
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

134

Manuscript received December 5, 2010.
Manuscript revised December 20, 2010.

Combining Software Methods for Effective Deployment of
Programmable Logic Controllers (PLCs)

Lucien Ngalamou† and Leary Myers††

†School of Engineering, Grand Valley State University, 301 W. Fulton, Grand Rapids, MI 49504
††University of the West Indies, Mona Campus, Kingston 7, Jamaica

Summary
This paper presents a preliminary study of an approach that
models programmable logic controllers (PLCs) for their effective
deployment in industrial control processes. A working model is
developed for automatic allocation of PLCs and also a formal
verification of Ladder Diagram representations of control
processes using the Symbolic Model Verifier (SMV) tool.
Automatic resource allocation is achieved through the
proposition of a digraph model for any Ladder Diagram
representation of a control process, which is then translated to an
XML (Extensible Mark Up Language) model. The required PLC
resources needed to implement a control process are extracted
from the XML model. These resources are then used by a
selection engine to determine, from a PLC database, the most
appropriate PLCs or Embedded Controllers (EBCs) that can
satisfy the resource requirements. Additionally, information
extracted from the XML model is used to generate a formally
verifiable SMV code of the system. This paper focuses on the
practical implementation, testing, and verification of three
conceptual modules applied to a control process. These are, the
XML model of the control process, the PLC Database Automatic
Resource Allocation, and the XML-to-SMV translator. This work
was significantly motivated by the ever increasing number of
industries who seek to increase their productivity by
automating their processes.
Key words:
Automatic Resource Allocation, XML Model, Programmable
Logic Controllers (PLCs), PLC Database, XML to SMV
Translation, and Formal Verification.

1. Introduction

In a broad sense, a programmable logic controller (PLC)
can be defined as a microcomputer as well as a
microcontroller [22, 28]. They both comprise the same
basic components: an arithmetic and logic unit (ALU), a
control section, a local memory area, and the input/output
(I/O) ports. However, they are usually less powerful than a
personal computer. Some common PLC applications are:

- batch processing and material handling in the
chemical industry,

- machining and test stand control,
- wood and chip handling in the lumber industry,
- filling and packaging in the food industry, and

- furnace and rolling mill controls in the metal
industry [28].

PLCs are now used to replace traditional relay-based
controllers that were used to control industrial processes as
 PLCs offer more flexible options. The menu of options
that contribute to this flexibility include:

- the small size of the PLC which facilitates
locality of the controller with the machine or the
process being controlled,

- user friendly computer software to allow
specification of the control process in the
standard methods of programming (ICE, 1993)
whether Structured Text (ST), Function Block
Diagram (FBD), Instruction List (IL), Sequential
Function Chart (SFC), Ladder Diagram (LD) or
other modern programming constructs such as
state diagrams,

- networking in local area networks (LAN) which
allows for remote management of control
processes through communication ports and the
standardization of hardware interfaces for
manufacturer interchangeability [12, 28, 29].

In exploring the most efficient method for the effective
deployment of resources, ladder logic diagrams (LD) is
chosen. According to Van Elk et. al [28], LD is a graphical
language based on ladder programming. LD is a technique
that evolved from the electrical wiring diagrams that were
used in the car industry for describing relay control
schemes and is now widely used to program the current
generation of PLCs. LDs can be used to formally represent
any relay based binary control and offers a smooth
transition for electrical engineers, who previously worked
with relay ladder logic (RLL) and electrical wiring
diagrams. In the PLC industry, it is generally an accepted
fact that the task of selecting the correct PLC for a
particular system is a very difficult one [3]. It is for this
reason that the automation of processes is of such
importance. In choosing a PLC, some of the many
parameters that have to be considered are: the number of
inputs and outputs, the program memory, data memory
size, the number of communication ports, the number of

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

135

instructions that they support [3]. These parameters are
organized as part of a database. The database attempts to
capture most if not all of these variables, thereby allowing
a selection engine to execute the most detailed search
possible. Code estimation is used to calculate the values
for specific database component attributes, that can be
gleaned from the ladder logic program leading to the
selection of the appropriate component.
Writing correct Ladder Diagram programs is often
considered to be a difficult task as stated in [26]. The
requirements that have to be considered include: the
algorithm to be used, translating the algorithm to
appropriate ladder diagram instructions, writing the
program, testing, debugging the program and the
production of adequate documentation. Formal verification
tools can be used to improve and ensure the accuracy of
this process while designing a system. The Cadence
Formal Check verification tool [8], that is based on the
SMV formal language, was used in this study. The XML
model representation of the PLC program was converted
to the SMV input language. The SMV input language can
be used to describe synchronous or asynchronous finite
state systems.
The overview of the concept of resource allocation and
formal verification as part of a ladder diagram integrated
tool [18] is shown in figure 1.

Fig. 1. Architecture Overview of the Multi-target Tool (LLD: ladder
logic diagram; ARA: automatic resource allocation; RCG: retargetable

code generation)

The research work presented in this paper consists of three
major parts: the creation of a PLC database, the automatic
resource allocation engine, the XML to SMV model
generation and the verification. Section 2 gives an
overview of the PLC Database development, followed by

section 3, which presents the PLC selection engine. The
aspect of the study that deals with the XML to SMV
model generation for formal verification of the PLC
program is presented in section 4. Section 5 presents a case
study and its results. Section 6 provides a conclusion and
future direction.

2. PLC Database Development

The process to be controlled is firstly represented through
a LD, and then modeled as an XML document model.
From the analysis of the XML document, it is possible to
determine the number of operations or instructions that are
needed to execute the program. This also enables the
determination of the size of the memory that will be
required to retain the program, the number of
inputs/outputs and the approximate program execution
time.
The necessary information from the analysis of data sheets
is captured and represented in the database. This
information represents essential parameters for PLCs and
embedded controllers. These variables provide a base from
which it is possible to make a selection of the most
suitable PLC for the intended configuration. Alternatively
a user may desire to search the database for embedded
controllers that satisfy his specification such as the size of
the address or data bus, the clock speed, the size of the
memory, the number of input/output ports, and execution
speed. The database [5] has the ability to generate reports,
thereby providing further detailed information on the
design of the particular PLC or embedded controller.
Entities, relationships and accompanying attributes that are
required for the creation of the database were derived from
the analysis of the data sheets for the PLCs and
microcontrollers. The detailed arrangement of the
specifications on the data sheets offered a very detailed
source of information especially for attributes. Tables are
analyzed and arranged in a manner that would most
suitably represent the data in the database. Tables are not
only created to represent the characteristics or properties
of PLCs and embedded controllers but also for the support
software and accessories that may be required in
constructing a system. Every effort was made to reduce
redundancy and conserve on physical storage while
improving performance by presenting a reasonably
normalized database.
A conceptual view of the database can be seen in Figure 2
below. PLCSCHEMA is the only schema that owns tables.
For each of these tables a public synonym of the same
name is created. The PLC_USER_ROLE role object is
created to be used to administer a set of privileges on the
tables owned by PLCSCHEMA. The object privileges
SELECT, INSERT and UPDATE, along with the
CONNECT privilege are granted to the

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

136

PLC_USER_ROLE object. This role is then granted to the
PLC USER1 database user object, which essentially give it
access to the tables of the PLCSCHEMA through the
existing synonyms. Hence security is managed through the
PLC_USER_ROLE and users that are granted this role
will not be able to alter or delete data from the tables.

Fig. 2. The Conceptual View of the Database [9].

3. Resource Allocation Method

Many parameters have to be taken into consideration. The
most important ones are: the number of inputs/outputs, the
program memory and data memory sizes, the number of
communication ports, and the number of instructions [19].
The database presented in section 2 of this paper attempts
to capture most if not all of these variables through a
selection engine that allows for one of the most detailed
searches possible. Code estimation is used to estimate the
values for specific database component attributes that can
be gleaned from the ladder logic program thereby
facilitating the selection of the appropriate component.
The approach taken is to first determine a suitable
representation for the process.

A digraph is used to represent the process as it can be
easily used to represent the flow of execution of a ladder
logic program. Extensible Markup Language (XML) [30],
because of its portability and inter-operability, is used to
represent our ladder logic programs. The selection engine
is able to parse the XML model and determine the values

of the various parameters that are represented. The output
parameters of the parsing process are used to determine the
optimal set of PLCs that can suitably implement the
system.

A listing of the parameters and the values that were
obtained from the XML model and used in the query to the
database can be viewed from the menu. This sequencing
supports the automatic selection process. Further detailed
reports can be generated as needed for PLC or EBC in the
result set. Reports can be generated to list the PLCs, EBCs
or the respective modules in the database. The conceptual
model is shown in Figure 3.

Fig. 3. Model for code estimation and component selection.

3.1. Implementing the Selection Engine

This search engine is implemented using the Java
programming language which is known for its portability.
It uses the Simple API for XML [24] to implement a
parser that parses the XML document representing a
ladder diagram program of a control process. As
documented in [9], a ladder diagram can be expressed as a

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

137

direct acyclic graph which can further be represented as an
XML document. Figure 4 shows the ladder logic program
that monitors the state of three vents v1, v2 and v3. Each
element in the program has two attributes, the address of
the element and the variable name for the address. For
example 000.02 is the relative address and v1 is the
variable name.

Fig.4. Ladder Logic Diagram that monitors the state of three vents

In representing the ladder diagram in Figure 4 as directed
graphs, each rung in the ladder diagram is expressed as a
single graph. Each element in the ladder logic diagram can
be mapped to a graph component. All elements are
mapped to edges of the graph. The connections between
elements are represented as the vertices in the graph. There
was the concern that no distinguishing factor existed
between a normally open contact and a normally closed
contact represented in the digraph presented in the
reference document, as such it was not apparent how a
normally closed contact could be translated into the
equivalent XML model representation. Thus the symbolic
representation for each normally closed contact was
altered to have a bar or an exclamation mark accompany
the symbol; otherwise it is considered a normally open
contact. The XML model is represented using a structure
similar to the code listing in the Appendix 1.

2.2. Determination of the Selection Parameters for
Resource Allocation

As stated before, a parser is used to parse the XML
document at the end of this parse a number of parameters

specific to the ladder logic program would have been
accumulated. These parameters are instrumental in the
selection of the most suitable PLC and/or microcontroller
and consist of variables that represent things such as the
number of instructions that are required for the program,
the size of the memory that is required, the number of
inputs, the number of outputs, the number of Flip-Flops,
the number of timers, the number of counters, the number
of internal relays, the number of master control relays.
In order to translate the requirements to relate to the XML
document, it is required to count the number of
instructions, evaluate the size of the memory that is
required for the program, the number of input and output
ports that are needed, the number of timers, and the
number of counters. The final system architecture
presented in Figure 5 below is more akin to the
implementation of the PLC Resource Allocator.

Fig. 5. Architecture of PLC Resource Allocation and Verification

The main implemented module is the
“PLCSelectionEngine” Java class [24]. In the parser,
various variables are used to store the values of the
different parameters that are required above and are
accessible through appropriate Java access methods.
Further details of the implementation can be seen from the
source code of the “PLCXMLParser” Java class in [9]. It is
expected that not all of the variables represented here will
have values after each parse. However the ones that have
values represent the working set of parameters will be
passed to the PLC selection engine. Other features of
“PLCSelectionEngine” include a user-based search based
on other parameters such as cost, reliability or long-term
support.

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

138

4. XML to SMV Translation and Verification

Traditionally ladder programs are validated by testing. A
set of tests for each program is executed in order to
establish the compliance of the ladder program with its
specification. The main drawback of this approach is that
it is not exhaustive, and can lead to a successfully tested
program still having significant errors. It is for this very
reason why formal methods are more useful.
Formal methods are deeply rooted in mathematics. These
formal methods suggest the use of mathematics to specify,
design and implement a computer system. Reducing the
number of errors in a program and increasing productivity
is one of the claimed benefits of formal methods according
to [2]. This article also indicates that formal methods help
to improve the quality of a program and enables one to
write specifications that are used to discover potential
problems or future characteristics of a system. This is
imperative especially for safety critical systems, a category
in which most industrial control systems fall. SMV is
particularly suited for Computation Three Logic (CTL),
which allows the specification of temporal properties of a
system not supported by other languages. SMV can be
used for both software and hardware system design. The
Cadence Formal Check tool [8] is used because it is freely
available, it is equipped with SMV as one of its modeling
languages and facilitates the verification process by the
GUI that it provides.
This section investigates the basic principles of the SMV
language, the transformation process of the submitted
XML model to SMV, the specification and verification of
the generated SMV code. It concludes by looking at the
overall system architecture.

4.1. Formal Verification of Ladder Logic Programs

Formal methods in system development are based on
transformations of a mathematical specification. These
transformations therefore possess and preserve the
“mathematical-correctness” of a specification. Likewise, in
formal verification it endeavors to ensure that whatever
property or characteristic is formally specified, the system
will perform likewise and meet the expectations of the user.
Therefore verification is a way to ensure that the
requirements of a system are met. The use of formal
methods in PLC programming is introduced in [7]. Mader
[13] raised the question about the role of formal methods
for increasing confidence in PLC applications, but also
provide some good pointers for efficient formal
verification of PLC programs.
Beside model checking methods [14], there are other
verification methods that have been used to verify PLC
programs such as timed automata [6]. Aiken et al. [1] in
their paper model LD programs as constraints systems
without support for Jumps. Moon [17] used state automata

and SMV for model checking in verifying LD programs,
however the extraction process of the state automata is not
presented. In developing the XML-to-SMV converter, it
was important to take into account the work of Rossi [23],
in which formal semantics of LD programs accounts for a
large subset of the full language. Although a conversion
method of PLC programs into SMV subsets is presented
in [22], the XML model representation of the PLC
program will be used to generate the set of SMV modules.
The XML model therefore represents a type of standard
interface or intermediate model between the ladder logic
program and the SMV model as depicted by the diagram
of Figure 6.

Fig. 6. Model of the Resource Allocation and Verification System

All the PLC Ladder programs can be internally
represented as XML models. This is a great advantage
over a direct conversion from the ladder logic to SMV, as
no costs are incurred in converting from the different
programming languages, and it provides users with the
portability of XML and a standard platform capable of
countless other possibilities. Only one algorithm would
therefore be required to do the conversion of the XML
model to the requisite SMV model for verification. This
has far reaching implications with regard to a standard
model for formal verification of PLCs.
A SMV module is defined by the keyword MODULE and
a name followed by an optional list of the module input
variables. Local variables for the module can be defined in
a list beginning with the keyword VAR. State transitions
are characterized by the changes in the values of variables
in the module and defined in the ASSIGN statement.
Additional variables can be defined following the keyword
DEFINE according to the specification defined in table 2.
There is a description of the SMV input language in [15].
The module name “main” has a special significance in the
SMV in the same way that it does in the C programming
language. That is, the main module is the first module that

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

139

will be executed. Execution of assignment statements in an
SMV program are done simultaneously and in parallel.

4.2. Transformation of the XML Model to SMV

In constructing the SMV model, the focus is on the flow of
execution of the ladder logic program. That is the left to
right execution of each rung from the top to the bottom of
the program will be modeled. As Figure 7 shows each
transition, except for the first, models a sequential
evaluation.

Fig. 7. Ladder Logic program transition diagram

The jump instruction was not considered in this study.
These transitions will be modeled in SMV through the
next function placed in the ASSIGN section of the main
module. However a modular approach is employed which
ensures the sequential execution of each rung. The
implementation is based on the concept of the Simplified
Incidence Matrix Java Vectors. Vectors are used to store
the matrix incident edges and vertices separately although
there is a direct correlation of the indexes. For the “Up”
and “Down” edges of the ladder diagram vectors are also
used to store the “From” vertices and the “To” vertices as
necessary. In the “Up” edges structure, the “To” vertices
actually represent all the vertices where branching occurs
in the ladder diagram.
There are other methods of representing the SMV model
for example representing each contact as an individual
module with its own state and transition, declaring
instances of these contact modules and composing these
modules through a rung module. Other existing rungs
would likewise be composed in a similar fashion.
Instances of these rung modules would subsequently be
wrapped in a main module for a total representation of the
ladder program. However, although such an approach
would be considered modular it is also an unnecessarily
bulky approach. It may have cost effects on time and the
execution resources used as indicated in [22].

4.3. SMV Specification and Verification

Verification is performed by defining the main module
which will consist of the specification(s) written in
Computation Tree Logic (CTL) or temporal logic to be
verified. The result of SMV verification is a message
stating whether the CTL specification is true or false. If it
is not true, a counter example is generated indicating a

sequence of state transitions that leads to a violation of the
CTL specification (see example in [16]). The CTL is a
reachability tree for the finite state machine defined by the
SMV model. CTL statements consist of a temporal logic
operator along with a logical expression. The temporal
logic operators are E, A, X, F, G and U where:

• E represents the existential path quantifier
• A represents the universal path quantifier
• X represents the next time
• F represents the future
• G represents globally
• U represents until

Therefore with an expression q, a CTL formula or
specification could be written as Fq meaning that q holds
some time in the future, Xq meaning that q holds for the
next state and so on. If there is more than one SPEC
declaration the specification is the conjunction of all the
SPEC declarations.
Each of the formulas would be evaluated and the results
reported separately in the order of the SPEC declaration in
the program text. Considering the example of section 3, a
specification can be written that ensures that each rung
will be able to “open” or “close” the particular vent being
monitored. Hence the derived SMV main module
representation of the PLC program would be:
MODULEmain
V AR

in1 : boolean;
in2 : boolean;
in3 : boolean;
r1 : rung1(in1; in2; in3);
r2 : rung2(r1:c1; r1:c2; r1:c3);
r3 : rung3(r2:c1; r2:c2; r2:c3);

SPEC
AG(EF(r1:output)&EF!r1:output&
EF(r2:output)&EF!r2:output&
EF(r3:output)&EF!r3:output)

Variables in1, in2, and in3 are declared to be of type
Boolean in this program but are not assigned values. This
leaves the SMV system free values for this these variables,
giving them the characteristics of being unconstrained
inputs to the system. Instances r1, r2 and r3 represent rung
1, rung 2 and rung 3 respectively which monitors the three
different vents. Inputs to rung2 are driven by the inputs to
the instance of rung 1. Likewise inputs to rung3 are driven
by the inputs to the instance of rung 2. The specification
that we are verifying states that the behavior of the system
is to allow the vents to be turned “on” and “off”.
The result of this SMV verification was true and was done
with the Cadence FormalCheck SMV tool [8]. The
resources used for this model are minimal: user time -
0.015625 s, system time - 0.03125 s, BDD [33] nodes
allocated - 94, and data segment size - 0.
As presented in [16], it is important to note that model
checking only checks the model of the system. For

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

140

example, when SMV declares a claim as ’true’ or ’false’,
this is with respect to the system model whether or not it
accurately represents the system.

4.4. System Architecture

The major components of a system and the communication
Between these components identify its structural
framework or its architectural design. The final system
architecture is presented in Figure 5. The main
implemented module is the “PLCSelectionEngine” and it
contains other sub-modules. The actualization of the
“PLCSelectionEngine”, formal verification of a ladder
diagram, and the PLC database actualization were
presented previously. The java code for the full
implementation of the “PLCSelectionEngine” and the
generation of the SMV given [9]. The next section
presents a study of a test case used with the Resource
Allocator and the results obtained.

5. Case Study

The aim of this case study is to demonstrate, that given an
XML model of a control process, the Resource Allocator
tool can be used to select the appropriate PLCs or EBCs.
The user is then able to generate a report for each PLC
returned in the results of the query to the database. This
may include additional modules, supporting materials,
accessories, and diagrams from the database that are linked
to the particular PLC or microcontroller. Likewise report
listings of the contents of the database can be generated on
demand. Figure 8 shows the snapshot of the prototype
execution.

Fig. 8. Resource Allocator Prototype Execution

After submitting the XML file (i.e:
VentSystemLadderDiagram.xml [9]), the Resource
Allocator automatically generates, the list of PLCs/EBCs
in a database that matches the generated parameters. In
order to view the parameters that were used to generate the
results, we use the View menu option and select the
“Generated Parameters” sub-menu item as shown in
Figure 9.

Fig. 9. Parameters generated from XML file

Likewise, to see the verifiable generated SMV code, the
user should go to the View sub-menu and select the SMV
Code menu item (Figure 10).

Fig. 10. SMV code generated from XML file

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

141

We will present only one case study. The remaining
examples are described in [9].

Consider the example of a real-life control process,
that consists of a painting system (Figure 11).

Fig. 11. Diagram of the painting system [11]

A conveyor system that retrieves parts as is needed for a
robot to complete paint job. The robot sweeps over the part,
before the part can move on. The sensor lamps must be on
for the conveyor to work. All actuators and lamps should
be off when the switch is off. When the “On” switch is
turned, the conveyor should start. It should run until PE1
indicates the presence of a part at the paint station. At this
point, the conveyor should automatically turn off. The
paint arm, which is assumed to have started in its counter
clockwise position, should be moved to the clockwise
position (CW), and then back to counter clockwise (CCW)
position. While the paint arm is moving, the paint should
be spraying (represented by the Red lamp being on). After
a complete spray operation, the Red lamp should be off.
The green light should turn on and stay on for two seconds
(use of a timer), indicating the process is complete.
The conveyor should then turn on again. The system
should then receive another part. Figure 12 gives a
snapshot of the ladder diagram of a painting system. The
system controller has a set of inputs and outputs (tables 2
and 3).

Table 1. Inputs required by painting controller
Inputs Description

PE1
Photo Electric sensor signal that
indicates the position of the part

being painted (begin)

PE2
Photo Electric sensor signal that
indicates the position of the part

being painted (end)

CCWSense
Sensing position signal of the paint

arm and its rotation counter
clockwise

CWSense
Sensing position signal of the paint

arm and its rotation counter
clockwise

OnSwitch Signal that starts the process
StopSwitch Signal that stops the process

G_timer Signal that activates the 2-second
timer

Table 2. Outputs of the painting controller
Outputs Description

CCWMotor Control Signal used for switching
on/off the motor that turns the
paint arm counter clockwise

CWMotor Control Signal used for switching
on/off the motor that turns the
paint arm counter clockwise

ConMotor Control signal used for starting
and stopping the conveyor

GLamp Green lamp signal
RLamp Red lamp signal
Spainter Spray painter control signal

The representative XML representation is saved as a file
named PaintingSystemLadderDiagram.xml [9].

Fig. 12. Snap shot of the ladder diagram editor.

Using this file as input to the PLC/EBC Resource
Allocator the following results were observed for the
generated parameters, the selected PLCs/EBCs, the
generated SMV model and verification. The generated
parameters are given below:
Total Contacts : 25
Number of Branches : 1
Total Instructions : 20
Program Memory Size : 360 words
Data Memory Size : 104 words
Number of Inputs : 17
Number of Outputs : 8
Number of Timers : 1
The Allocator generates results that are similar to those of
the vent control of figure 9. However it is important to
recognize that the results returned are dependent on more
than one factor. The collective points in the previous case
are reiterated here; That is, the type and number of
PLCs/MCUs returned depend on the population of the
database [9]. Factors such as the variation in the values of
the parameters in the database, a larger quantity of data
and marked differences in the complexity of the control
processes being studied cause greater variation in the
results obtained. For example the ”Find dialog” command

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

142

on the Resource Allocator can return more specific
PLCs/MCUs by directly specifying the size of the
parameters needed. If a search for all MCU from Z-World
Inc [32] is made, a sample report similar to the one of
Figure 13 should be obtained.

Fig. 13. Z-world MCUs Query

Now, with a larger quantity of data in the database, a
variation in the data is shown. Using the “Find dialog”
command again and specifying MCUs with at least 256
Kbytes of RAM leads to few elements. The variation of
parameters are directly related to the complexity of the
control process being studied. Hence, since the test cases
showed similar complexities, the results from the database
agreed likewise (Figure 14). The SMV Model of the
Painting system obtained from the XML using our
software tool is given in Appendix 2 and the verification
results in Appendix 3.

Fig. 14. Finding Results - Z-world MCUs with at least 256 K RAM

6. Conclusion and Future Direction

6.1. Conclusion

This paper presents a preliminary study that combines
software methods for effective deployment of

programmable logic controllers in control processes. The
database is intended to be representative of all PLCs and
microcontrollers. This is achieved by capturing the
essential characteristics of these components through the
analysis of data sheets from various industry practitioners.
The intent is that the resultant database should be general
enough to represent all the fundamental information
necessary for any selection, as well as to provide auxiliary
information on the components selected.
The prototype of the Resource Allocator tool has been
designed with a few limitations with regard to the structure
and size of the Ladder Diagram programs that can be
handled. The rung depth has been restricted to 2 and the
number of rungs to 20. Additionally, all programs are
assumed to be sequential while in reality programs may
have jumps or loops. Nevertheless the structural
limitations were sufficient for the level of analysis needed
for this research. However, the Resource Allocator tool
can be expanded to improve these limitations and also to
increase the number and type of contacts that are
accommodated. This will increase the number of
instructions or the size of the PLC program that can be
processed.
The digraph-XML model presented requires further testing
and analysis with more industrial PLC programs written in
Ladder Diagram for added validation and verification of
the model. Although the test case was
successfully verified, the model presented can be refined
to be more semantically rich thus increasing the
capabilities of the Resource Allocator.
The XML model can be represented as a set of edges and
as a simplified incidence matrix which can increase the
performance of the PLC selection engine. Such a model is
purported to be more memory efficient and will increase
the speed of parsing. Therefore it is expected to be a core
part of the resource allocation system in future
implementations. There are also inherent limitations in the
generated SMV code. The problem of being able to
generate ad hoc CTL specifications in the SPEC section of
the SMV main module for each control process is still an
unaccomplished task. It is no small feat to specify
invariants or other properties such as fairness, safety and
liveness that remain constant for all control processes.
The prospect of performing this task appears possible with
the concept of a more semantically rich model. However,
SMV code generated in this work models the system and
model verification checks whether or not it accurately
represents the system. This work has the potential to be
very useful to practitioners in the PLC industry and is a
precursory step in the total automation and formal
verification of industrial control processes. It facilitates
this process through the implementation of a reference
database, a PLC selection engine and a SMV code
generator for Ladder Diagram program verification. It also

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

143

provides a number of perspectives for future research in
the field.

6.2. Future Direction

Further The future direction of this work can be gleaned
from the answer to the following question: What is
expected in the future of resource allocation and model
verification? It is anticipated that more efficient methods
for automatic selection and verification will be produced
based on enhanced or novel models. This should result in
the improved performance of the selection engine. It can
be noted that even the simple creation of strategic indexes
(indices) in the PLC database can significantly improve
the database’s performance as the size of the database is
continually increased. However, the focus was on the
implementation and functionality of the model, so no
indices were created on the reference database.
It should be the case that verification is done automatically
before the selection engine is called to perform automatic
resource allocation. That is, getting a result from the
Resource Allocator tool should be dependent on the ladder
logic being correct to the users’ specification. Hence we
forecast a tighter integration or a convergence of the
Resource Allocator and the formal verification tools to
produce more complete automation process. This remains
a task for a later version of the system. It has been the
nature of formal verification to create an intermediate
model of the system prior to translating it into the formal
language. For example, [10] used state chart, Thomas and
Bryla [27] used transition systems diagrams and for our
study digraphs and XML.
To use our model as the basis for formal verification
would require an equivalent digraph representation for the
ladder logic programs written in any of the five different
PLC programming languages. Essentially, this would
allow programs written in other languages to be
represented in ladder diagram according to our
specifications. A tool that represents ladder diagrams
internally as digraphs and that generates the corresponding
XML model from the ladder diagram programs is created
in [4, 18] The generated XML model is then used to
generate the formal model in SMV for verification.
Alternatively, a common XML model could be found for
the programming languages represented in the
International Electro-technical Commission (IEC) standard,
IEC 61131- 3, which can be used for the basis of all PLC
verification. Achieving any of these could be the precursor
for the standardization of formal verification of ladder
diagrams using SMV.

Appendixes

Appendix 1: Sample XML Model
</LadderDiagram>
...
- <Graph graphNumber=”3”>
- <Vertices>
- <Vertex number=”0”>
<startX>60.0</startX>
<startY>470.0</startY>
</Vertex>
- <Vertex number=”24”>
<startX>180.0</startX>
<startY>470.0</startY>
</Vertex>
= <Vertex number=”25”>
<startX>300.0</startX>
<startY>470.0</startY>
</Vertex>
- <Vertex number=”26”>
<startX>420.0</startX>
<startY>470.0</startY>
</Vertex>
-<Vertex number=”27”>
<startX>540.0</startX>
<startY>470.0</startY>
</Vertex>
</Vertices>
- <Edges>
-<Edge type=”CloseContactEdge”>
<from>0</from>
<to>24</to>
<address>000.02</address>
<symbol>V1</symbol>
</Edge>
- <Edge type=”CloseContactEdge”>
Exploring an Approach for Effective Deployment of
Programmable Logic Controllers (PLCs) 11
<from>24</from>
<to>25</to>
<address>000.01</address>
<symbol>V2</symbol>
</Edge>
- <Edge type=”CloseContactEdge”>
<from>25</from>
<to>26</to>
<address>000.03</address>
<symbol>V3</symbol>
</Edge>
- <Edge type=”OpenOutputEdge”>
<from>26</from>
<to>27</to>
<address>003.00</address>
<symbol>NO VENT</symbol>
</Edge>

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

144

</Edges>
</Graph>
</LadderDiagram>

Appendix 2: Generated SMV from the XML model
of the Painting System Controller

MODULE rung1(ONSWITCH,OFFSWITCH,START)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (ONSWITCH — START) &
(!OFFSWITCH);

DEFINE
c1 := ONSWITCH;
c2 := OFFSWITCH;
c3 := START;

MODULE rung2(ONSWITCH,PE1,START)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (ONSWITCH & !PE1 & !START);

DEFINE c1 := ONSWITCH;
c2 := PE1;
c3 := START;

MODULE rung3(PE1,CCWSENSE)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (PE1 & !CCWSENSE);

DEFINE
c1 := PE1;
c2 := CCWSENSE;

MODULE rung4(PE1,CCWSENSE)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (PE1 & !CCWSENSE);

DEFINE
c1 := PE1;
c2 := CCWSENSE;

MODULE rung5(PE1,CCWSENSE)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (PE1 & !CCWSENSE);

DEFINE c1 := PE1;
c2 := CCWSENSE;

MODULE rung6(CCWSENSE,CWSENSE)
VAR

output : boolean;

ASSIGN
init(output) := 0;
next(output) := (!CCWSENSE & CWSENSE);

DEFINE
c1 := CCWSENSE;
c2 := CWSENSE;

MODULE rung7(CCWSENSE,GTIMER)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (CCWSENSE & !GTIMER);

DEFINE
c1 := CCWSENSE;
c2 := GTIMER;

MODULE rung8(GLAMP)
VAR

output : boolean;
ASSIGN

init(output) := 0;
next(output) := (GLAMP);

DEFINE
c1 := GLAMP;

MODULE main
VAR

in1 : boolean;
in2 : boolean;
in3 : boolean;
in4 : boolean;
in5 : boolean;
in6 : boolean;
r1 : rung1(in1,in2,r1.output);
r2 : rung2(r1.c1,in3,r1.c3);
r3 : rung3(r2.c2,in4);
r4 : rung4(r2.c2,r3.c2);
r5 : rung5(r2.c2,r3.c2);
r6 : rung6(r3.c2,in5);
r7 : rung7(r3.c2,in6);
r8 : rung8(r7.output);

SPEC
AG(
EF (r1.output) & EF (!r1.output) &
EF (r2.output) & EF (!r2.output) &
EF (r3.output) & EF (!r3.output) &
EF (r4.output) & EF (!r4.output) &
EF (r5.output) & EF (!r5.output) &
EF (r6.output) & EF (!r6.output) &
EF (r7.output) & EF (!r7.output) &
EF (r8.output) & EF (!r8.output))

Appendix 3: Summary of the Verification Results for
Painting System

Model checking results
======================
(AG ((((((((((((((((EF r1.output)&(EF (˜r1.output)))&(EF
r2.output))&(......true
user time...0.046875 s

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

145

system time.......................................0.03125 s

Resources used
==============
user time...0.046875 s
system time.......................................0.03125 s
BDD nodes allocated...............................415
data segment size.................................0

References
[1] Aiken, M. Fahndrich, and Zhendong Su. Detecting Races in

Relay Ladder Logic Programs. In Proc. 4th Int. Conf. Tools
and Algorithms for Construction and Analysis of Systems
(TACAS’98), Lisbon, Portugal, March 1998, Volume 1384,
Lecture Notes in Computer Science, pp. 184-200, Springer,
1998.

[2] Andrews D. 1996, Formal Methods in Software Engineering
Education: Discussion Summary, Proceedings of the 1996
International Conference on Software Engineering:
Education and Practice (SL: E&P ’96), pp. 514-515.

[3] Automatic Direct 2006, Using the Considerations for a PLC
Worksheet, http://www.automaticdirect.com.

[4] Buchanan L. 2006, Retargetable Ladder Logic Diagrams
Tool, MPhil. Thesis, University of the West Indies, Jamica.

[5] Date C. 2000, An Introduction to Database Systems,
Addison- Wesley.

[6] Emerson, E. A. 1990, Temopral and Modal Logic, In J. Van
Leeuwen, Editor, Handbook of Theoretical Computer
Science, Vol. B, Chapter 16, pp. 995 - 1072. Elseiver
Science.

[7] Frey G. and Litz G., Formal Methods in PLC Programming.
Proceeedings of the IEEE Conference on Systems Man and
Cybernetics SMC 2000, Nashville, pp. 2431 – 2435.

[8] Formal 2006, Cadence Formal Check,
http://www.cadence.com/webforms/cblsoftware/index.aspx

[9] Gordon A. 2006, Automaic Resource Allocation and Model
Verification in Programmable Logic Controllers, MSc.
Computer Science Thesis, University of the West Indies,
Jamaica.

[10] Grama, R., Srinivasan, G. R. and Gluch, D. P., 1998, A
Study of Practice Issues in Model-Based Verification
Using the Symbolic Model Verifier (SMV), Internal
CMU/SEI-98-TR-013/ESC-TR-98-013 available at
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr0
13.pdf.

[11] Holloway,005
http://www.engr.uky.edu/holloway/MFS605.

[12] ICE (International Electrotechnical Commission), 1993, IEC
Standard 61131-3: Programmable Controllers, Part 3.

[13] A. Mader, What is the method in applying formal methods to
PLC Applications, 4th Int. Confutomation of Mixed
Processes: Hybrid Dynamic Systems (ADPM), S. Engel, S.
Kowaleski, and J. Zaytoon (eds), Shaker Verlag, Aachen,
Germany, 2000, pp. 165 - 171.

[14] McMillan, K. 1993, Symbolic Model Checking, Kluwer
Academic.

[15] McMillan K., Symbolic Model Checking, PhD Thesis,
available at http://www.kenmcmil.com/pubs/thesis.pdf.

[16] McMillan, K. 2006, SMV Tutorial,
http://www.kenmcmil.com/tutorial.ps.

[17] Moon, I. 1993,Modeling Programmable Logic Controlers for
Logic Verification, IEEE Control Systems, 14(2): 53-59,
1993.

[18] Ngalamou L., L. Buchanan, and L. Myers, August 4-6, 2004,
Architecture of a Retargetable Ladder Logic Diagrams Tool,
in the Proceedings of SICE Annual Conference in Sapporo,
pp. 215 - 2519.

[19] Ngalamou L. and L. Myers, Modelling PLC Charcateristics
for Resource Allocation, International Journal of Computer
Applications in Technology, Inderscience, Vol. 31, Nos. 3/4,
2008, pp. 263 – 274.

[20] Noergaard, T., 2005, Embedded Systems Architecture – A
Comprehensive Guide for Engineers and Programmers,
Newnes - Elseiver.

[21] Oracle 2006, http://www.oracle.com/index.html.
[22] Rausch, M. and Krogh, B. H. June 1998, Formal Verification

of PLC Programs, American Control Conference,
Philadelphia, PA, USA.

[23] Rossi, O. and Schnoebelen, P. Sept.2000, Formal modeling
of timed function blocks for the automatic verification of
ladder diagram programs, 4th International Conference on
Automation of Mixed Processes: Hybrid Dynamic Systems,
ADPM’2000, Dortmund (Germany), pp. 177-182.

[24] Sax 2010, http://www.saxproject.org/.
[25] Silberschatz, A. and Korth H. F., 1997, DatabaseSystem

Concepts, Third Edition, McGraw Hill.
[26] Smet, Cuffin R., R O., Canet G., J.-J. Lesage J., S chnoebelen

P., and Papini H. , October 2000, Safe Programming of PLC
using Formal Verification Methods, 4th International
PLCopen conference on Industrial Control Programming,
ICP’2000, Utrecht (The Netherlands), pp. 73-78.

[27] Thomas B. and Bryla B. 2002, OCA/OCP: Oracle9i DBA
Fundamentals I Study Guide, Sybex.

[28] Van ELk, P. J. B., Ladder Diagrams 1998, Technical
Report, Dept. of Computer Science, University of Nijmegen
Tornooiveld, The Netherlands, available at
http://citeseer.ist.psu.edu/105621.html

[29] Warnock, I., 1998, Programmable Logic Controllers -
Operation and application, Prentice Hall.

[30] XML 2006, http://www.xml.org.
[31] ZTools 2006, Community Z Tools available at

http://czt.sourceforge.net
[32] Zworld, http://www.rabbit.com/ enrik, R. Andersen,

Introduction to Binary Decision Diagrams, Technical
Report, Department of Information Technology,
Technical University of Denmark, October 1997

Lucien Ngalamou received the
B.Sc.(First Class Honor) Degree in
Applied Physics from the University of
Yaounde, Cameroon in 1989 and the
Master Degree in Electronic
Engineering from the University of
Science and Technologies of
Languedoc, Montepellier-France in
1991. He completed his PhD in
Electronic Engineering from

Joseph-Fourier University, Grenoble-France. He is presently an
Assistant Professor in the School of Engineering, Grand Valley
State University, Grand Rapids - Michigan. His current research

IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010

146

interests include Reconfigurable Computing, Electronic Systems
Design, CAD Tool for Process Automation, Formal Hardware
Verification, Evolvable Hardware, Asynchronous Logic, and
Models of Computation.

Leary Myers is a Lecturer in the Department of Physics,
University of the West Indies – Jamaica and holds a PhD in
Electrical Engineering from the Howard University, Washington
DC. He has occupied such positions as Director - Five Star
Engineering and Scientific Associates Ltd. He was a Part-time
(Senior) Lecturer, School of Engineering, University of
Technology - Jamaica; Research Assistant Professor, Graduate
School of Arts and Sciences; and Senior Research Associate,
Materials Science Research Center of Excellence at Howard
University.

