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Abstract 
Generally speaking, genetic algorithms are simulations of 
evolution, of what kind ever. In most cases, however, genetic 
algorithms are nothing else than probabilistic optimization 
methods which are based on the principles of evolution. Using 
simulation and Genetic Algorithms to improve cluster tool 
performance, Mooring Pattern Optimization using Genetic 
Algorithms. This paper is designed to cover a few important 
application aspects of genetic algorithm under a single umbrella. 
Key words: 
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Introduction 

Creationists occasionally charge that evolution is useless 
as a scientific theory because it produces no practical 
benefits and has no relevance to daily life. However, the 
evidence of biology alone shows that this claim is untrue. 
There are numerous natural phenomena for which 
evolution gives us a sound theoretical underpinning. To 
name just one, the observed development of resistance - to 
insecticides in crop pests, to antibiotics in bacteria, to 
chemotherapy in cancer cells, and to anti-retroviral drugs 
in viruses such as HIV - is a straightforward consequence 
of the laws of mutation and selection, and understanding 
these principles has helped us to craft strategies for 
dealing with these harmful organisms. The evolutionary 
postulate of common descent has aided the development 
of new medical drugs and techniques by giving 
researchers a good idea of which organisms they should 
experiment on to obtain results that are most likely to be 
relevant to humans. Finally, the principle of selective 
breeding has been used to great effect by humans to create 
customized organisms unlike anything found in nature for 
their own benefit. The canonical example, of course, is the 
many varieties of domesticated dogs (breeds as diverse as 
bulldogs, Chihuahuas and dachshunds have been 
produced from wolves in only a few thousand years), but 
less well-known examples include cultivated maize (very 
different from its wild relatives, none of which have the 
familiar "ears" of human-grown corn), goldfish (like dogs, 
we have bred varieties that look dramatically different 

from the wild type), and dairy cows (with immense udders 
far larger than would be required just for nourishing 
offspring).Critics might charge that creationists can 
explain these things without recourse to evolution. For 
example, creationists often explain the development of 
resistance to antibiotic agents in bacteria, or the changes 
wrought in domesticated animals by artificial selection, by 
presuming that God decided to create organisms in fixed 
groups, called "kinds" or baramin. Though natural 
microevolution or human-guided artificial selection can 
bring about different varieties within the originally 
created "dog-kind," or "cow-kind," or "bacteria-kind" (!), 
no amount of time or genetic change can transform one 
"kind" into another. However, exactly how the creationists 
determine what a "kind" is, or what mechanism prevents 
living things from evolving beyond its boundaries, is 
invariably never explained. 

But in the last few decades, the continuing advance of 
modern technology has brought about something new. 
Evolution is now producing practical benefits in a very 
different field, and this time, the creationists cannot claim 
that their explanation fits the facts just as well. This field 
is computer science, and the benefits come from a 
programming strategy called genetic algorithms.  

What is a genetic algorithm 

• Methods of representation  
• Methods of selection  
• Methods of change  
• Other problem-solving techniques  

Concisely stated, a genetic algorithm (or GA for short) is 
a programming technique that mimics biological 
evolution as a problem-solving strategy. Given a specific 
problem to solve, the input to the GA is a set of potential 
solutions to that problem, encoded in some fashion, and a 
metric called a fitness function that allows each candidate 
to be quantitatively evaluated. These candidates may be 
solutions already known to work, with the aim of the GA 
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being to improve them, but more often they are generated 
at random.The GA then evaluates each candidate 
according to the fitness function. In a pool of randomly 
generated candidates, of course, most will not work at all, 
and these will be deleted. However, purely by chance, a 
few may hold promise - they may show activity, even if 
only weak and imperfect activity, toward solving the 
problem. 

The expectation is that the average fitness of the 
population will increase each round, and so by repeating 
this process for hundreds or thousands of rounds, very 
good solutions to the problem can be discovered. 

As astonishing and counterintuitive as it may seem to 
some, genetic algorithms have proven to be an 
enormously powerful and successful problem-solving 
strategy, dramatically demonstrating the power of 
evolutionary principles. Genetic algorithms have been 
used in a wide variety of fields to evolve solutions to 
problems as difficult as or more difficult than those faced 
by human designers. Moreover, the solutions they come 
up with are often more efficient, more elegant, or more 
complex than anything comparable a human engineer 
would produce.  

Methods of representation 

Before a genetic algorithm can be put to work on any 
problem, a method is needed to encode potential solutions 
to that problem in a form that a computer can process. 
One common approach is to encode solutions as binary 
strings: sequences of 1's and 0's, where the digit at each 
position represents the value of some aspect of the 
solution. Another, similar approach is to encode solutions 
as arrays of integers or decimal numbers, with each 
position again representing some particular aspect of the 
solution. This approach allows for greater precision and 
complexity than the comparatively restricted method of 
using binary numbers only and often "is intuitively closer 
to the problem space". 

This technique was used, for example, in the work of 
Steffen Schulze-Kremer, who wrote a genetic algorithm to 
predict the three-dimensional structure of a protein based 
on the sequence of amino acids that go into it. Schulze-
Kremer's GA used real-valued numbers to represent the 
so-called "torsion angles" between the peptide bonds that 
connect amino acids. (A protein is made up of a sequence 
of basic building blocks called amino acids, which are 
joined together like the links in a chain. Once all the 
amino acids are linked, the protein folds up into a 
complex three-dimensional shape based on which amino 
acids attract each other and which ones repel each other. 

The shape of a protein determines its function.) Genetic 
algorithms for training neural networks often use this 
method of encoding also. 

A third approach is to represent individuals in a GA as 
strings of letters, where each letter again stands for a 
specific aspect of the solution. One example of this 
technique is Hiroaki Kitano's "grammatical encoding" 
approach, where a GA was put to the task of evolving a 
simple set of rules called a context-free grammar that was 
in turn used to generate neural networks for a variety of 
problems  

The virtue of all three of these methods is that they make 
it easy to define operators that cause the random changes 
in the selected candidates: flip a 0 to a 1 or vice versa, add 
or subtract from the value of a number by a randomly 
chosen amount, or change one letter to another. In this 
approach, random changes can be brought about by 
changing the operator or altering the value at a given node 
in the tree, or replacing one subtree with another. 

 

Figure 1: Three simple program trees of the kind 
normally used in genetic programming. The mathematical 
expression that each one represents is given underneath. 

Methods of selection 

There are many different techniques which a genetic 
algorithm can use to select the individuals to be copied 
over into the next generation, but listed below are some of 
the most common methods. Some of these methods are 
mutually exclusive, but others can be and often are used 
in combination. 

Elitist selection: The most fit members of each generation 
are guaranteed to be selected. (Most GAs do not use pure 
elitism, but instead use a modified form where the single 
best, or a few of the best, individuals from each 
generation are copied into the next generation just in case 
nothing better turns up.) 

Fitness-proportionate selection: More fit individuals are 
more likely, but not certain, to be selected. 
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Roulette-wheel selection: A form of fitness-proportionate 
selection in which the chance of an individual's being 
selected is proportional to the amount by which its fitness 
is greater or less than its competitors' fitness. 
(Conceptually, this can be represented as a game of 
roulette - each individual gets a slice of the wheel, but 
more fit ones get larger slices than less fit ones. The wheel 
is then spun, and whichever individual "owns" the section 
on which it lands each time is chosen.) 

Scaling selection: As the average fitness of the population 
increases, the strength of the selective pressure also 
increases and the fitness function becomes more 
discriminating. This method can be helpful in making the 
best selection later on when all individuals have relatively 
high fitness and only small differences in fitness 
distinguish one from another. 

Tournament selection: Subgroups of individuals are 
chosen from the larger population, and members of each 
subgroup compete against each other. Only one individual 
from each subgroup is chosen to reproduce. 

Rank selection: Each individual in the population is 
assigned a numerical rank based on fitness, and selection 
is based on this ranking rather than absolute differences in 
fitness. The advantage of this method is that it can prevent 
very fit individuals from gaining dominance early at the 
expense of less fit ones, which would reduce the 
population's genetic diversity and might hinder attempts 
to find an acceptable solution. 

Generational selection: The offspring of the individuals 
selected from each generation become the entire next 
generation. No individuals are retained between 
generations. 

Steady-state selection: The offspring of the individuals 
selected from each generation go back into the pre-
existing gene pool, replacing some of the less fit members 
of the previous generation. Some individuals are retained 
between generations. 

Hierarchical selection: Individuals go through multiple 
rounds of selection each generation. Lower-level 
evaluations are faster and less discriminating, while those 
that survive to higher levels are evaluated more rigorously. 
The advantage of this method is that it reduces overall 
computation time by using faster, less selective evaluation 
to weed out the majority of individuals that show little or 
no promise, and only subjecting those who survive this 
initial test to more rigorous and more computationally 
expensive fitness evaluation. 

Methods of change 

Once selection has chosen fit individuals, they must be 
randomly altered in hopes of improving their fitness for 
the next generation. There are two basic strategies to 
accomplish this. The first and simplest is called mutation. 
Just as mutation in living things changes one gene to 
another, so mutation in a genetic algorithm causes small 
alterations at single points in an individual's code. The 
second method is called crossover, and entails choosing 
two individuals to swap segments of their code, producing 
artificial "offspring" that are combinations of their parents. 
This process is intended to simulate the analogous process 
of recombination that occurs to chromosomes during 
sexual reproduction. Common forms of crossover include 
single-point crossover, in which a point of exchange is set 
at a random location in the two individuals' genomes, and 
one individual contributes all its code from before that 
point and the other contributes all its code from after that 
point to produce an offspring, and uniform crossover, in 
which the value at any given location in the offspring's 
genome is either the value of one parent's genome at that 
location or the value of the other parent's genome at that 
location, chosen with 50/50 probability. 

 

Figure 2: Crossover and mutation. 

Other problem-solving techniques 

With the rise of artificial life computing and the 
development of heuristic methods, other computerized 
problem-solving techniques have emerged that are in 
some ways similar to genetic algorithms. This section 
explains some of these techniques, in what ways they 
resemble GAs and in what ways they differ. 

• Neural networks 

A neural network, or neural net for short, is a 
problem-solving method based on a computer model 
of how neurons are connected in the brain. A neural 
network consists of layers of processing units called 
nodes joined by directional links: one input layer, one 
output layer, and zero or more hidden layers in 
between. An initial pattern of input is presented to the 
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input layer of the neural network, and nodes that are 
stimulated then transmit a signal to the nodes of the 
next layer to which they are connected. If the sum of 
all the inputs entering one of these virtual neurons is 
higher than that neuron's so-called activation 
threshold, that neuron itself activates, and passes on 
its own signal to neurons in the next layer.  

Figure 3: A simple feedforward neural network, with one 
input layer consisting of four neurons, one hidden layer 

consisting of three neurons, and one output layer 
consisting of four neurons. The number on each neuron 
represents its activation threshold: it will only fire if it 

receives at least that many inputs. The diagram shows the 
neural network being presented with an input string and 

shows how activation spreads forward through the 
network to produce an output. 

Hill-climbing 

Similar to genetic algorithms, though more systematic and 
less random, a hill-climbing algorithm begins with one 
initial solution to the problem at hand, usually chosen at 
random. The string is then mutated, and if the mutation 
results in higher fitness for the new solution than for the 
previous one, the new solution is kept; otherwise, the 
current solution is retained. The algorithm is then repeated 
until no mutation can be found that causes an increase in 
the current solution's fitness, and this solution is returned 
as the result. (To understand where the name of this 
technique comes from, imagine that the space of all 
possible solutions to a given problem is represented as a 
three-dimensional contour landscape. A given set of 
coordinates on that landscape represents one particular 
solution. Those solutions that are better are higher in 
altitude, forming hills and peaks; those that are worse are 
lower in altitude, forming valleys. A "hill-climber" is then 
an algorithm that starts out at a given point on the 
landscape and moves inexorably uphill.) Hill-climbing is 
what is known as a greedy algorithm, meaning it always 
makes the best choice available at each step in the hope 
that the overall best result can be achieved this way. By 
contrast, methods such as genetic algorithms and 
simulated annealing, discussed below, are not greedy; 

these methods sometimes make suboptimal choices in the 
hopes that they will lead to better solutions later on. 

Simulated annealing 

Another optimization technique similar to evolutionary 
algorithms is known as simulated annealing. The idea 
borrows its name from the industrial process of annealing 
in which a material is heated to above a critical point to 
soften it, then gradually cooled in order to erase defects in 
its crystalline structure, producing a more stable and 
regular lattice arrangement of atoms. In simulated 
annealing, as in genetic algorithms, there is a fitness 
function that defines a fitness landscape; however, rather 
than a population of candidates as in GAs, there is only 
one candidate solution. Simulated annealing also adds the 
concept of "temperature", a global numerical quantity 
which gradually decreases over time. At each step of the 
algorithm, the solution mutates (which is equivalent to 
moving to an adjacent point of the fitness landscape). 
Finally, the temperature reaches zero and the system 
"freezes"; whatever configuration it is in at that point 
becomes the solution. Simulated annealing is often used 
for engineering design applications such as determining 
the physical layout of components on a computer chip  

A brief history of GAs 

The earliest instances of what might today be called 
genetic algorithms appeared in the late 1950s and early 
1960s, programmed on computers by evolutionary 
biologists who were explicitly seeking to model aspects of 
natural evolution. (Mitchell 1996, p.2). By 1962, 
researchers such as G.E.P. Box, G.J. Friedman, W.W. 
Bledsoe and H.J. Bremermann had all independently 
developed evolution-inspired algorithms for function 
optimization and machine learning, but their work 
attracted little followup.. 

The next important development in the field came in 1966, 
when L.J. Fogel, A.J. Owens and M.J. Walsh introduced 
in America a technique they called evolutionary 
programming. In this method, candidate solutions to 
problems were represented as simple finite-state 
machines; like Rechenberg's evolution strategy, their 
algorithm worked by randomly mutating. 

As early as 1962, John Holland's work on adaptive 
systems laid the foundation for later developments; most 
notably, Holland was also the first to explicitly propose 
crossover and other recombination operators. However, 
the seminal work in the field of genetic algorithms came 
in 1975, with the publication of the book Adaptation in 
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Natural and Artificial Systems.. That same year, Kenneth 
De Jong's important dissertation established the potential 
of GAs by showing that they could perform well on a 
wide variety of test functions, including noisy, 
discontinuous, and multimodal search landscapes . These 
foundational works established more widespread interest 
in evolutionary computation. By the early to mid-1980s, 
genetic algorithms were being applied to a broad range of 
subjects, from abstract mathematical problems like bin-
packing and graph coloring to tangible engineering issues 
such as pipeline flow control, pattern recognition and 
classification, and structural optimization. 

What are the strengths of GAs? 

The first and most important point is that genetic 
algorithms are intrinsically parallel. Most other algorithms 
are serial and can only explore the solution space to a 
problem in one direction at a time, and if the solution they 
discover turns out to be suboptimal, there is nothing to do 
but abandon all work previously completed and start over. 
However, since GAs have multiple offspring, they can 
explore the solution space in multiple directions at once. 
If one path turns out to be a dead end, they can easily 
eliminate it and continue work on more promising 
avenues, giving them a greater chance each run of finding 
the optimal solution. 

However, the advantage of parallelism goes beyond this. 
Consider the following: All the 8-digit binary strings 
(strings of 0's and 1's) form a search space, which can be 
represented as ******** (where the * stands for "either 0 
or 1"). The string 01101010 is one member of this space. 
However, it is also a member of the space 0*******, the 
space 01******, the space 0******0, the space 0*1*1*1*, 
the space 01*01**0, and so on. By evaluating the fitness 
of this one particular string, a genetic algorithm would be 
sampling each of these many spaces to which it belongs. 
Over many such evaluations, it would build up an 
increasingly accurate value for the average fitness of each 
of these spaces, each of which has many members. 
Therefore, a GA that explicitly evaluates a small number 
of individuals is implicitly evaluating a much larger group 
of individuals - just as a pollster who asks questions of a 
certain member of an ethnic, religious or social group 
hopes to learn something about the opinions of all 
members of that group, and therefore can reliably predict 
national opinion while sampling only a small percentage 
of the population. In the same way, the GA can "home in" 
on the space with the highest-fitness individuals and find 
the overall best one from that group. In the context of 
evolutionary algorithms, this is known as the Schema 
Theorem, and is the "central advantage" of a GA over 
other problem-solving methods. 

Due to the parallelism that allows them to implicitly 
evaluate many schema at once, genetic algorithms are 
particularly well-suited to solving problems where the 
space of all potential solutions is truly huge - too vast to 
search exhaustively in any reasonable amount of time. 
Most problems that fall into this category are known as 
"nonlinear". In a linear problem, the fitness of each 
component is independent, so any improvement to any 
one part will result in an improvement of the system as a 
whole. Needless to say, few real-world problems are like 
this. Nonlinearity is the norm, where changing one 
component may have ripple effects on the entire system, 
and where multiple changes that individually are 
detrimental may lead to much greater improvements in 
fitness when combined. Nonlinearity results in a 
combinatorial explosion: the space of 1,000-digit binary 
strings can be exhaustively searched by evaluating only 
2,000 possibilities if the problem is linear, whereas if it is 
nonlinear, an exhaustive search requires evaluating 21000 
possibilities - a number that would take over 300 digits to 
write out in full. 

Fortunately, the implicit parallelism of a GA allows it to 
surmount even this enormous number of possibilities, 
successfully findig optimal or very good results in a short 
period of time after directly sampling only small regions 
of the vast fitness landscape. For example, a genetic 
algorithm developed jointly by engineers from General 
Electric and Rensselaer Polytechnic Institute produced a 
high-performance jet engine turbine design that was three 
times better than a human-designed configuration and 
50% better than a configuration designed by an expert 
system by successfully navigating a solution space 
containing more than 10387 algorithms is that they perform 
well in problems for which the fitness landscape is 
complex - ones where the fitness function is discontinuous, 
noisy, changes over time, or has many local optima. Most 
practical problems have a vast solution space, impossible 
to search exhaustively; the challenge then becomes how to 
avoid the local optima - solutions that are better than all 
the others that are similar to them, but that are not as good 
as different ones elsewhere in the solution space. All four 
of a GA's major components - parallelism, selection, 
mutation, and crossover - work together to accomplish 
this. In the beginning, the GA generates a diverse initial 
population, casting a "net" over the fitness landscape. 
Compares this to an army of parachutists dropping onto 
the landscape of a problem's search space, with each one 
being given orders to find the highest peak.) Small 
mutations enable each individual to explore its immediate 
neighborhood, while selection focuses progress, guiding 
the algorithm's offspring uphill to more promising parts of 
the solution space, However, crossover is the key element 
that distinguishes genetic algorithms from other methods 
such as hill-climbers and simulated annealing. Without 
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crossover, each individual solution is on its own, 
exploring the search space in its immediate vicinity 
without reference to what other individuals may have 
discovered. However, with crossover in place, there is a 
transfer of information between successful candidates - 
individuals can benefit from what others have learned, 
and schemata can be mixed and combined, with the 
potential to produce an offspring that has the strengths of 
both its parents and the weaknesses of neither. This point 
is illustrated in, where the authors discuss a problem of 
synthesizing a lowpass filter using genetic programming. 
In one generation, two parent circuits were selected to 
undergo crossover; one parent had good topology 
(components such as inductors and capacitors in the right 
places) but bad sizing (values of inductance and 
capacitance for its components that were far too low). The 
other parent had bad topology, but good sizing. The result 
of mating the two through crossover was an offspring 
with the good topology of one parent and the good sizing 
of the other, resulting in a substantial improvement in 
fitness over both its parents. 
The problem of finding the global optimum in a space 
with many local optima is also known as the dilemma of 
exploration vs. exploitation, "a classic problem for all 
systems that can adapt and learn". If a particular solution 
to a multiobjective problem optimizes one parameter to a 
degree such that that parameter cannot be further 
improved without causing a corresponding decrease in the 
quality of some other parameter, that solution is called 
Pareto optimal or non-dominated). 

To determine whether those changes produce an  
improvement. The virtue of this technique is that it allows 
genetic algorithms to start out with an open mind, so to 
speak. Since its decisions are based on randomness, all 
possible search pathways are theoretically open to a GA; 
by contrast, any problem-solving strategy that relies on 
prior knowledge must inevitably begin by ruling out many 
pathways a priori, therefore missing any novel solutions 
that may exist there. Lacking preconceptions based on 
established beliefs of "how things should be done" or 
what "couldn't possibly work", GAs do not have this 
problem. Similarly, any technique that relies on prior 
knowledge will break down when such knowledge is not 
available, One vivid illustration of this is the rediscovery, 
by genetic programming, of the concept of negative 
feedback - a principle crucial to many important 
electronic components today,. 

What are the limitations of GAs? 

Although genetic algorithms have proven to be an 
efficient and powerful problem-solving strategy, they are 
not a panacea. GAs do have certain limitations; however, 

it will be shown that all of these can be overcome and 
none of them bear on the validity of biological evolution. 

The first, and most important, consideration in creating a 
genetic algorithm is defining a representation for the 
problem. The language used to specify candidate solutions 
must be robust; i.e., it must be able to tolerate random 
changes such that fatal errors or nonsense do not 
consistently result. There are two main ways of achieving 
this. The first, which is used by most genetic algorithms, 
is to define individuals as lists of numbers - binary-valued, 
integer-valued, or real-valued - where each number 
represents some aspect of a candidate solution. If the 
individuals are binary strings, 0 or 1 could stand for the 
absence or presence of a given feature. If they are lists of 
numbers, these numbers could represent many different 
things: the weights of the links in a neural network, the 
order of the cities visited in a given tour, the spatial 
placement of electronic components, the values fed into a 
controller, the torsion angles of peptide bonds in a protein, 
and so on. Mutation then entails changing these numbers, 
flipping bits or adding or subtracting random values. In 
this case, the actual program code does not change; the 
code is what manages the simulation and keeps track of 
the individuals, for outputting an oscillating signal. At the 
end of the experiment, an oscillating signal was indeed 
being produced - but instead of the circuit itself acting as 
an oscillator, as the researchers had intended, they 
discovered that it had become a radio receiver that was 
picking up and relaying an oscillating signal from a 
nearby piece of electronic equipment! This is not a 
problem in nature, however. Those organisms which 
reproduce more abundantly compared to their competitors 
are more fit; those which fail to reproduce are unfit. 

The solution has been "the evolution of evolvability" - 
adaptations that alter a species' ability to adapt. For 
example, most living things have evolved elaborate 
molecular machinery that checks for and corrects errors 
during the process of DNA replication, keeping their 
mutation rate down to acceptably low levels; conversely, 
in times of severe environmental stress, some bacterial 
species enter a state of hypermutation where the rate of 
DNA replication errors rises sharply, increasing the 
chance that a compensating mutation will be discovered. 
Of course, not all catastrophes can be evaded, but the 
enormous diversity and highly complex adaptations of 
living things today show that, in general, evolution is a 
successful strategy. Likewise, the diverse applications of 
and impressive results produced by genetic algorithms 
show them to be a powerful and worthwhile field of study. 

One type of problem that genetic algorithms have 
difficulty dealing with are problems with "deceptive" 
fitness functions (Mitchell 1996, p.125), those where the 
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locations of improved points give misleading information 
about where the global optimum is likely to be found. For 
example, imagine a problem where the search space 
consisted of all eight-character binary strings, and the 
fitness of an individual was directly proportional to the 
number of 1s in it - i.e., 00000001 would be less fit than 
00000011, which would be less fit than 00000111, and so 
on - with two exceptions: the string 11111111 turned out 
to have very low fitness, and the string 00000000 turned 
out to have very high fitness. In such a problem, all 
involve controlling the strength of selection, so as not to 
give excessively fit individuals too great of an advantage.  

Finally, several researchers advise against using genetic 
algorithms on analytically solvable problems. It is not that 
genetic algorithms cannot find good solutions to such 
problems; it is merely that traditional analytic methods 
take much less time and computational effort than GAs 
and, unlike GAs, are usually mathematically guaranteed 
to deliver the one exact solution. Of course, since there is 
no such thing as a mathematically perfect solution to any 
problem of biological adaptation, this issue does not arise 
in nature.  

Some specific examples of GAs 

As the power of evolution gains increasingly widespread 
recognition, genetic algorithms have been used to tackle a 
broad variety of problems in an extremely diverse array of 
fields, clearly showing their power and their potential. 
This section will discuss some of the more noteworthy 
uses to which they have been put. 

• Acoustics  
• Aerospace engineering  
• Astronomy and astrophysics  
• Chemistry  
• Electrical engineering  
• Financial markets  
• Game playing  
• Geophysics  
• Materials engineering  
• Mathematics and algorithmics  
• Military and law enforcement  
• Molecular biology  
• Pattern recognition and data mining  
• Robotics  

Creationist arguments 

As one might expect, the real-world demonstration of 
the power of evolution that GAs represent has proven 

surprising and disconcerting for creationists, who 
have always claimed that only intelligent design, not 
random variation and selection, could have produced 
the information content and complexity of living 
things. They have therefore argued that the success of 
genetic algorithms does not allow us to infer anything 
about biological evolution. The criticisms of two anti-
evolutionists, representing two different viewpoints, 
will be addressed: young-earth creationist  

 Some traits in living things are qualitative, 
whereas GAs are always quantitative 

 GAs select for one trait at a time, whereas 
living things are multidimensional 

 GAs do not allow the possibility of extinction 
or error catastrophe 

 GAs ignore the cost of substitution 
 GAs ignore generation time constraints 
 GAs employ unrealistically high rates of 

mutation and reproduction 
 GAs have artificially small genomes 
 GAs ignore the possibility of mutation 

occurring throughout the genome 
 GAs ignore problems of irreducible 

complexity 
 GAs have preordained goals 
 GAs do not actually generate new information 
 Evolutionary algorithms are therefore 

incapable of generating true complexity 
 evolutionary algorithms, on the average, do no 

better than blind search. 

Conclusion 

Even creationists find it impossible to deny that the 
combination of mutation and natural selection can 
produce adaptation. Nevertheless, they still attempt to 
justify their rejection of evolution by dividing the 
evolutionary process into two categories - 
"microevolution" and "macroevolution" - and arguing that 
only the second is controversial, and that any evolutionary 
change we observe is only an example of the first. 

Now, microevolution and macroevolution are terms that 
have meaning to biologists; they are defined, respectively, 
as evolution below the species level and evolution at or 
above the species level. But the crucial difference 
between the way creationists use these terms and the way 
scientists use them is that scientists recognize that these 
two are fundamentally the same process with the same 
mechanisms, merely operating at different scales. 
Creationists, however, are forced to postulate some type 
of unbridgeable gap separating the two, in order for them 
to deny that the processes of change and adaptation we 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 
 

 

133

see operating in the present can be extrapolated to 
produce all the diversity observed in the living world. 
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