure that
emulates a tree structure with a set of linked nodes [23]. It
is a hierarchically ordered, multi-level system that can be
represented by an inverted tree. In the tree structure, each
node may have parent node and zero or more children
nodes.
The top node in the tree is called root node with the other
nodes being connected below [24]. The very bottom
nodes of the tree or the nodes that have no children are
called leaves nodes (Fig. 6).

Fig. 6 Elements In A Tree Structure

Through mathematical definition [25], a tree T is a finite,
non-empty set of nodes,

T = {r} U T1 U T2 U …U Tn (1)
With the following properties:

• A designated node of the set, r, is called the root of

the tree; and
• The remaining nodes are partitioned into n ≥ 0

subsets, T1, T2,....., Tn, each of which is a tree.

For convenience to denote the tree T, the following
notation is used,

T = {r, T1, T2,....., Tn} (2)

The other important terms [25] can be produced from (2):
• The degree of a node is the number of sub-trees

associated with that node. For example, the degree of
tree T is n.

• A node of degree zero has no sub-trees. Such node is
called a leaf.

• Each root ri of sub-tree Ti of tree T is called a child of
r. The term grandchild is defined in a similar manner.

• The root node r of tree T is the parent of all the roots
ri of the sub-trees Ti, 1 < i ≤ n. The term grandparent
is defined in a similar manner.

• Two roots ri and rj of distinct sub-trees Ti and Tj of
tree T are called siblings.

The tree structure in HEVO model allows the root node to
become main VE. The sub-nodes in the tree structure may
represent the other VEs or VOs. Basically, parent node
may turn out as VE and child node may become VOs. The
leaves nodes certainly represent as VOs.

In VR, the use of HEVO furnishes several advantages as
follows:

(i) Categorizations of VOs

The VOs can be split into a number of categories or
groups. The categorizations can be made when child
nodes or sub-nodes are added or inserted under a
particular parent node. In this case, the child nodes
are said to be grouped or classified in their own
parent nodes’ category. The parent nodes that contain
of their child nodes are defined as a collection of
groups or categories.

(ii) Areas of Interests
Categorizing the objects will also produce a number
of levels or depths. Fig. 7 shows the nodes in the tree
structure that can be split into a number of groups
based on parent-child concept. Each group then is
called Area of Interest (AOF). For instances, Area 1
canvases the root node as parent while nodes 1, 2 and
3 as its children; Area 2 contains node 1 as parent
node while its children are nodes 1.1, 1.2 and 1.3; and
so do for the other areas. From the results, the VOs
and VE can be defined and created successfully to be
placed in the VR system. In this case, any parent node
will be a VE while the child nodes will turn out to be
the VOs in the VE (parent node).

(iii) Insertion of More Information
More details of information can be inserted especially
for each VO in each area using HEVO technique. By
separating the areas, all nodes that resident inside
each area seem more obvious without much
complexity. The VOs perhaps may get hold of
complete descriptions to be displayed and delivered

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

120

as useful knowledge. Several main descriptions of a
certain VO included name of VO, location, path,
parent node, child nodes, number of child nodes and
clarifications of VO.

Fig. 7 Levels in Tree Structure

(iv) Modifications of Information and VOs

Any modification or change on either information or
VOs especially in terms of their positions and
orientations can be made independently and easily.
The modification only affects at the particular
infected area. The rest of areas are not influenced by
the modification.

(v) Iterations of VOs
A VO in the tree structure can be reused or repeated
using HEVO technique. There is no limitation in the
duplication of VOs. The duplicated VO then can be
manipulated to produce a unique VO that differs from
the other VOs. For such purpose, a mechanism in
HEVO to manipulate the VOs in terms of rotation,
translation scale is used.

(vi) Synchronization of VEs
In HEVO, the VOs is managed and arranged in
synchronized. A systematical flow of VOs’ node can
be seen in the tree structure from the root node till the
leaves nodes. Each area of interest produced
according to parent-child concept is managed in
sorted. Therefore, it leads to the synchronization of
VEs.

5. Development of VRS-HEVO

Four steps have been implemented to achieve the
development of VRS-HEVO. They are shown in Fig. 8. In
the first step, an interface of VRS-HEVO called Loading
editor is initialized. This interface allows users to search
the location of VOs either in users’ computers or in the
server and select the desired VOs to be loaded in the
system; list the names of VOs that are successfully
loaded; and display the sample of VOs selected from the
list. The second step provides the use of data structure
called HEVO editor. The users can create the graphical
tree structure through several types of operations provided
in this editor such as adding new VOs in the tree structure,

adding new group of VOs, removing unneeded VOs and
clearing all VOs in the tree structure.
Organizing VOs editor in the third step works to manage
the VOs in the VE in terms of position and orientation.
The users can view a VE in multi-monitor screens to
precisely locate the VOs at the desired places. Each
monitor screen projects different viewing such as front,
left, top and perspective views. Through translation and
scale operations, the users can move the selected VO at
new location in the VE and resize VO. Information about
VOs such as file, caption, description, parent, path,
location, scale and rotation also can be saved
systematically in the text file with extension *.hevo for
reference, distribution and display in future. Thus the
users do not need to rebuild the VE from the beginning.
The last step allows the users to view the final results of
VEs either in single-view mode or multi-views mode.
They can walkthrough in the VE using the arrow keys on
the keyboard. The mouse is used to allow the users
manipulating and interacting with VOs in the VE.

Fig. 8 Four Steps In The Development of VRS-HEVO

Based on the created models in the VRS-HEVO
framework, four related editors have been built including
Loading editor (Fig. 9(a)), HEVO editor (Fig. 9(b)),
Organizing VOs editor (Fig. 9(c)) and Viewing editor (Fig.
9(d)). Java 3D have been proposed as an object-oriented
(OO) programming language to be used as main platform
in developing the VR system.
Loading Editor is an initial interface in VRS-HEVO. It
functions to add or insert virtual object achieved whether
from certain locations in the computer or from the
database in the server. HEVO Editor is used to manage
VOs using the hierarchy tree structure. Several types of
operations such as adding new VOs, adding new group of
VOs, removing unneeded VOs and clearing all virtual
objects are provided in the HEVO Editor. Organizing
VOs Editor works to manage the position and orientation

Begin
 #1:Initializing interface of system Loading Editor

i) Finding & Selecting VOs
ii) Listing Names of VOs
iii) Displaying Preview Screen of VOs

 #2:Developing a data structure HEVO Editor
i) Creating graphical tree structure
ii) Adding, removing and updating VOs

 #3:Organizing VOs Organizing VOs Editor
i) Multi-Monitor Screens
ii) Translation & Scale operations
iii) Recording VOs’ Information

 #4:Viewing VE Viewing Editor
i) Single-View & Multi-Views
ii) Walkthrough in VE
iii) Manipulation of VOs

End

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

121

of each VO in the VE. For such purpose, multi-monitor
screens are very important especially in precisely locating
the VOs at the desired places. Each monitor screen
projects different viewing such as front, left, top and
perspective views. Two other activities available in this
editor are translation and scale; and recording. The
translation operation allows the selected VO to be placed
at new location while scale operation enables the selected
VO to be resized either to enlarge it or to make it small.
The recording activity executes a sequential text file to
record all information about each VO. The Viewing
Editor functions to display the final products resulted
from the activities that have been done through the
Loading Editor, HEVO Editor and Organizing VOs Editor.
Several activities available in this editor are users may
switch at anytime either single view mode or multi views
mode; users are able to navigate and surround in the VE;
and users may pick and drag the scene graph objects to
rotate the VO at 360 degree or to move the VO at
somewhere.

Fig. 9 Four Interfaces Of VRS-HEVO

6. Case Studies

In this paper, the results of several VEs visualizing World
of Amino Acids, Virtual Forest and Underwater World
are illustrated. VRS-HEVO has been used to develop
them.

6.1. Case Study #1 – VE of Amino Acids

Amino acids are small molecules that may structure
proteins [26]. By forming short polymer chains called
peptides or polypeptides in turn, they construct proteins.

In fact, the amino acids become the basic structural
building units of proteins [27].

Fig. 10 The Structure of All Amino Acids

All molecules contain three important parts; an Amine
group, a Carboxyl group and R group. Both the Amine
group and the Carboxyl group belong to all amino acids.
However, R group varies for individual amino acid. In
fact, each molecule can be recognized through this R
group. The Amine group contains elements NH3+ while
the Carboxyl group contains COO- [26]. A different side
chain is represented by R group specifically to each amino
acid. Fig. 10 shows the basic structure for amino acids.
In using the HEVO method in this case study, several
virtual environments of the amino acids can be created
based on the classification of the amino acids. In this case,
three layers will be obtained in the hierarchical tree
structure. The first layer is where the root takes place. The
root contains six child-nodes which refer to a Gallery
Building and five classes of the amino acids i.e: Polar
with Positive Charge, Polar with Negative Charge, Polar
Uncharged, Non-Polar and Aromatic. To develop the
model of each group, new group utility in the HEVO
system is used. The name of new group then is changed
based on the classes of amino acids. It is because the
group has no model to represent itself in the virtual
environment. In the last layer, all children or virtual
objects will be listed according to their groups
respectively.
Fig. 11 depicts the tree structure for the amino acids group
using HEVO method. Through the tree structure in HEVO,
the VOs and VE components are able to be identified. In
this case, all nodes that have been parents in each group
become the VEs which are inhabited by their own VOs.
Meanwhile, the VOs refer to the contents of the parents’
children. Therefore the root and the groups have been
determined to be the VEs.

H

C

R

R
O

O
N

H
+ H

H

Hydrogen Amine Carboxyl

R-Group(Variant)

(a) (b)

(c) (d)

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

122

Fig. 11 Tree Structure of Amino Acids Group

Walkthrough and manipulation utilities provided in
HEVO are able to be performed in each defined level. The
walkthrough operation functions as a navigation tool in
the published VEs. This tool helps users navigate from
one place to another place in the 3D environment.
Interactions with the virtual objects can be implemented
as well through the manipulation operation. This useful
tool allows users to gain details of information of the
interacted VOs and to transit from one VE to another VE
when they interact directly with certain VOs.
As illustrated in Fig. 12, there are a Gallery and five other
categories of amino acids in a VE. These categories are
placed inside the Gallery as if they are exhibited in it.

Fig. 12 A Gallery And Five Main Categories

These five categories in the Gallery refer to Polar Positive
Charge, Polar Negative Charge, Non-Polar, polar
uncharged and aromatic. Each of them has its own sub-
nodes or child nodes. Thus the categories can have their
own VEs when user activates them. Fig. 13(a), Fig. 13(b),
Fig. 13(c), Fig. 13(d) and Fig. 13(e) show the VEs for
each category and their VOs.

Fig. 13 VEs For The Categories of VOs

6.2 Case Study #2 - Virtual Forest

The case study #2 simulates a virtual forest using VRS-
HEVO. A forest is an area with a high density of trees [28,
29]. The virtual forest can be made by clustering the trees.
In this case, four types of trees have been used to form the
virtual forest. As shown in Fig. 14, the trees are utilized
iteratively under the root node in the tree structure. Many
trees will form a forest. Even the forest takes the same
tree to be clustered, using scale, translate and rotate tools
in the system may adjust the tree to be uniquely
distinguish between each others.
For this VE, four basic VOs of trees have been used
iteratively to construct the full virtual forest. Using the
utilities in the VRS-HEVO, the trees look uniquely
distinguishes from each other. The snapshots of the virtual
forest have been demonstrated in Fig. 15.

Pro.obj

Polar Uncharged Aromatic Non PolarPolar Negative

G
ly.obj

C
ys.obj

G
ln.obj

A
sn.obj

Thr.obj
Ser.obj

Phe.obj
Trp.obj

A
sp.obj

G
lu.obj

Tyr.obj

M
et.obj

Ile.obj
Leu.obj
V

al.obj
A

la.obj

Polar Positive

A
rg.obj

Lys.obj

H
is.obj

Root Node

(a) VE of Polar Positive Charge (b) VE of Non-Polar

(c) VE of Polar with
Negative Charge

(d) VE of Polar Uncharged

(e) VE of Aromatic

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

123

Fig. 14 Tree Structure of Virtual Forest

Fig. 15 Virtual Forest In VRS-HEVO

6.3 Case Study #3 – Underwater world

Underwater world describes the realm below the surface
of water in a natural feature called a body of water such as
an ocean, sea, lake, pond or river [30].
Using VRS-HEVO, a VE of underwater sea is developed
and presented. A collection of ready-made VOs as shown
in Fig. 16 is compiled. The ready-made VOs are
downloaded freely over the Internet. To bring realism in
the underwater sea, the platform containing water and
sand surface has been created. In VRS-HEVO, the VOs
are compiled in the graphical tree structure as depicted in
Fig. 17. All VOs are inserted under the root node. The
snapshots of the virtual underwater sea have been
demonstrated in Fig. 18. In the VRS-HEVO, all creatures
including whales, sharks, dolphins and plants are
collected in virtual ocean to bring realism and live.

Fig. 16 A Collection Of Ready-Made Virtual Objects

Fig. 17 Tree Structure of Virtual Underwater Sea

Fig. 18 Virtual Underwater Sea In VRS-HEVO

7. Usability Study Of VRS-HEVO

A usability study on the VR system in education has been
conducted to a group of undergraduate students. The
evaluation of VRS-HEVO would ensure that the
effectiveness, efficiency and usability existed and
performed in the system as desired. Inconvenience and
difficulty encountered by the users during interactions can
be triggered and considered as normal reactions.
Identified factors for such problem can be used to improve
the system or can serve as references to design and
develop the future systems. The virtual environment of
the Amino Acids has been used. The experiment has two
sample quizzes for the students to familiarize with. Later,
they tested the system and took a real quiz. After the
completion of the quiz, they filled up a questionnaire form
to express their experiences and to evaluate the
performance of the VRS-HEVO.

Fig. 19 shows the mean scores of the forty two responses
for the usability study of the system. Most of the
respondents state their agreements that the system can
help them in education. They have an opinion that that the

Root Node

aqua06.obj

D
olphins.obj

aqua09.obj
aqua10.obj
aqua11.obj
blueShark.obj

D
olphins2.obj

K
illerW

hale.obj

blueShark.obj

K
illerW

hale.obj
O

cean
obj

Root Node

Tree3.obj

A
lphania.obj

Tree5.obj

Platform
.obj

Tree4.obj

Tree3.obj
Tree3.obj
Tree3.obj
Tree3.obj

Tree4.obj
Tree4.obj
Tree4.obj
Tree4.obj

Tree5.obj
Tree5.obj
Tree5.obj
Tree5.obj

A
lphania.obj

A
lphania.obj

A
lphania.obj

A
lphania.obj

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

124

system is easy to use. However, there is a need for them
to learn and familiarize with the system before use. Based
on the findings, the system has shown to be:
• A useful tool for teaching.
• Easy to use.
• Used frequently.
The respondents have responded that:
• They felt fun using the system.
• They can understand the subject using the system.

4.0476 3.9286 3.881
3.5952 3.4286 3.5238

2.30952.119

0

2.0714

2.6429
2.3333 2.1429

3.4286

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fu
n T

o U
se

Help
 Le

ar
nin

g

Su
ita

ble
 F
or
 E

du
ca

tio
n

Ea
sy

 T
o U

se

Und
er
sta

nd
 Le

ar
nin

g

W
ill

Fr
eq

ue
ntl

y U
se

Pr
e-
Kn

ow
led

ge

Factors

M
ea

n
Sc

or
es

Positive
Negative

Fig. 19 Usability Study of VRS-HEVO

8. Conclusion

This paper has presented a framework of VRS-HEVO for
managing VOs in VE. Though VRS-HEVO, users are
able to visualize, manipulate/interact with VOs and
navigate/walkthrough in the VE. Two designs introduced
in the framework are SAVRS-HEVO for stand-alone
environment and DVRS-HEVO for distributed
environment. Several models that support both types of
functionalities have been discussed. To develop the VRS-
HEVO in stand-alone system, the Data Model, HEVO
Model and Viewing Model have been used. DVRS-
HEVO has been used to create a VR system for a
distributed environment. They are modeled as the Gallery
Model and the Client-Server Model.
A qualitative method has been used to evaluate the
usability of VRS-HEVO. The findings have shown that
the VRS-HEVO is useful for teaching, easy to use and
being used frequently in the future. The respondents have
also indicated that they have fun to use and comprehend
the subject using the system.
This approach may breed better understanding among
students in their subjects. For future works, this VR field
may offer many potential applications included tourism,
gaming, manufacture, architecture, medicine,
advertisement and entertainment. Moreover not many
researches previously issued the capability of VR systems
that implement managing VOs function in the Internet
whether in applet and html.

Acknowledgment
The authors would like to express their appreciations for
the fundings from UniSZA and UMT.

References
[1] Grady S.M., Virtual Reality: Computer Mimics The

Physical World, Fact On File Inc, New York, 1998.
[2] Eddings J., How Virtual Reality Works, Emeryville, Ziff-

Davis Press, 1994.
[3] Youn J. H., & Wohn K., Realtime Collision Detection For

Virtual Reality Applications, IEEE-Virtual Reality Annual
International Symposium, No. 9, pp. 415-421, 1993.

[4] Parent A., Visual Information Technology. Life-like Virtual
Environments: An Introductory Survey Applications and
Activities, Design Requirements and Guidelines, ERB-1055,
NRC No. 41555, 1998.

[5] Funkhouser T.A., Sequin C.H., & Teller S.J., Management
Of Large Amounts Of Data In Interactive Building
Walkthroughs, Symposium on Interactive 3D Graphics,
Proceedings of the 1992 symposium on Interactive 3D
graphics, Cambridge, Massachusetts, United States, pp. 11
– 20, ISBN:0-89791-467-8, 1992.

[6] http://www.ftsm.ukm.my/samn/PDFs/TH3813%20
01%20Pengenalan.pdf, Accessed on November 3, 2009.

[7] Arns L. L., A New Taxonomy For Locomotion In Virtual
Environments, Ph.D Dissertation, Iowa State University,
2002.

[8] Franchi J., Virtual Reality: An Overview, Journal of
TechTrends, Springer Boston, Volume 39, Number 1, 1994.

[9] Yuan M.L., Ong S.K., & Nee A.Y.C., Assembly Guidance
in Augmented Reality (AR) Environments Using a Virtual
Interactive Tool, International Journal of Production
Research, Vol. 46, No. 7, pp. 1745-1767, 2006.

[10] http://www-vrl.umich.edu/projects.html, Accessed on Mei
7, 2009

[11] Leng J., Scientific Examples of Virtual Reality and
Visualization Applications, UK High Performance
Computing, pp. 1-13, 2001.

[12] Benjamin P. C. Yen., & Kenny Y. M. Ng., Development
and Evaluation of Dynamic Virtual Object Catalogs,
Information And Management, No 40, pp. 337-349, 2003.

[13] Qiang L., Huanzhi L., Fei W., & Boyan C., Virtual
Community Trials Platform, Journal Of International
Archives Of Photogrammetry Remote Sensing And Spatial
Information Sciences, Vol 35, (4), pp. 1144-1147, 2004.

[14] Li J. R., Khoo L. P., & Tor S. B., Desktop Virtual Reality
For Maintenance Training: An Object-Oriented Prototype
System (V-REALISM), Elsevier-Computer In Industry, 52,
pp. 109-125, 2003.

[15] Klein J., Krokowski J., Fischer M., Wand M., Wanka R., &
Heidi F. M. A. D., The Randomized Sample Tree: A Data
Structure for Interactive Walkthroughs in Externally Stored
Virtual Environments, MIT Press Journal, Vol. 13, No. 6,
pp. 617-637, 2004.

[16] Huang S., Baimouratov R., & Nowinski W. L., Building
Virtual Anatomic Models Using Java3D, Proceedings of
the 2004 ACM SIGGRAPH international conference on
Virtual Reality continuum and its applications in industry,
Session: 7-3 Modeling, pp. 402 – 405, 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

125

[17] Youn J. H., & Wohn K., Realtime Collision Detection For
Virtual Reality Applications, IEEE-Virtual Reality Annual
International Symposium, No. 9, pp. 415-421, 1993.

[18] Petri Net, http://en.wikipedia.org/wiki/Petri_net, Accessed
on Mei 7, 2009

[19] PIPE2, http://pipe2.sourceforge.net/, Accessed on Mei 7,
2009

[20] Petri C. A., Kommunikation Mit Autometan. Technical
Report, Doctoral Thesis, University of Bonn, 1962.

[21] Fadhilah A., A Framework of Integrated Model Base for
Decision Support System, Dissertation of Doctor of
Philosophy, Universiti Malaysia Terengganu, 2009.

[22] W M Rizhan W. I., A Framework For Managing Virtual
Objects In Virtual Environment, Dissertation of Master of
Science, Universiti Malaysia Terengganu, 2010.

[23] Tree Data Structure, http://en.wikipedia.
org/wiki/Tree_data_structure. Accessed on April 10, 2008

[24] Goodrich M. T., & Tamassia R., Data Structure And
Algorithms In Java, John Wiley & Sons Inc, USA, 1998.

[25] Preiss B. R., Data Structure And Algorithms With Object-
Oriented Design Patterns In Java, John Wiley & Sons, Inc,
USA, 2000.

[26] Millar T., Biochemistry Explained: A Practical Guide To
Learning Biochemistry, Gutenberg Press Ltd, Malta, 2002.

[27] Polanski A., & Kimmel M., Bioinformatics, Springer-
Verlag Berlin Heidelberg, New York, 2007.

[28] Forest, http://en.wikipedia.org/wiki/Forest, Accessed on
October 9, 2009.

[29] Kalman B., & Smithyman K., What Is A Forest?, Crabtree
Publishing Company, United Kingdom, 2003.

[30] Underwater, http://en.wikipedia.org/wiki/ Underwater,
Accessed on November 2, 2009.

