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Summary 
This paper presents a preliminary study of an approach that 
models programmable logic controllers (PLCs) for their effective 
deployment in industrial control processes. A working model is 
developed for automatic allocation of PLCs and also a formal 
verification of Ladder Diagram representations of control 
processes using the Symbolic Model Verifier (SMV) tool. 
Automatic resource allocation is achieved through the 
proposition of a digraph model for any Ladder Diagram 
representation of a control process, which is then translated to an 
XML (Extensible Mark Up Language) model. The required PLC 
resources needed to implement a control process are extracted 
from the XML model. These resources are then used by a 
selection engine to determine, from a PLC database, the most 
appropriate PLCs or Embedded Controllers (EBCs) that can 
satisfy the resource requirements. Additionally, information 
extracted from the XML model is used to generate a formally 
verifiable SMV code of the system. This paper focuses on the 
practical implementation, testing, and verification of three 
conceptual modules applied to a control process. These  are, the 
XML model of the control process, the PLC Database Automatic 
Resource Allocation, and the XML-to-SMV translator. This work 
was significantly motivated by the ever increasing number of 
industries who seek to increase their productivity   by 
automating  their processes.  
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1. Introduction 

In a broad sense, a programmable logic controller (PLC) 
can be defined as a microcomputer as well as a 
microcontroller [22, 28]. They both comprise the same 
basic components: an arithmetic and logic unit (ALU), a 
control section, a local memory area, and the input/output 
(I/O) ports. However, they are usually less powerful than a 
personal computer. Some common PLC applications are: 

- batch processing and material handling in the 
chemical industry, 

- machining and test stand control, 
- wood and chip handling in the lumber industry, 
- filling and packaging in the food industry, and 

- furnace and rolling mill controls in the metal 
industry [28]. 
 

PLCs are now used to replace traditional relay-based 
controllers that were used to control industrial processes as 
 PLCs offer more flexible options. The menu of options 
that contribute to this flexibility include: 

- the small size of the PLC  which facilitates 
locality of the controller with the machine or the 
process being controlled, 

- user friendly computer software to allow 
specification of the control process in the 
standard methods of programming (ICE, 1993) 
whether Structured Text (ST), Function Block 
Diagram (FBD), Instruction List (IL), Sequential 
Function Chart (SFC), Ladder Diagram (LD) or 
other modern programming constructs such as 
state diagrams, 

- networking in local area networks (LAN) which 
allows for remote management of control 
processes through communication ports and the 
standardization of hardware interfaces for 
manufacturer interchangeability [12, 28, 29]. 
 

In exploring the most efficient method for the effective 
deployment of resources, ladder logic diagrams (LD) is 
chosen. According to Van Elk et. al [28], LD is a graphical 
language based on ladder programming. LD is a technique 
that evolved from the electrical wiring diagrams that were 
used in the car industry for describing relay control 
schemes and is now widely used to program the current 
generation of PLCs. LDs can be used to formally represent 
any relay based binary control and offers a smooth 
transition for electrical engineers, who previously worked 
with relay ladder logic (RLL) and electrical wiring 
diagrams. In the PLC industry, it is generally an accepted 
fact that the task of selecting the correct PLC for a 
particular system is a very difficult one [3]. It is for this 
reason that the automation of processes is of such 
importance. In choosing a PLC, some of the many 
parameters that have to be considered are: the number of 
inputs and outputs, the program memory, data memory 
size, the number of communication ports, the number of 
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instructions that they support [3]. These parameters are 
organized as part of a database. The database attempts to 
capture most if not all of these variables, thereby allowing 
a selection engine to execute the most detailed search 
possible. Code estimation is used to calculate the values 
for specific database component attributes, that can be 
gleaned from the ladder logic program leading to the 
selection of the appropriate component.  
Writing correct Ladder Diagram programs is often 
considered to be a difficult task as stated in [26].  The 
requirements that have to be considered include: the 
algorithm to be used, translating the algorithm to 
appropriate ladder diagram instructions, writing the 
program, testing, debugging the program and the 
production of adequate documentation. Formal verification 
tools can be used to improve and ensure the accuracy of 
this process while designing a system. The Cadence 
Formal Check verification tool [8], that is based on the 
SMV formal language, was used in this study. The XML 
model representation of the PLC program was converted 
to the SMV input language. The SMV input language can 
be used to describe synchronous or asynchronous finite 
state systems.  
The overview of the concept of resource allocation and 
formal verification as part of a ladder diagram integrated 
tool [18] is shown in figure 1. 
 

 

Fig. 1. Architecture Overview of the Multi-target Tool ( LLD: ladder 
logic diagram; ARA: automatic resource allocation; RCG: retargetable 

code generation) 

The research work presented in this paper consists of three 
major parts: the creation of a PLC database, the automatic 
resource allocation engine, the XML to SMV model 
generation and the verification. Section 2 gives an 
overview of the PLC Database development, followed by 

section 3, which presents the PLC selection engine. The 
aspect of the study that deals with the XML to SMV 
model generation for formal verification of the PLC 
program is presented in section 4. Section 5 presents a case 
study and its results. Section 6 provides a conclusion and 
future direction. 

2. PLC Database Development 

The process to be controlled is firstly represented through 
a LD, and then modeled as an XML document model. 
From the analysis of the XML document, it is possible to 
determine the number of operations or instructions that are 
needed to execute the program. This also enables the 
determination of the size of the memory that will be 
required to retain the program, the number of 
inputs/outputs and the approximate program execution 
time.  
The necessary information from the analysis of data sheets 
is  captured and represented in the database. This 
information represents essential parameters for PLCs and 
embedded controllers. These variables provide a base from 
which it is possible to make a selection of the most 
suitable PLC for the intended configuration. Alternatively 
a user may desire to search the database for embedded 
controllers that satisfy his specification such as the size of 
the address or data bus, the clock speed, the size of the 
memory, the number of input/output ports, and execution 
speed. The database [5] has the ability to generate reports, 
thereby providing further detailed information on the 
design of the particular PLC or embedded controller. 
Entities, relationships and accompanying attributes that are 
required for the creation of the database were derived from 
the analysis of the data sheets for the PLCs and 
microcontrollers. The detailed arrangement of the 
specifications on the data sheets offered a very detailed 
source of information especially for attributes. Tables are 
analyzed and arranged in a manner that would most 
suitably represent the data in the database. Tables are not 
only created to represent the characteristics or properties 
of PLCs and embedded controllers but also for the support 
software and accessories that may be required in 
constructing a system. Every effort was made to reduce 
redundancy and conserve on physical storage while 
improving performance by presenting a reasonably 
normalized database.  
A conceptual view of the database can be seen in Figure 2 
below. PLCSCHEMA is the only schema that owns tables. 
For each of these tables a public synonym of the same 
name is created. The PLC_USER_ROLE role object is 
created to be used to administer a set of privileges on the 
tables owned by PLCSCHEMA. The object privileges 
SELECT, INSERT and UPDATE, along with the 
CONNECT privilege are granted to the 
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PLC_USER_ROLE object. This role is then granted to the 
PLC USER1 database user object, which essentially give it 
access to the tables of the PLCSCHEMA through the 
existing synonyms. Hence security is managed through the 
PLC_USER_ROLE and users that are granted this role 
will not be able to alter or delete data from the tables. 
 

 

Fig. 2. The Conceptual View of the Database [9]. 

3. Resource Allocation Method 

Many parameters have to be taken into consideration. The 
most important ones are: the number of inputs/outputs, the 
program memory and data memory sizes, the number of 
communication ports, and the number of instructions [19]. 
The database presented in section 2 of this paper attempts 
to capture most if not all of these variables through a 
selection engine that allows for one of the most detailed 
searches possible. Code estimation is used to estimate the 
values for specific database component attributes that can 
be gleaned from the ladder logic program thereby 
facilitating the selection of the appropriate component. 
The approach taken is to first determine a suitable 
representation for the process.  

A digraph is used to represent the process as it can be 
easily used to represent the flow of execution of a ladder 
logic program. Extensible Markup Language (XML ) [30], 
because of its portability and inter-operability, is used to 
represent our ladder logic programs. The selection engine 
is able to parse the XML model and determine the values 

of the various parameters that are represented. The output 
parameters of the parsing process are used to determine the 
optimal set of PLCs that can suitably implement the 
system.  

A listing of the parameters and the values that were 
obtained from the XML model and used in the query to the 
database can be viewed from the menu. This sequencing 
supports the automatic selection process. Further detailed 
reports can be generated as needed for PLC or EBC in the 
result set. Reports can be generated to list the PLCs, EBCs 
or the respective modules in the database. The conceptual 
model is shown in Figure 3. 
 

 

Fig. 3. Model for code estimation and component selection. 

3.1. Implementing the Selection Engine 

This search engine is implemented using the Java 
programming language which is known for its portability. 
It uses the Simple API for XML [24] to implement a 
parser that parses the XML document representing a 
ladder diagram program of a control process. As 
documented in [9], a ladder diagram can be expressed as a 
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direct acyclic graph which can further be represented as an 
XML document. Figure 4 shows the ladder logic program 
that monitors the state of three vents v1, v2 and v3. Each 
element in the program has two attributes, the address of 
the element and the variable name for the address. For 
example 000.02 is the relative address and v1 is the 
variable name. 

 

Fig.4. Ladder Logic Diagram that monitors the state of three vents 

In representing the ladder diagram in Figure 4 as directed 
graphs, each rung in the ladder diagram is expressed as a 
single graph. Each element in the ladder logic diagram can 
be mapped to a graph component. All elements are 
mapped to edges of the graph. The connections between 
elements are represented as the vertices in the graph. There 
was the concern that no distinguishing factor existed 
between a normally open contact and a normally closed 
contact represented in the digraph presented in the 
reference document, as such it was not apparent how a 
normally closed contact could be translated into the 
equivalent XML model representation. Thus the symbolic 
representation for each normally closed contact was 
altered to have a bar or an exclamation mark accompany 
the symbol; otherwise it is considered a normally open 
contact. The XML model is represented using a structure 
similar to the code listing in the Appendix 1.  

2.2. Determination of the Selection Parameters for 
Resource Allocation 

As stated before, a parser is used to parse the XML 
document at the end of this parse a number of parameters 

specific to the ladder logic program would have been 
accumulated. These parameters are instrumental in the 
selection of the most suitable PLC and/or microcontroller 
and consist of variables that represent things such as the 
number of instructions that are required for the program, 
the size of the memory that is required, the number of 
inputs, the number of outputs, the number of Flip-Flops, 
the number of timers, the number of counters, the number 
of internal relays, the number of master control relays.  
In order to translate the requirements to relate to the XML 
document, it is required to count the number of 
instructions, evaluate the size of the memory that is 
required for the program, the number of input and output 
ports that are needed, the number of timers, and the 
number of counters. The final system architecture  
presented in Figure 5 below  is more akin to the 
implementation of the PLC Resource Allocator.  
 

 

Fig. 5. Architecture of PLC Resource Allocation and Verification 

The main implemented module is the 
“PLCSelectionEngine” Java class [24]. In the parser, 
various variables are used to store the values of the 
different parameters that are required above and are 
accessible through appropriate Java access methods. 
Further details of the implementation can be seen from the 
source code of the “PLCXMLParser” Java class in [9]. It is 
expected that not all of the variables represented here will 
have values after each parse. However the ones that have 
values represent the working set of parameters  will be 
passed to the PLC selection engine. Other features of 
“PLCSelectionEngine” include a user-based search based 
on other parameters such as cost, reliability or long-term 
support. 
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4. XML to SMV Translation and Verification 

Traditionally ladder programs are validated by testing. A 
set of tests for each program is executed in order to 
establish the compliance of the ladder program with its 
specification. The main drawback of this approach is that 
it is not exhaustive, and can lead to a successfully tested 
program still having significant errors. It is for this very 
reason why formal methods are more useful.  
Formal methods are deeply rooted in mathematics. These 
formal methods suggest the use of mathematics to specify, 
design and implement a computer system. Reducing the 
number of errors in a program and increasing productivity 
is one of the claimed benefits of formal methods according 
to [2]. This article also indicates that formal methods help 
to improve the quality of a program and enables one to 
write specifications that are used to discover potential 
problems or future characteristics of a system. This is 
imperative especially for safety critical systems, a category 
in which most industrial control systems fall. SMV is 
particularly suited for Computation Three Logic  (CTL), 
which allows the specification of temporal properties of a 
system not supported by other languages. SMV can be 
used for both software and hardware system design. The 
Cadence Formal Check tool [8] is used because it is freely 
available, it is equipped with SMV as one of its modeling 
languages and facilitates the verification process by the 
GUI that it provides.  
This section investigates the basic principles of the SMV 
language, the transformation process of the submitted 
XML model to SMV, the specification and verification of 
the generated SMV code. It concludes by looking at the 
overall system architecture. 

4.1. Formal Verification of Ladder Logic Programs 

Formal methods in system development are based on 
transformations of a mathematical specification. These 
transformations therefore possess and preserve the 
“mathematical-correctness” of a specification. Likewise, in 
formal verification it endeavors to ensure that whatever 
property or characteristic is formally specified, the system 
will perform likewise and meet the expectations of the user. 
Therefore verification is a way to ensure that the 
requirements of a system are met. The use of formal 
methods in PLC programming is introduced in [7]. Mader 
[13] raised the question about the role of formal methods 
for increasing confidence in PLC applications, but also  
provide some good pointers for efficient formal 
verification of PLC programs.  
Beside model checking methods [14], there are other 
verification methods that have been used to verify PLC 
programs such as timed automata [6]. Aiken et al. [1] in 
their paper model LD programs as constraints systems 
without support for Jumps. Moon [17] used state automata 

and SMV for model checking in verifying LD programs, 
however the extraction process of the state automata is not 
presented. In developing the XML-to-SMV converter, it 
was important to take into account the work of Rossi [23], 
in which formal semantics of LD programs accounts for a 
large subset of the full language. Although a conversion 
method of PLC programs into SMV subsets  is presented 
in [22], the XML model representation of the PLC 
program will be used to generate the set of SMV modules. 
The XML model therefore represents a type of standard 
interface or intermediate model between the ladder logic 
program and the SMV model as depicted by the diagram 
of Figure 6.  
 

 

Fig. 6. Model of the Resource Allocation and Verification System  

 
All the PLC Ladder programs can be internally 
represented as XML models. This  is a great advantage 
over a direct conversion from the ladder logic to SMV, as 
no costs are incurred in converting  from the different 
programming languages, and it provides users with the 
portability of XML and a standard platform  capable of 
countless other possibilities. Only one algorithm would 
therefore be required to do the conversion of the XML 
model to the requisite SMV model for verification. This 
has far reaching implications with regard to a standard 
model for formal verification of PLCs.  
A SMV module is defined by the keyword MODULE and 
a name followed by an optional list of the module input 
variables. Local variables for the module can be defined in 
a list beginning with the keyword VAR. State transitions 
are characterized by the changes in the values of variables 
in the module and defined in the ASSIGN statement. 
Additional variables can be defined following the keyword 
DEFINE according to the specification defined in table 2. 
There is a description of the SMV input language in [15]. 
The module name “main” has a special significance in the 
SMV in the same way that it does in the C programming 
language. That is, the main module is the first module that 
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will be executed. Execution of assignment statements in an 
SMV program are done simultaneously and in parallel. 
 
4.2. Transformation of the XML Model to SMV 
 
In constructing the SMV model, the focus is on the flow of 
execution of the ladder logic program. That is the left to 
right execution of each rung from the top to the bottom of 
the program will be modeled. As Figure 7 shows each 
transition, except for the first, models a sequential 
evaluation. 

 

Fig. 7. Ladder Logic program transition diagram 

The jump instruction was not considered in this study. 
These transitions will be modeled in SMV through the 
next function placed in the ASSIGN section of the main 
module. However a modular approach is employed which 
ensures the sequential execution of each rung. The 
implementation is based on the concept of the Simplified 
Incidence Matrix Java Vectors. Vectors are used to store 
the matrix incident edges and vertices separately although 
there is a direct correlation of the indexes. For the “Up” 
and “Down” edges of the ladder diagram vectors are also 
used to store the “From” vertices and the “To” vertices as  
necessary. In the “Up” edges structure, the “To” vertices 
actually represent all the vertices where branching occurs 
in the ladder diagram. 
There are other methods of representing the SMV model 
for example representing each contact as an individual 
module with its own state and transition, declaring 
instances of these contact modules and composing these 
modules through a rung module. Other existing rungs 
would likewise be composed in a similar fashion. 
Instances of these rung modules would subsequently be 
wrapped in a main module for a total representation of the 
ladder program. However, although such an approach 
would be considered modular it is also an unnecessarily 
bulky approach. It may have cost effects on time and the 
execution resources used as indicated in [22]. 

4.3. SMV Specification and Verification 

Verification is performed by defining the main module 
which will consist of the specification(s) written in 
Computation Tree Logic (CTL) or temporal logic to be 
verified. The result of SMV verification is a message 
stating whether the CTL specification is true or false. If it 
is not true, a counter example is generated indicating a 

sequence of state transitions that leads to a violation of the 
CTL specification (see example in [16]). The CTL is a 
reachability tree for the finite state machine defined by the 
SMV model. CTL statements consist of a temporal logic 
operator along with a logical expression. The temporal 
logic operators are E, A, X, F, G and U where: 

• E represents the existential path quantifier 
• A represents the universal path quantifier 
• X represents the next time 
• F represents the future 
• G represents globally 
• U represents until 

Therefore with an expression q, a CTL formula or 
specification could be written as Fq meaning that q holds 
some time in the future, Xq meaning that q holds for the 
next state and so on. If there is more than one SPEC 
declaration the specification is the conjunction of all the 
SPEC declarations. 
Each of the formulas would be evaluated and the results 
reported separately in the order of the SPEC declaration in 
the program text. Considering the example of section 3, a 
specification can be written that ensures that each rung 
will be able to “open” or “close” the particular vent being 
monitored. Hence the derived SMV main module 
representation of the PLC program would be: 
MODULEmain 
V AR 

in1 : boolean; 
in2 : boolean; 
in3 : boolean; 
r1 : rung1(in1; in2; in3); 
r2 : rung2(r1:c1; r1:c2; r1:c3); 
r3 : rung3(r2:c1; r2:c2; r2:c3); 

SPEC 
AG(EF(r1:output)&EF!r1:output& 
EF(r2:output)&EF!r2:output& 
EF(r3:output)&EF!r3:output) 

Variables in1, in2, and in3 are declared to be of type 
Boolean in this program but are not assigned values. This 
leaves the SMV system free values for this these variables, 
giving them the characteristics of being unconstrained 
inputs to the system. Instances r1, r2 and r3 represent rung 
1, rung 2 and rung 3 respectively which monitors the three 
different vents. Inputs to rung2 are driven by the inputs to 
the instance of rung 1. Likewise inputs to rung3 are driven 
by the inputs to the instance of rung 2. The specification 
that we are verifying states that the behavior of the system 
is to allow the vents to be turned “on” and “off”. 
The result of this SMV verification was true and was done 
with the Cadence FormalCheck SMV tool [8]. The 
resources used for this model are minimal: user time - 
0.015625 s, system time - 0.03125 s, BDD [33] nodes 
allocated - 94, and data segment size - 0. 
As presented in [16], it is important to note that model 
checking only checks the model of the system. For 
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example, when SMV declares a claim as ’true’ or ’false’, 
this is with respect to the system model whether or not it 
accurately represents the system.  

4.4. System Architecture 

The major components of a system and the communication 
Between these components identify its structural 
framework or its architectural design. The final system 
architecture is presented in Figure 5. The main 
implemented module is the “PLCSelectionEngine” and it 
contains other sub-modules. The actualization of the 
“PLCSelectionEngine”, formal verification of a ladder 
diagram, and the PLC database actualization were 
presented previously. The java code for the full 
implementation of the “PLCSelectionEngine” and the 
generation of the SMV given [9]. The next section 
presents a study of a test case used with the Resource 
Allocator and the results obtained. 

5. Case Study 

The aim of this case study is to demonstrate, that given an 
XML model of a control process, the Resource Allocator 
tool can be used to select the appropriate PLCs or EBCs. 
The user is then able to generate a report for each PLC 
returned in the results of the query to the database. This 
may include additional modules, supporting materials, 
accessories, and diagrams from the database that are linked 
to the particular PLC or microcontroller. Likewise report 
listings of the contents of the database can be generated on 
demand. Figure 8 shows the snapshot of the prototype 
execution. 

 

Fig. 8.  Resource Allocator Prototype Execution 

After submitting the XML file (i.e: 
VentSystemLadderDiagram.xml [9]), the Resource 
Allocator automatically generates, the list of PLCs/EBCs 
in a database that matches the generated parameters. In 
order to view the parameters that were used to generate the 
results, we use the View menu option and select the 
“Generated Parameters” sub-menu item as shown in 
Figure 9. 
 

 

Fig. 9. Parameters generated from XML file 

Likewise, to see the verifiable generated SMV code, the 
user should go to the View sub-menu and select the SMV 
Code menu item (Figure 10).  

 

Fig. 10. SMV code generated from XML file 
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We will present only one case study. The remaining 
examples are described in [9].  

Consider the example of a real-life control process, 
that consists of a painting system (Figure 11).  

 

Fig. 11. Diagram of the painting system [11] 

A conveyor system that  retrieves parts as is needed for a 
robot to complete paint job. The robot sweeps over the part, 
before the part can move on. The sensor lamps must be on 
for the conveyor to work. All actuators and lamps should 
be off when the switch is off. When the “On” switch is 
turned, the conveyor should start. It should run until PE1 
indicates the presence of a part at the paint station. At this 
point, the conveyor should automatically turn off. The 
paint arm, which is assumed to have started in its counter 
clockwise position, should be moved to the clockwise 
position (CW), and then back to counter clockwise (CCW) 
position. While the paint arm is moving, the paint should 
be spraying (represented by the Red lamp being on). After 
a complete spray operation, the Red lamp should be off. 
The green light should turn on and stay on for two seconds 
(use of a timer), indicating the process is complete. 
The conveyor should then turn on again. The system 
should then receive another part. Figure 12 gives a 
snapshot of the ladder diagram of a painting system. The 
system controller has a set of inputs and outputs (tables 2 
and 3). 

Table 1. Inputs required by painting controller 
Inputs Description 

PE1 
Photo Electric sensor signal that 
indicates the position of the part 

being painted (begin)

PE2 
Photo Electric sensor signal that 
indicates the position of the part 

being painted (end)

CCWSense 
Sensing position signal of the paint 

arm and its rotation counter 
clockwise 

CWSense 
Sensing position signal of the paint 

arm and its rotation counter 
clockwise 

OnSwitch Signal that starts the process
StopSwitch Signal that stops the process

G_timer Signal that activates the 2-second 
timer 

Table 2. Outputs of the painting controller 
Outputs Description 

CCWMotor Control Signal used for switching 
on/off the motor that turns the 
paint arm counter clockwise

CWMotor Control Signal used for switching 
on/off the motor that turns the 
paint arm counter clockwise

ConMotor Control signal used for starting 
and stopping the conveyor

GLamp Green lamp signal
RLamp Red lamp signal
Spainter Spray painter control signal

The representative XML representation is saved as a file 
named PaintingSystemLadderDiagram.xml [9]. 
 

 

Fig. 12. Snap shot of the ladder diagram editor. 

Using this file as input to the PLC/EBC Resource 
Allocator the following results were observed for the 
generated parameters, the selected PLCs/EBCs, the 
generated SMV model and verification. The generated 
parameters are given below: 
Total Contacts : 25 
Number of Branches : 1 
Total Instructions : 20 
Program Memory Size : 360 words 
Data Memory Size : 104 words 
Number of Inputs : 17 
Number of Outputs : 8 
Number of Timers : 1 
The Allocator generates results that are similar to those of 
the vent control of figure 9. However it is important to 
recognize that the results returned are dependent on more 
than one factor. The collective points in the previous case 
are reiterated here; That is, the type and number of 
PLCs/MCUs returned depend on the population of the 
database [9]. Factors such as the variation in the values of 
the parameters in the database, a larger quantity of data 
and marked differences in the complexity of the control 
processes being studied cause greater variation in the 
results obtained. For example the ”Find dialog” command 
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on the Resource Allocator can return more specific 
PLCs/MCUs by directly specifying the size of the 
parameters needed. If a search for all MCU from Z-World 
Inc [32] is made, a sample report similar to the one of 
Figure 13 should be obtained. 
 

 

Fig. 13.  Z-world MCUs Query 

Now, with a larger quantity of data in the database, a 
variation in the data is shown. Using the “Find dialog” 
command again and specifying MCUs with at least 256 
Kbytes of RAM leads to few elements. The variation of 
parameters are directly related to the complexity of the 
control process being studied. Hence, since the test cases 
showed similar complexities, the results from the database 
agreed likewise (Figure 14). The SMV Model of the 
Painting system obtained from the XML using our 
software tool is given in Appendix 2 and the verification 
results in Appendix 3. 
 

 

Fig. 14. Finding Results - Z-world MCUs with at least 256 K RAM 

6. Conclusion and Future Direction 

6.1. Conclusion 

This paper presents a preliminary study that combines 
software methods for effective deployment of 

programmable logic controllers in control processes. The 
database is intended to be representative of all PLCs and 
microcontrollers. This is achieved by capturing the 
essential characteristics of these components through the 
analysis of data sheets from various industry practitioners. 
The intent is that the resultant database should be general 
enough to represent all the fundamental information 
necessary for any selection, as well as to provide auxiliary 
information on the components selected. 
The prototype of the Resource Allocator tool has been 
designed with a few limitations with regard to the structure 
and size of the Ladder Diagram programs that can be 
handled. The rung depth has been restricted to 2 and the 
number of rungs to 20. Additionally, all programs are 
assumed to be sequential while in reality programs may 
have jumps or loops. Nevertheless the structural 
limitations were sufficient for the level of analysis needed 
for this research. However, the Resource Allocator tool 
can be expanded to improve these limitations and also to 
increase the number and type of contacts that are 
accommodated. This will increase the number of 
instructions or the size of the PLC program that can be 
processed.   
The digraph-XML model presented requires further testing 
and analysis with more industrial PLC programs written in 
Ladder Diagram for added validation and verification of 
the model. Although the test case was 
successfully verified, the model presented can be refined 
to be more semantically rich thus increasing the 
capabilities of the Resource Allocator. 
The XML model can be represented as a set of edges and 
as a simplified incidence matrix which can increase the 
performance of the PLC selection engine. Such a model is 
purported to be more memory efficient and will increase 
the speed of parsing. Therefore it is expected to be a core 
part of the resource allocation system in future 
implementations. There are also inherent limitations in the 
generated SMV code. The problem of being able to 
generate ad hoc CTL specifications in the SPEC section of 
the SMV main module for each control process is still an 
unaccomplished task. It is no small feat to specify 
invariants or other properties such as fairness, safety and 
liveness that remain constant for all control processes. 
The prospect of performing this task appears possible with 
the concept of a more semantically rich model. However, 
SMV code generated in this work models the system and 
model verification checks whether or not it accurately 
represents the system.  This work has the potential to be 
very useful to practitioners in the PLC industry and is a 
precursory step in the total automation and formal 
verification of industrial control processes. It facilitates 
this process through the implementation of a reference 
database, a PLC selection engine and a SMV code 
generator for Ladder Diagram program verification. It also 
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provides a number of perspectives for future research in 
the field. 

6.2. Future Direction 

Further The future direction of this work can be gleaned 
from the answer to the following question: What is 
expected  in the future of resource allocation and model 
verification? It is anticipated that more efficient methods 
for automatic selection and verification will be produced 
based on enhanced or novel models. This should result in 
the improved performance of the selection engine. It can 
be noted that even the simple creation of strategic indexes 
(indices) in the PLC database can significantly improve 
the database’s performance as the size of the database is 
continually increased. However, the focus was on the 
implementation and functionality of the model, so no 
indices were created on the reference database. 
It should be the case that verification is done automatically 
before the selection engine is called to perform automatic 
resource allocation. That is, getting a result from the 
Resource Allocator tool should be dependent on the ladder 
logic being correct to the users’ specification. Hence we 
forecast a tighter integration or a convergence of the 
Resource Allocator and the formal verification tools to 
produce more complete automation process. This remains 
a task for a later version of the system. It has been the 
nature of formal verification to create an intermediate 
model of the system prior to translating it into the formal 
language. For example, [10] used state chart, Thomas and 
Bryla [27] used transition systems diagrams and for our 
study digraphs and XML. 
To use our model as the basis for formal verification 
would require an equivalent digraph representation for the 
ladder logic programs written in  any of the five different 
PLC programming languages. Essentially, this would 
allow programs written in other languages to be 
represented in ladder diagram according to our 
specifications. A tool that represents ladder diagrams 
internally as digraphs and that generates the corresponding 
XML model from the ladder diagram programs is created 
in [4, 18] The generated XML model is then used to 
generate the formal model in SMV for verification. 
Alternatively, a common XML model could be found for 
the programming languages represented in the 
International Electro-technical Commission (IEC) standard, 
IEC 61131- 3, which can be used for the basis of all PLC 
verification. Achieving any of these could be the precursor 
for the standardization of formal verification of ladder 
diagrams using SMV. 
 
 
 
 
 

Appendixes 
 
Appendix 1: Sample XML Model 
</LadderDiagram> 
... 
- <Graph graphNumber=”3”> 
- <Vertices> 
- <Vertex number=”0”> 
<startX>60.0</startX> 
<startY>470.0</startY> 
</Vertex> 
- <Vertex number=”24”> 
<startX>180.0</startX> 
<startY>470.0</startY> 
</Vertex> 
= <Vertex number=”25”> 
<startX>300.0</startX> 
<startY>470.0</startY> 
</Vertex> 
- <Vertex number=”26”> 
<startX>420.0</startX> 
<startY>470.0</startY> 
</Vertex> 
-<Vertex number=”27”> 
<startX>540.0</startX> 
<startY>470.0</startY> 
</Vertex> 
</Vertices> 
- <Edges> 
-<Edge type=”CloseContactEdge”> 
<from>0</from> 
<to>24</to> 
<address>000.02</address> 
<symbol>V1</symbol> 
</Edge> 
- <Edge type=”CloseContactEdge”> 
Exploring an Approach for Effective Deployment of 
Programmable Logic Controllers (PLCs) 11 
<from>24</from> 
<to>25</to> 
<address>000.01</address> 
<symbol>V2</symbol> 
</Edge> 
- <Edge type=”CloseContactEdge”> 
<from>25</from> 
<to>26</to> 
<address>000.03</address> 
<symbol>V3</symbol> 
</Edge> 
- <Edge type=”OpenOutputEdge”> 
<from>26</from> 
<to>27</to> 
<address>003.00</address> 
<symbol>NO VENT</symbol> 
</Edge> 
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</Edges> 
</Graph> 
</LadderDiagram> 
 
Appendix 2: Generated SMV from the XML model 
of the Painting System Controller 
 
MODULE rung1(ONSWITCH,OFFSWITCH,START) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (ONSWITCH — START) & 
(!OFFSWITCH); 

DEFINE 
c1 := ONSWITCH; 
c2 := OFFSWITCH; 
c3 := START; 

 
MODULE rung2(ONSWITCH,PE1,START) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (ONSWITCH & !PE1 & !START); 

DEFINE c1 := ONSWITCH; 
c2 := PE1; 
c3 := START; 
 

MODULE rung3(PE1,CCWSENSE) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 

DEFINE 
c1 := PE1; 
c2 := CCWSENSE; 

 
MODULE rung4(PE1,CCWSENSE) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 

DEFINE 
c1 := PE1; 
c2 := CCWSENSE; 

 
MODULE rung5(PE1,CCWSENSE) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (PE1 & !CCWSENSE); 

DEFINE c1 := PE1; 
c2 := CCWSENSE; 
 

MODULE rung6(CCWSENSE,CWSENSE) 
VAR 

output : boolean; 

ASSIGN 
init(output) := 0; 
next(output) := (!CCWSENSE & CWSENSE); 

DEFINE 
c1 := CCWSENSE; 
c2 := CWSENSE; 
 

MODULE rung7(CCWSENSE,GTIMER) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (CCWSENSE & !GTIMER); 

DEFINE 
c1 := CCWSENSE; 
c2 := GTIMER; 
 

MODULE rung8(GLAMP) 
VAR 

output : boolean; 
ASSIGN 

init(output) := 0; 
next(output) := (GLAMP); 

DEFINE 
c1 := GLAMP; 
 

MODULE main 
VAR 

in1 : boolean; 
in2 : boolean; 
in3 : boolean; 
in4 : boolean; 
in5 : boolean; 
in6 : boolean; 
r1 : rung1(in1,in2,r1.output); 
r2 : rung2(r1.c1,in3,r1.c3); 
r3 : rung3(r2.c2,in4); 
r4 : rung4(r2.c2,r3.c2); 
r5 : rung5(r2.c2,r3.c2); 
r6 : rung6(r3.c2,in5); 
r7 : rung7(r3.c2,in6); 
r8 : rung8(r7.output); 

SPEC 
AG( 
EF (r1.output) & EF (!r1.output) & 
EF (r2.output) & EF (!r2.output) & 
EF (r3.output) & EF (!r3.output) & 
EF (r4.output) & EF (!r4.output) & 
EF (r5.output) & EF (!r5.output) & 
EF (r6.output) & EF (!r6.output) & 
EF (r7.output) & EF (!r7.output) & 
EF (r8.output) & EF (!r8.output)) 

 
Appendix 3: Summary of the Verification Results for 
Painting System  
 
Model checking results 
====================== 
(AG ((((((((((((((((EF r1.output)&(EF (˜r1.output)))&(EF 
r2.output))&(......true 
user time.........................................0.046875 s 
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system time.......................................0.03125 s 
 
Resources used 
============== 
user time.........................................0.046875 s 
system time.......................................0.03125 s 
BDD nodes allocated...............................415 
data segment size.................................0 
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