
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

126

Manuscript received December 5, 2010
Manuscript revised December 20, 2010

Genetic Algorithms and Evolutionary Computation

Ms.Nagori Meghna,
Faculty of EngineeringGovernment EnggCollege Aurangabad, -431432, India

Ms. KaleJyoti

Faculty of Engineering MGM’c Engg College Nanded, -411402, India

Abstract
Generally speaking, genetic algorithms are simulations of
evolution, of what kind ever. In most cases, however, genetic
algorithms are nothing else than probabilistic optimization
methods which are based on the principles of evolution. Using
simulation and Genetic Algorithms to improve cluster tool
performance, Mooring Pattern Optimization using Genetic
Algorithms. This paper is designed to cover a few important
application aspects of genetic algorithm under a single umbrella.
Key words:
Genetic Algorithm

Introduction

Creationists occasionally charge that evolution is useless
as a scientific theory because it produces no practical
benefits and has no relevance to daily life. However, the
evidence of biology alone shows that this claim is untrue.
There are numerous natural phenomena for which
evolution gives us a sound theoretical underpinning. To
name just one, the observed development of resistance - to
insecticides in crop pests, to antibiotics in bacteria, to
chemotherapy in cancer cells, and to anti-retroviral drugs
in viruses such as HIV - is a straightforward consequence
of the laws of mutation and selection, and understanding
these principles has helped us to craft strategies for
dealing with these harmful organisms. The evolutionary
postulate of common descent has aided the development
of new medical drugs and techniques by giving
researchers a good idea of which organisms they should
experiment on to obtain results that are most likely to be
relevant to humans. Finally, the principle of selective
breeding has been used to great effect by humans to create
customized organisms unlike anything found in nature for
their own benefit. The canonical example, of course, is the
many varieties of domesticated dogs (breeds as diverse as
bulldogs, Chihuahuas and dachshunds have been
produced from wolves in only a few thousand years), but
less well-known examples include cultivated maize (very
different from its wild relatives, none of which have the
familiar "ears" of human-grown corn), goldfish (like dogs,
we have bred varieties that look dramatically different

from the wild type), and dairy cows (with immense udders
far larger than would be required just for nourishing
offspring).Critics might charge that creationists can
explain these things without recourse to evolution. For
example, creationists often explain the development of
resistance to antibiotic agents in bacteria, or the changes
wrought in domesticated animals by artificial selection, by
presuming that God decided to create organisms in fixed
groups, called "kinds" or baramin. Though natural
microevolution or human-guided artificial selection can
bring about different varieties within the originally
created "dog-kind," or "cow-kind," or "bacteria-kind" (!),
no amount of time or genetic change can transform one
"kind" into another. However, exactly how the creationists
determine what a "kind" is, or what mechanism prevents
living things from evolving beyond its boundaries, is
invariably never explained.

But in the last few decades, the continuing advance of
modern technology has brought about something new.
Evolution is now producing practical benefits in a very
different field, and this time, the creationists cannot claim
that their explanation fits the facts just as well. This field
is computer science, and the benefits come from a
programming strategy called genetic algorithms.

What is a genetic algorithm

• Methods of representation
• Methods of selection
• Methods of change
• Other problem-solving techniques

Concisely stated, a genetic algorithm (or GA for short) is
a programming technique that mimics biological
evolution as a problem-solving strategy. Given a specific
problem to solve, the input to the GA is a set of potential
solutions to that problem, encoded in some fashion, and a
metric called a fitness function that allows each candidate
to be quantitatively evaluated. These candidates may be
solutions already known to work, with the aim of the GA

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

127

being to improve them, but more often they are generated
at random.The GA then evaluates each candidate
according to the fitness function. In a pool of randomly
generated candidates, of course, most will not work at all,
and these will be deleted. However, purely by chance, a
few may hold promise - they may show activity, even if
only weak and imperfect activity, toward solving the
problem.

The expectation is that the average fitness of the
population will increase each round, and so by repeating
this process for hundreds or thousands of rounds, very
good solutions to the problem can be discovered.

As astonishing and counterintuitive as it may seem to
some, genetic algorithms have proven to be an
enormously powerful and successful problem-solving
strategy, dramatically demonstrating the power of
evolutionary principles. Genetic algorithms have been
used in a wide variety of fields to evolve solutions to
problems as difficult as or more difficult than those faced
by human designers. Moreover, the solutions they come
up with are often more efficient, more elegant, or more
complex than anything comparable a human engineer
would produce.

Methods of representation

Before a genetic algorithm can be put to work on any
problem, a method is needed to encode potential solutions
to that problem in a form that a computer can process.
One common approach is to encode solutions as binary
strings: sequences of 1's and 0's, where the digit at each
position represents the value of some aspect of the
solution. Another, similar approach is to encode solutions
as arrays of integers or decimal numbers, with each
position again representing some particular aspect of the
solution. This approach allows for greater precision and
complexity than the comparatively restricted method of
using binary numbers only and often "is intuitively closer
to the problem space".

This technique was used, for example, in the work of
Steffen Schulze-Kremer, who wrote a genetic algorithm to
predict the three-dimensional structure of a protein based
on the sequence of amino acids that go into it. Schulze-
Kremer's GA used real-valued numbers to represent the
so-called "torsion angles" between the peptide bonds that
connect amino acids. (A protein is made up of a sequence
of basic building blocks called amino acids, which are
joined together like the links in a chain. Once all the
amino acids are linked, the protein folds up into a
complex three-dimensional shape based on which amino
acids attract each other and which ones repel each other.

The shape of a protein determines its function.) Genetic
algorithms for training neural networks often use this
method of encoding also.

A third approach is to represent individuals in a GA as
strings of letters, where each letter again stands for a
specific aspect of the solution. One example of this
technique is Hiroaki Kitano's "grammatical encoding"
approach, where a GA was put to the task of evolving a
simple set of rules called a context-free grammar that was
in turn used to generate neural networks for a variety of
problems

The virtue of all three of these methods is that they make
it easy to define operators that cause the random changes
in the selected candidates: flip a 0 to a 1 or vice versa, add
or subtract from the value of a number by a randomly
chosen amount, or change one letter to another. In this
approach, random changes can be brought about by
changing the operator or altering the value at a given node
in the tree, or replacing one subtree with another.

Figure 1: Three simple program trees of the kind
normally used in genetic programming. The mathematical
expression that each one represents is given underneath.

Methods of selection

There are many different techniques which a genetic
algorithm can use to select the individuals to be copied
over into the next generation, but listed below are some of
the most common methods. Some of these methods are
mutually exclusive, but others can be and often are used
in combination.

Elitist selection: The most fit members of each generation
are guaranteed to be selected. (Most GAs do not use pure
elitism, but instead use a modified form where the single
best, or a few of the best, individuals from each
generation are copied into the next generation just in case
nothing better turns up.)

Fitness-proportionate selection: More fit individuals are
more likely, but not certain, to be selected.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

128

Roulette-wheel selection: A form of fitness-proportionate
selection in which the chance of an individual's being
selected is proportional to the amount by which its fitness
is greater or less than its competitors' fitness.
(Conceptually, this can be represented as a game of
roulette - each individual gets a slice of the wheel, but
more fit ones get larger slices than less fit ones. The wheel
is then spun, and whichever individual "owns" the section
on which it lands each time is chosen.)

Scaling selection: As the average fitness of the population
increases, the strength of the selective pressure also
increases and the fitness function becomes more
discriminating. This method can be helpful in making the
best selection later on when all individuals have relatively
high fitness and only small differences in fitness
distinguish one from another.

Tournament selection: Subgroups of individuals are
chosen from the larger population, and members of each
subgroup compete against each other. Only one individual
from each subgroup is chosen to reproduce.

Rank selection: Each individual in the population is
assigned a numerical rank based on fitness, and selection
is based on this ranking rather than absolute differences in
fitness. The advantage of this method is that it can prevent
very fit individuals from gaining dominance early at the
expense of less fit ones, which would reduce the
population's genetic diversity and might hinder attempts
to find an acceptable solution.

Generational selection: The offspring of the individuals
selected from each generation become the entire next
generation. No individuals are retained between
generations.

Steady-state selection: The offspring of the individuals
selected from each generation go back into the pre-
existing gene pool, replacing some of the less fit members
of the previous generation. Some individuals are retained
between generations.

Hierarchical selection: Individuals go through multiple
rounds of selection each generation. Lower-level
evaluations are faster and less discriminating, while those
that survive to higher levels are evaluated more rigorously.
The advantage of this method is that it reduces overall
computation time by using faster, less selective evaluation
to weed out the majority of individuals that show little or
no promise, and only subjecting those who survive this
initial test to more rigorous and more computationally
expensive fitness evaluation.

Methods of change

Once selection has chosen fit individuals, they must be
randomly altered in hopes of improving their fitness for
the next generation. There are two basic strategies to
accomplish this. The first and simplest is called mutation.
Just as mutation in living things changes one gene to
another, so mutation in a genetic algorithm causes small
alterations at single points in an individual's code. The
second method is called crossover, and entails choosing
two individuals to swap segments of their code, producing
artificial "offspring" that are combinations of their parents.
This process is intended to simulate the analogous process
of recombination that occurs to chromosomes during
sexual reproduction. Common forms of crossover include
single-point crossover, in which a point of exchange is set
at a random location in the two individuals' genomes, and
one individual contributes all its code from before that
point and the other contributes all its code from after that
point to produce an offspring, and uniform crossover, in
which the value at any given location in the offspring's
genome is either the value of one parent's genome at that
location or the value of the other parent's genome at that
location, chosen with 50/50 probability.

Figure 2: Crossover and mutation.

Other problem-solving techniques

With the rise of artificial life computing and the
development of heuristic methods, other computerized
problem-solving techniques have emerged that are in
some ways similar to genetic algorithms. This section
explains some of these techniques, in what ways they
resemble GAs and in what ways they differ.

• Neural networks

A neural network, or neural net for short, is a
problem-solving method based on a computer model
of how neurons are connected in the brain. A neural
network consists of layers of processing units called
nodes joined by directional links: one input layer, one
output layer, and zero or more hidden layers in
between. An initial pattern of input is presented to the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

129

input layer of the neural network, and nodes that are
stimulated then transmit a signal to the nodes of the
next layer to which they are connected. If the sum of
all the inputs entering one of these virtual neurons is
higher than that neuron's so-called activation
threshold, that neuron itself activates, and passes on
its own signal to neurons in the next layer.

Figure 3: A simple feedforward neural network, with one
input layer consisting of four neurons, one hidden layer

consisting of three neurons, and one output layer
consisting of four neurons. The number on each neuron
represents its activation threshold: it will only fire if it

receives at least that many inputs. The diagram shows the
neural network being presented with an input string and

shows how activation spreads forward through the
network to produce an output.

Hill-climbing

Similar to genetic algorithms, though more systematic and
less random, a hill-climbing algorithm begins with one
initial solution to the problem at hand, usually chosen at
random. The string is then mutated, and if the mutation
results in higher fitness for the new solution than for the
previous one, the new solution is kept; otherwise, the
current solution is retained. The algorithm is then repeated
until no mutation can be found that causes an increase in
the current solution's fitness, and this solution is returned
as the result. (To understand where the name of this
technique comes from, imagine that the space of all
possible solutions to a given problem is represented as a
three-dimensional contour landscape. A given set of
coordinates on that landscape represents one particular
solution. Those solutions that are better are higher in
altitude, forming hills and peaks; those that are worse are
lower in altitude, forming valleys. A "hill-climber" is then
an algorithm that starts out at a given point on the
landscape and moves inexorably uphill.) Hill-climbing is
what is known as a greedy algorithm, meaning it always
makes the best choice available at each step in the hope
that the overall best result can be achieved this way. By
contrast, methods such as genetic algorithms and
simulated annealing, discussed below, are not greedy;

these methods sometimes make suboptimal choices in the
hopes that they will lead to better solutions later on.

Simulated annealing

Another optimization technique similar to evolutionary
algorithms is known as simulated annealing. The idea
borrows its name from the industrial process of annealing
in which a material is heated to above a critical point to
soften it, then gradually cooled in order to erase defects in
its crystalline structure, producing a more stable and
regular lattice arrangement of atoms. In simulated
annealing, as in genetic algorithms, there is a fitness
function that defines a fitness landscape; however, rather
than a population of candidates as in GAs, there is only
one candidate solution. Simulated annealing also adds the
concept of "temperature", a global numerical quantity
which gradually decreases over time. At each step of the
algorithm, the solution mutates (which is equivalent to
moving to an adjacent point of the fitness landscape).
Finally, the temperature reaches zero and the system
"freezes"; whatever configuration it is in at that point
becomes the solution. Simulated annealing is often used
for engineering design applications such as determining
the physical layout of components on a computer chip

A brief history of GAs

The earliest instances of what might today be called
genetic algorithms appeared in the late 1950s and early
1960s, programmed on computers by evolutionary
biologists who were explicitly seeking to model aspects of
natural evolution. (Mitchell 1996, p.2). By 1962,
researchers such as G.E.P. Box, G.J. Friedman, W.W.
Bledsoe and H.J. Bremermann had all independently
developed evolution-inspired algorithms for function
optimization and machine learning, but their work
attracted little followup..

The next important development in the field came in 1966,
when L.J. Fogel, A.J. Owens and M.J. Walsh introduced
in America a technique they called evolutionary
programming. In this method, candidate solutions to
problems were represented as simple finite-state
machines; like Rechenberg's evolution strategy, their
algorithm worked by randomly mutating.

As early as 1962, John Holland's work on adaptive
systems laid the foundation for later developments; most
notably, Holland was also the first to explicitly propose
crossover and other recombination operators. However,
the seminal work in the field of genetic algorithms came
in 1975, with the publication of the book Adaptation in

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

130

Natural and Artificial Systems.. That same year, Kenneth
De Jong's important dissertation established the potential
of GAs by showing that they could perform well on a
wide variety of test functions, including noisy,
discontinuous, and multimodal search landscapes . These
foundational works established more widespread interest
in evolutionary computation. By the early to mid-1980s,
genetic algorithms were being applied to a broad range of
subjects, from abstract mathematical problems like bin-
packing and graph coloring to tangible engineering issues
such as pipeline flow control, pattern recognition and
classification, and structural optimization.

What are the strengths of GAs?

The first and most important point is that genetic
algorithms are intrinsically parallel. Most other algorithms
are serial and can only explore the solution space to a
problem in one direction at a time, and if the solution they
discover turns out to be suboptimal, there is nothing to do
but abandon all work previously completed and start over.
However, since GAs have multiple offspring, they can
explore the solution space in multiple directions at once.
If one path turns out to be a dead end, they can easily
eliminate it and continue work on more promising
avenues, giving them a greater chance each run of finding
the optimal solution.

However, the advantage of parallelism goes beyond this.
Consider the following: All the 8-digit binary strings
(strings of 0's and 1's) form a search space, which can be
represented as ******** (where the * stands for "either 0
or 1"). The string 01101010 is one member of this space.
However, it is also a member of the space 0*******, the
space 01******, the space 0******0, the space 0*1*1*1*,
the space 01*01**0, and so on. By evaluating the fitness
of this one particular string, a genetic algorithm would be
sampling each of these many spaces to which it belongs.
Over many such evaluations, it would build up an
increasingly accurate value for the average fitness of each
of these spaces, each of which has many members.
Therefore, a GA that explicitly evaluates a small number
of individuals is implicitly evaluating a much larger group
of individuals - just as a pollster who asks questions of a
certain member of an ethnic, religious or social group
hopes to learn something about the opinions of all
members of that group, and therefore can reliably predict
national opinion while sampling only a small percentage
of the population. In the same way, the GA can "home in"
on the space with the highest-fitness individuals and find
the overall best one from that group. In the context of
evolutionary algorithms, this is known as the Schema
Theorem, and is the "central advantage" of a GA over
other problem-solving methods.

Due to the parallelism that allows them to implicitly
evaluate many schema at once, genetic algorithms are
particularly well-suited to solving problems where the
space of all potential solutions is truly huge - too vast to
search exhaustively in any reasonable amount of time.
Most problems that fall into this category are known as
"nonlinear". In a linear problem, the fitness of each
component is independent, so any improvement to any
one part will result in an improvement of the system as a
whole. Needless to say, few real-world problems are like
this. Nonlinearity is the norm, where changing one
component may have ripple effects on the entire system,
and where multiple changes that individually are
detrimental may lead to much greater improvements in
fitness when combined. Nonlinearity results in a
combinatorial explosion: the space of 1,000-digit binary
strings can be exhaustively searched by evaluating only
2,000 possibilities if the problem is linear, whereas if it is
nonlinear, an exhaustive search requires evaluating 21000
possibilities - a number that would take over 300 digits to
write out in full.

Fortunately, the implicit parallelism of a GA allows it to
surmount even this enormous number of possibilities,
successfully findig optimal or very good results in a short
period of time after directly sampling only small regions
of the vast fitness landscape. For example, a genetic
algorithm developed jointly by engineers from General
Electric and Rensselaer Polytechnic Institute produced a
high-performance jet engine turbine design that was three
times better than a human-designed configuration and
50% better than a configuration designed by an expert
system by successfully navigating a solution space
containing more than 10387 algorithms is that they perform
well in problems for which the fitness landscape is
complex - ones where the fitness function is discontinuous,
noisy, changes over time, or has many local optima. Most
practical problems have a vast solution space, impossible
to search exhaustively; the challenge then becomes how to
avoid the local optima - solutions that are better than all
the others that are similar to them, but that are not as good
as different ones elsewhere in the solution space. All four
of a GA's major components - parallelism, selection,
mutation, and crossover - work together to accomplish
this. In the beginning, the GA generates a diverse initial
population, casting a "net" over the fitness landscape.
Compares this to an army of parachutists dropping onto
the landscape of a problem's search space, with each one
being given orders to find the highest peak.) Small
mutations enable each individual to explore its immediate
neighborhood, while selection focuses progress, guiding
the algorithm's offspring uphill to more promising parts of
the solution space, However, crossover is the key element
that distinguishes genetic algorithms from other methods
such as hill-climbers and simulated annealing. Without

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

131

crossover, each individual solution is on its own,
exploring the search space in its immediate vicinity
without reference to what other individuals may have
discovered. However, with crossover in place, there is a
transfer of information between successful candidates -
individuals can benefit from what others have learned,
and schemata can be mixed and combined, with the
potential to produce an offspring that has the strengths of
both its parents and the weaknesses of neither. This point
is illustrated in, where the authors discuss a problem of
synthesizing a lowpass filter using genetic programming.
In one generation, two parent circuits were selected to
undergo crossover; one parent had good topology
(components such as inductors and capacitors in the right
places) but bad sizing (values of inductance and
capacitance for its components that were far too low). The
other parent had bad topology, but good sizing. The result
of mating the two through crossover was an offspring
with the good topology of one parent and the good sizing
of the other, resulting in a substantial improvement in
fitness over both its parents.
The problem of finding the global optimum in a space
with many local optima is also known as the dilemma of
exploration vs. exploitation, "a classic problem for all
systems that can adapt and learn". If a particular solution
to a multiobjective problem optimizes one parameter to a
degree such that that parameter cannot be further
improved without causing a corresponding decrease in the
quality of some other parameter, that solution is called
Pareto optimal or non-dominated).

To determine whether those changes produce an
improvement. The virtue of this technique is that it allows
genetic algorithms to start out with an open mind, so to
speak. Since its decisions are based on randomness, all
possible search pathways are theoretically open to a GA;
by contrast, any problem-solving strategy that relies on
prior knowledge must inevitably begin by ruling out many
pathways a priori, therefore missing any novel solutions
that may exist there. Lacking preconceptions based on
established beliefs of "how things should be done" or
what "couldn't possibly work", GAs do not have this
problem. Similarly, any technique that relies on prior
knowledge will break down when such knowledge is not
available, One vivid illustration of this is the rediscovery,
by genetic programming, of the concept of negative
feedback - a principle crucial to many important
electronic components today,.

What are the limitations of GAs?

Although genetic algorithms have proven to be an
efficient and powerful problem-solving strategy, they are
not a panacea. GAs do have certain limitations; however,

it will be shown that all of these can be overcome and
none of them bear on the validity of biological evolution.

The first, and most important, consideration in creating a
genetic algorithm is defining a representation for the
problem. The language used to specify candidate solutions
must be robust; i.e., it must be able to tolerate random
changes such that fatal errors or nonsense do not
consistently result. There are two main ways of achieving
this. The first, which is used by most genetic algorithms,
is to define individuals as lists of numbers - binary-valued,
integer-valued, or real-valued - where each number
represents some aspect of a candidate solution. If the
individuals are binary strings, 0 or 1 could stand for the
absence or presence of a given feature. If they are lists of
numbers, these numbers could represent many different
things: the weights of the links in a neural network, the
order of the cities visited in a given tour, the spatial
placement of electronic components, the values fed into a
controller, the torsion angles of peptide bonds in a protein,
and so on. Mutation then entails changing these numbers,
flipping bits or adding or subtracting random values. In
this case, the actual program code does not change; the
code is what manages the simulation and keeps track of
the individuals, for outputting an oscillating signal. At the
end of the experiment, an oscillating signal was indeed
being produced - but instead of the circuit itself acting as
an oscillator, as the researchers had intended, they
discovered that it had become a radio receiver that was
picking up and relaying an oscillating signal from a
nearby piece of electronic equipment! This is not a
problem in nature, however. Those organisms which
reproduce more abundantly compared to their competitors
are more fit; those which fail to reproduce are unfit.

The solution has been "the evolution of evolvability" -
adaptations that alter a species' ability to adapt. For
example, most living things have evolved elaborate
molecular machinery that checks for and corrects errors
during the process of DNA replication, keeping their
mutation rate down to acceptably low levels; conversely,
in times of severe environmental stress, some bacterial
species enter a state of hypermutation where the rate of
DNA replication errors rises sharply, increasing the
chance that a compensating mutation will be discovered.
Of course, not all catastrophes can be evaded, but the
enormous diversity and highly complex adaptations of
living things today show that, in general, evolution is a
successful strategy. Likewise, the diverse applications of
and impressive results produced by genetic algorithms
show them to be a powerful and worthwhile field of study.

One type of problem that genetic algorithms have
difficulty dealing with are problems with "deceptive"
fitness functions (Mitchell 1996, p.125), those where the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

132

locations of improved points give misleading information
about where the global optimum is likely to be found. For
example, imagine a problem where the search space
consisted of all eight-character binary strings, and the
fitness of an individual was directly proportional to the
number of 1s in it - i.e., 00000001 would be less fit than
00000011, which would be less fit than 00000111, and so
on - with two exceptions: the string 11111111 turned out
to have very low fitness, and the string 00000000 turned
out to have very high fitness. In such a problem, all
involve controlling the strength of selection, so as not to
give excessively fit individuals too great of an advantage.

Finally, several researchers advise against using genetic
algorithms on analytically solvable problems. It is not that
genetic algorithms cannot find good solutions to such
problems; it is merely that traditional analytic methods
take much less time and computational effort than GAs
and, unlike GAs, are usually mathematically guaranteed
to deliver the one exact solution. Of course, since there is
no such thing as a mathematically perfect solution to any
problem of biological adaptation, this issue does not arise
in nature.

Some specific examples of GAs

As the power of evolution gains increasingly widespread
recognition, genetic algorithms have been used to tackle a
broad variety of problems in an extremely diverse array of
fields, clearly showing their power and their potential.
This section will discuss some of the more noteworthy
uses to which they have been put.

• Acoustics
• Aerospace engineering
• Astronomy and astrophysics
• Chemistry
• Electrical engineering
• Financial markets
• Game playing
• Geophysics
• Materials engineering
• Mathematics and algorithmics
• Military and law enforcement
• Molecular biology
• Pattern recognition and data mining
• Robotics

Creationist arguments

As one might expect, the real-world demonstration of
the power of evolution that GAs represent has proven

surprising and disconcerting for creationists, who
have always claimed that only intelligent design, not
random variation and selection, could have produced
the information content and complexity of living
things. They have therefore argued that the success of
genetic algorithms does not allow us to infer anything
about biological evolution. The criticisms of two anti-
evolutionists, representing two different viewpoints,
will be addressed: young-earth creationist

 Some traits in living things are qualitative,
whereas GAs are always quantitative

 GAs select for one trait at a time, whereas
living things are multidimensional

 GAs do not allow the possibility of extinction
or error catastrophe

 GAs ignore the cost of substitution
 GAs ignore generation time constraints
 GAs employ unrealistically high rates of

mutation and reproduction
 GAs have artificially small genomes
 GAs ignore the possibility of mutation

occurring throughout the genome
 GAs ignore problems of irreducible

complexity
 GAs have preordained goals
 GAs do not actually generate new information
 Evolutionary algorithms are therefore

incapable of generating true complexity
 evolutionary algorithms, on the average, do no

better than blind search.

Conclusion

Even creationists find it impossible to deny that the
combination of mutation and natural selection can
produce adaptation. Nevertheless, they still attempt to
justify their rejection of evolution by dividing the
evolutionary process into two categories -
"microevolution" and "macroevolution" - and arguing that
only the second is controversial, and that any evolutionary
change we observe is only an example of the first.

Now, microevolution and macroevolution are terms that
have meaning to biologists; they are defined, respectively,
as evolution below the species level and evolution at or
above the species level. But the crucial difference
between the way creationists use these terms and the way
scientists use them is that scientists recognize that these
two are fundamentally the same process with the same
mechanisms, merely operating at different scales.
Creationists, however, are forced to postulate some type
of unbridgeable gap separating the two, in order for them
to deny that the processes of change and adaptation we

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

133

see operating in the present can be extrapolated to
produce all the diversity observed in the living world.

References
[1] "Adaptive Learning: Fly the Brainy Skies." Wired, vol.10,

no.3 (March 2002). Available online at
http://www.wired.com/wired/archive/10.03/everywhere.ht
ml?pg=2.

[2] Altshuler, Edward and Derek Linden. "Design of a wire
antenna using a genetic algorithm." Journal of Electronic
Defense, vol.20, no.7, p.50-52 (July 1997).

[3] Andre, David and Astro Teller. "Evolving team Darwin
United." In RoboCup-98: Robot Soccer World Cup II,
Minoru Asada and Hiroaki Kitano (eds). Lecture Notes in
Computer Science, vol.1604, p.346-352. Springer-Verlag,
1999. .

[4] Andreou, Andreas, Efstratios Georgopoulos and Spiridon
Likothanassis. "Exchange-rates forecasting: A hybrid
algorithm based on genetically optimized adaptive neural
networks." Computational Economics, vol.20, no.3, p.191-
210 (December 2002).

[5] Assion, A., T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V.
Seyfried, M. Strehle and G. Gerber. "Control of chemical
reactions by feedback-optimized phase-shaped femtosecond
laser pulses." Science, vol.282, p.919-922 (30 October
1998).

[6] Au, Wai-Ho, Keith Chan, and Xin Yao. "A novel
evolutionary data mining algorithm with applications to
churn prediction." IEEE Transactions on Evolutionary
Computation, vol.7, no.6, p.532-545 (December 2003).

[7] Haas, O.C.L., K.J. Burnham and J.A. Mills. "On improving
physical selectivity in the treatment of cancer: A systems
modelling and optimisation approach." Control Engineering
Practice, vol.5, no.12, p.1739-1745 (December 1997).

[8] Hughes, Evan and Maurice Leyland. "Using multiple
genetic algorithms to generate radar point-scatterer
models." IEEE Transactions on Evolutionary Computation,
vol.4, no.2, p.147-163 (July 2000).

[9] Jensen, Mikkel. "Generating robust and flexible job shop
schedules using genetic algorithms." IEEE Transactions on
Evolutionary Computation, vol.7, no.3, p.275-288 (June
2003).

[10] Kewley, Robert and Mark Embrechts. "Computational
military tactical planning system." IEEE Transactions on
Systems, Man and Cybernetics, Part C - Applications and
Reviews, vol.32, no.2, p.161-171 (May 2002).

[11] Lee, Yonggon and Stanislaw H. Zak. "Designing a genetic
neural fuzzy antilock-brake-system controller." IEEE
Transactions on Evolutionary Computation, vol.6, no.2,
p.198-211 (April 2002).

[12] Obayashi, Shigeru, Daisuke Sasaki, Yukihiro Takeguchi,
and Naoki Hirose. "Multiobjective evolutionary
computation for supersonic wing-shape optimization."
IEEE Transactions on Evolutionary Computation, vol.4,
no.2, p.182-187 (July 2000).

[13] Porto, Vincent, David Fogel and Lawrence Fogel.
"Alternative neural network training methods." IEEE
Expert, vol.10, no.3, p.16-22 (June 1995).

[14] Rizki, Mateen, Michael Zmuda and Louis Tamburino.
"Evolving pattern recognition systems." IEEE Transactions

on Evolutionary Computation, vol.6, no.6, p.594-609
(December 2002).

[15] Robin, Franck, Andrea Orzati, Esteban Moreno, Otte
Homan, and Werner Bachtold. "Simulation and
evolutionary optimization of electron-beam lithography
with genetic and simplex-downhill algorithms." IEEE
Transactions on Evolutionary Computation, vol.7, no.1,
p.69-82 (February 2003).

[16] Srinivas, N. and Kalyanmoy Deb. "Multiobjective
optimization using nondominated sorting in genetic
algorithms." Evolutionary Computation, vol.2, no.3, p.221-
248 (Fall 1994).

[17] Soule, Terrence and Amy Ball. "A genetic algorithm with
multiple reading frames." In GECCO-2001: Proceedings of
the Genetic and Evolutionary Computation Conference, Lee
Spector and Eric Goodman (eds). Morgan Kaufmann, 2001.
Available online at
http://www.cs.uidaho.edu/~tsoule/research/papers.html.

[18] Tang, K.S., K.F. Man, S. Kwong and Q. He. "Genetic
algorithms and their applications." IEEE Signal Processing
Magazine, vol.13, no.6, p.22-37 (November 1996).

[19] Zitzler, Eckart and Lothar Thiele. "Multiobjective
evolutionary algorithms: a comparative case study and the
Strength Pareto approach." IEEE Transactions on
Evolutionary Computation, vol.3, no.4, p.257-271
(November 1999).

